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Abstract

We analyze and critique the public-key cryptosystem, based on
combinatorial group theory, that was proposed by Wagner and Magyarik
in 1984. This idea is actually not based on the word problem but on
another, generally easier, premise problem. Moreover, the idea of the
Wagner-Magyarik system is vague, and it is difficult to find a secure
realization of this idea. We describe a public-key cryptosystem inspired
in part by the Wagner-Magyarik idea, but we also use group actions on
words.
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1 Introduction

A number of public-key cryptosystems based on combinatorial group theory
have been proposed since the early 1980s, the first of which was probably
the outline of Wagner and Magyarik [13]. A good overview of various other
group-based systems is given in the dissertation of M.I. González Vasco [6]; see
also [8].

In this paper we present a critique of the Wagner-Magyarik system, and
propose a public-key cryptosystem based on finitely presented groups with hard
word problem, and which are also transformation groups.

In order to make the paper more self-contained we give some basic definitions
from combinatorial group theory. More details and rigor can be found in texts
like [10] or [11].

Let G be a group, defined by a presentation (X, R), where X = {x1, x2, . . .}
is a set of generators and R = {r1, r2, . . .} is a set of relators. When the sets X
and R are both finite we say that the group G is finitely-presented. A word w
over X is a finite sequence of elements of the set X ∪X−1. The empty word is
the empty sequence, of length 0. A word which defines the identity element in
the group G is called a relator. We say that two words w and w′ are equivalent
for the presentation (X, R) iff the following operations, applied a finite number
of times, transform w into w′:
(T1) Insertion of one of the relators r1, r

−1
1 , r2, r

−1
2 , . . . ∈ R ∪ R−1, or of a

trivial relator (of the form xix
−1
i or x−1

i xi with xi ∈ X) at the beginning of a
word, at the end of a word, or between any two consecutive symbols of a word.
(T2) Deletion of one of the relators r1, r

−1
1 , r2, r

−1
2 , . . . , or of a trivial relator,

if it forms a block of consecutive symbols in a word.
An application of one transformation of the form (T1) or (T2) is called a rewrite
step. Every element g of G = (X, R) can be described by a word over X ∪X−1,
usually in many ways; the length of the shortest word that describes g is called
the word length of g. For a word w over some fixed alphabet we denote the
length of w by |w|; also, for g ∈ G = (X, R) we denote the word length of g by
|g|.

The word problem of a group with generating set X, as introduced by Max
Dehn in 1911, is the following decision problem: For an arbitrary word w over
X ∪X−1, is w equivalent to the empty word?

In the 1950’s, Novikov and Boone independently showed that there are finite
group presentations whose word problem is undecidable. It is an important
fact that the decidability and the complexity of the word problem of a finitely
generated group depend only on the group, and not on the generators or the
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presentation chosen (provided that one sticks to finite generating sets). In
other words, if G has decidable word problem for some finite generating set X
then G has decidable word problem for every finite generating set. Concerning
complexity, a change of the finite generating set changes the complexity only
linearly (see [12]). Therefore, we are allowed to talk about “the word problem
of a group G” without referring to a specific presentation.

It was proved more recently that there are finitely presented groups whose
word problem is NP-complete [14], [4], or whose word problem is coNP-complete
[1].

By a group with easy word problem we will understand a group whose word
problem is decidable in deterministic polynomial time. The other groups are
said to have a hard word problem.

We will also deal with the following variant of the word problem, which we
call the word choice problem. Let us fix a group G with a finite generating set
X, and let us fix two words w0 and w1 over X ∪X−1.
Input: A word w over X ∪X−1.
Premise: w is either equivalent to w0 or to w1.
Question: Is w equivalent to w0 ?

Note that this is a “premise problem”1, i.e., a problem with restrictions
(pre-condition) on the input; an algorithm for solving a premise problem can
assume that the pre-condition holds, and is not required to give correct answers
(or any answer at all) on inputs that violate the pre-condition.

The word choice problem is rather different from the word problem. E.g.,
for a finitely presented group, the word choice problem is always decidable; and
for a group with word problem in NP or in coNP, the word choice problem is
in NP ∩ coNP. One sees from these examples that the word choice problem can
be much easier than the word problem.

2 Critique of the Wagner-Magyarik system

In 1984 Wagner and Magyarik [13] proposed a public-key cryptosystem “based
on the word problem”. The general scheme follows.

Setup: Let X be a finite set of generators, and let R and S be finite sets of
relators such that the group G = (X, R) has a hard word problem, and
the group G′ = (X, R ∪ S) has an easy word problem. Choose two words
w0 and w1 which are not equivalent in G′ (and hence not equivalent in G
either).

1In the complexity literature, premise problems are usually called promise problems;
however, the word ‘premise’ is the appropriate logical term; look up ‘premise’ in the
Merriam-Webster Dictionary http://www.m-w.com/home.htm
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Public key: The presentation (X, R) and the words w0 and w1.

Encryption: To encrypt a single bit i ∈ {0, 1}, pick wi and transform it
into a ciphertext word w by repeatedly and randomly applying the
transformations (T1) and (T2) for the presentation (X, R).

Decryption: To decrypt a word w, run the algorithm for the word problem of
G′ in order to decide which of ww−1

0 and ww−1
1 is equivalent to the empty

word for the presentation (X, R ∪ S).

The private key is the set S. Actually, this is not sufficient (and [13] is
not very precise at this point): the public key should be a deterministic
polynomial-time algorithm for the word problem of G′ = (X, R ∪ S);
indeed, just knowing S does not automatically and explicitly give us an
efficient algorithm (even if such an algorithm exists).

To make their system concrete, Wagner and Magyarik introduce the
following collection of finitely-presented groups: The set of generators is X =
{x1, x2, . . . , xm} and the set of relators R is any set of words of the following
three types:
(R1) yiyjyky`y

−1
i y−1

k y−1
j y−1

`

(R2) yiyjyky−1
i y−1

j y−1
k

(R3) yiyjyky−1
i y−1

k y−1
j

where yi, yj , yk, and y` stand for generators or inverses of generators,
not necessarily distinct. We will call such presentations Wagner-Magyarik
presentations.

For the private key S they propose any set of words of the following three
types:
(S1) xi (elimination of a generator)
(S2) xix

−1
j (collapse of two generators to one)

(S3) xixjx
−1
i x−1

j (commutator of two generators)
where xi and xj are any generators. A requirement on S is that it should contain
enough relators so that the group G′ = (X, R ∪ S) is isomorphic to a partially
commutative free group, i.e., a group generated by a subset of X and presented
by a few commutation relations between generators. This will guarantee that
the word problem of G′ can be decided in polynomial time [16]. The words
w0, w1 need to be chosen so that they are not equivalent in G′.

Critique

1. Vagueness of the general scheme: In its general form the Wagner-Magyarik
cryptosystem is far too vague. To turn their idea into an actual cryptosystem,
design questions would need to be answered:
(1) How do we find appropriate presentations (X, R) and (X, R∪ S), as well as
a polynomial-time algorithm for the word problem of (X, R ∪ S)?
(2) How do we find appropriate words w0 and w1?
(3) How is the random application of the transformations (T1) and (T2) carried
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out, and when does it stop?
(4) Finally, once all these design choices have been specified, how secure is this
cryptosystem?

2. Vagueness and insecurity of the concrete specification: In their specific
example, Wagner and Magyarik give an answer to design question (1), albeit an
unsatisfactory one. Design questions (2), (3) and (4) are left open. Concerning
(1), it is an open problem whether the word problem of the Wagner-Magyarik
presentations is hard. It is certainly not hard for every choice of (R1), (R2),
(R3); e.g., some of the choices lead to commutative groups. This means that
in the Wagner-Magyarik system, key generation is problematic: making sure
that the chosen R makes the word problem of (X, R) is hard is itself apparently
a hard problem. Concerning (4), a reaction attack[7] and a chosen-ciphertext
attack are possible, both of complexity O(m2).

3. Spurious keys: Another problem (already mentioned in [13]) is the existence
of spurious keys. More precisely, in order to decrypt one does not explicitly
need the presentation (X, R∪S). Any homomorphic image of G with easy word
problem will decrypt, as long as it separates w0 and w1. So, even if S might be
hard to find, one also has to prove that any homomorphic image of G with easy
word problem, is hard to find; this adds to the difficulty of proving the security
of any concrete cryptosystem that follows the Wagner-Magyarik approach.

4. Word choice problem: An analytical flaw in the Wagner-Magyarik paper
(and subsequent papers that comment on their paper) is the claim that the
system is based on the word problem. In reality, it is based on the word choice
problem, that we introduced earlier. We pointed out already that the word
choice problem can be much easier than the word problem. In particular, it
seems unlikely that this system could ever lead to NP-completeness. Instead,
(NP ∩ coNP)-completeness is more likely to be the highest difficulty that we can
hope for, regarding robustness to attack. It is generally believed that NP ∩ coNP
is a strict subclass of NP. Although no (NP ∩ coNP)-complete decision problem
is known (see e.g., [5], page 116), it is not hard to see that for every NP-complete
decision problem one can construct a (NP ∩ coNP)-complete premise problem.
See the Appendix for details.

5. In summary: The Wagner-Magyarik cryptosystem is not a cryptosystem,
but an approach towards finding new public-key cryptosystems. As a research
approach it is worthwhile, however, leading to interesting (yet unsolved)
problems.

3 A public-key cryptosystem based on finitely
presented transformation groups

We describe a public-key cryptosystem that has some similarity with the
Wagner-Magyarik system, as far as the encryption is concerned. However, we
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use a group G whose word problem is known to be coNP-complete. The main
difference is that for decryption we use the action of the group on words (instead
of Wagner and Magyarik’s homomorphic image G′).

Our contribution is that (referring to point 1 in our critique of the
Wagner-Magyarik system) we answer the design questions (1) and (2). Design
question (3) is addressed, but our method needs further study, and probably
further improvements. Regarding question (4), the security of our scheme
is much better motivated than the security of the original Wagner-Magyarik
system, but it is necessarily limited (due to the multitude of hard open problems
in complexity, combinatorial group theory, and cryptography).

We pick a finitely presented group G = (X, R) together with a faithful
transitive action of G on {0, 1, 2}∗ (the set of all strings over the alphabet
{0, 1, 2}). We can assume that the word problem of G is coNP-complete. We
conjecture that the word choice problem of G is (NP ∩ coNP)-complete. The
Appendix deals with a semigroup version of this question.

An example of such a group is constructed in [1], where it is called G =
〈Gmod 3

3,1 (0, 1;#) ∪ {κ321}〉; it is closely related to the Higman-Thompson group
G3,1 (generalizing Richard Thompson’s infinite finitely presented simple group
G2,1). This group has the property that if two elements g0, g1 ∈ G of word
length ≤ n are different then there exists a word z ∈ {0, 1, 2}∗ of length O(n)
on which g0 and g1 act differently. Moreover, given a word z ∈ {0, 1, 2}∗ and a
word w over a finite generating set of G, the word (z)w ∈ {0, 1, 2}∗ (resulting
from the action of w on z) can be computed in deterministic time O(|z|+ |w|).
For a definition of the Higman-Thompson groups, see also [2], [15] and [9].

Key selection: We first pick a word x ∈ {0, 1, 2}∗. For encrypting and
decrypting 0 we choose a word z ∈ {0, 1, 2}∗ and, similarly, for 1 we choose
a word u ∈ {0, 1, 2}∗; the three words x, z, u should be long enough so that
it is impossible to guess them. For 0, we also choose m − 1 “intermediary
words” zi ∈ {0, 1, 2}∗ (with i = 1, . . . ,m − 1); similarly, for 1 we choose m − 1
“intermediary words” ui ∈ {0, 1, 2}∗ (with i = 1, . . . ,m − 1). Here, m is a
security parameter chosen so that 2m or 4m is very large; e.g., we could have
m = 100 or m = 200. The two sets {z} ∪ {zi : i = 1, . . . ,m − 1} and {u} ∪
{ui : i = 1, . . . ,m− 1} are required to be disjoint.

Next, we choose a “system of words” over X ∪X−1 for encrypting a bit 0,
and a system of words over X ∪X−1 for encrypting a bit 1. A system of words
(say for encrypting 0) is a sequence of m finite sets (Z1, . . . , Zm). Each set Zj

is a small set of words over X ∪ X−1 (with e.g., 4 elements). Each element
w ∈ Zj has the property that (zj−1)w = zj , for j = 2, . . . ,m− 1; also, for each
element w ∈ Z1, (x)w = z1, and for each element w ∈ Zm, (zm−1)w = z. For 1,
a similar system (U1, . . . , Um) of sets of words is chosen, with similar properties
regarding x, uj (j = 1, . . . ,m− 1), and u. The action diagram below shows the
role of the intermediate words zi ∈ {0, 1, 2}∗ and the action of the words in Zj

on the intermediate words:
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x
Z1−→ z1

Z2−→ z2
Z3−→ . . .

Zi−1−→ zi−1
Zi−→ zi

Zi+1−→ . . .
Zm−1−→ zm−1

Zm−→ z

The private key is (x, z, u). (The words zi and ui are required to remain
secret but are not needed after key selection, i.e., they are not used in encryption
or decryption.)

The public key consists of the presentation (X, R), as well as the two set
systems (Z1, . . . , Zm) (for 0), and (U1, . . . , Um) (for 1).

Encryption: To encrypt a bit 0, randomly choose an element wj in each
set Zj (j = 1, . . . ,m), and concatenate these elements to form the word
w1w2 . . . wm. Next, as in the Wagner-Magyarik system, we rewrite w1w2 . . . wm

by applying the relators of G = (X, R) (as well as the trivial relators) randomly
a “sufficiently large” number of times; see the discussion below concerning this
rewriting. This yields some word W0, encrypting 0. To encrypt a bit 1, the
procedure is similar, but now the set system (U1, . . . , Um) is used.

Decryption: With a ciphertext w, compute (x)w. If (x)w = z, decrypt as
a 0; if (x)w = u, decrypt as a 1.

Some design issues:

1. The words x, z, u ∈ {0, 1, 2}∗ are selected uniformly at random among words
of length between n and 2n. Here n is a security parameter; e.g., n = 100 or
n = 200. Similarly, the intermediary words are selected uniformly at random
among words of length between n/2 and 4n.

Another security parameter is m; e.g., m = 100 or m = 200.

2. How is the “system of words” (Z1, . . . , Zm) (and similarly (U1, . . . , Um))
determined? For each pair of intermediary words (zj , zj+1) (for 0) we design a
boolean circuit that maps zj to zj+1; similarly, we design a boolean circuit that
maps uj to uj+1. These two circuits should be as similar as possible (in fact,
when zj 6= uj , the same circuit could be used for both; we then can make them
different in random details). If we want Zj+1 (and Uj+1) to have 4 elements we
repeat this four times. Next, we use the correspondence between circuits and
elements of the Higman-Thompson group G3,1 (see [1]) to construct elements of
G that simulate these circuits.

3. Random rewriting: The rewriting of an element from Z1 × . . . × Zm

(respectively from U1 × . . . × Um) could be done as follows. First enlarge the
presentation G = (X, R), by including R−1 (the set of inverses of the words
in R) into the set of relators, and adding all cyclic permutations of words in
R ∪ R−1 as well; this gives us the “symmetrized presentation” (X, Rs) of G.
Next, we turn (X, Rs) into a string rewriting system by taking all rules of the
form u → v for any (possibly empty) strings u, v over X ∪X−1 such that u−1v
is a relator in Rs. We also add the rules 1 → a−1a and a−1a → 1 for any
a ∈ X ∪ X−1; here, 1 is the empty string. For rewriting a word w of length n
we do the following:
Procedure A: 1. choose a position in the word obtained so far; 2. choose a rule,
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and apply it at the chosen position (if the rule doesn’t apply at this position,
go back to step 1.).
After n repetitions of procedure A, we check whether every letter of w has been
rewritten (this assumes that we marked the original letters of w); if not all
letters have been rewritten, run procedure A another n times; keep repeating
n runs of procedure A until all letters of w have been rewritten. At this point,
most positions of w will have been rewritten many times.
Now we could mark all the letters in the word w′ obtained so far, and start over
with the rewriting until all positions in w′ have been rewritten. All this could
be repeated a few more times.

The encryption of 0 first chooses one out of 4m elements from Z1× . . .×Zm

(respectively from U1×. . .×Um for 1). The rewriting process then makes it hard
to recognize what system of sets the chosen element w1 . . . wm originally came
from. The rewrite rules are applied everywhere in the word, so that no local
pattern from a set Zj or Uj (j = 1, . . . ,m) remains. Because of the exponential
number of choices for w1 . . . wm, the role of the rewriting is less important
than in the original Wagner-Magyarik idea. The role of the systems of words
(Z1, . . . , Zm) and (U1, . . . , Um) is precisely to (exponentially) strengthen the
confusion caused by rewriting, and this is one of the contributions of our paper.
But the rewriting is nevertheless important, and research is needed to determine
how (and how much of) the random rewriting should be done.

4. Security, open problems: A spurious key is any triple (x′, z′, u′) of words
over the alphabet {0, 1, 2}, with the properties that (x′)v = z′ for any word
v that encrypts 0, and (x′)w = u′ for any word w that encrypts 1. For
a known-plaintext or a chosen-ciphertext attack, suppose the attacker has a
collection of plaintext-ciphertext pairs (0, vi), (1, wj) for i = 1, . . . ,m, and
n = 1, . . . , n. Finding (spurious) keys is the search version of the common
action problem of groups elements, which we conjecture to be NP-hard; see
Appendix 2.

Our complexity analysis in this paper refers to worst case complexity. For
security, almost-all case complexity, or at least average case complexity is
needed. Unfortunately, almost-all case and average case complexity are still
relatively poorly explored, and still have definitional problems.

Other open problems:
• Is the word choice problem of the group G = 〈Gmod 3

3,1 (0, 1;#)∪{κ321}〉 an (NP
∩ coNP)-complete premise problem? (Appendix 1 gives a result for semigroups.)
• Is the common action problem of the group G = 〈Gmod 3

3,1 (0, 1;#) ∪ {κ321}〉
NP-complete? (Appendix 2 gives a result for circuits and a connection with G.)

5. Other groups that could be used in our public-key cryptosystem:

The Higman-Thompson group G3,1 with infinite generating set ∆3,1 ∪{τ0,i :
i > 0}, as studied in [1], could be used. This group has a finite presentation, and
over this finite presentation the word problem is easy. However, over the infinite
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generating set ∆3,1∪{τ0,i : i > 0} the word problem of G3,1 is coNP-hard. This
group can be used directly to simulate circuits.

The finite symmetric group SN could be used; here N = 2n, and n is a
security parameter, e.g., n = 100. Although this group is finite, its size is
exponential in the security parameter. It is an open problem whether SN has
presentations of size linear in n. We think of SN as acting on bit-strings of
length n, hence it is natural to use elements of SN for representing circuits.

4 Appendix

Appendix 1: (NP ∩ coNP)-complete premise problems

We obtain an (NP ∩ coNP)-complete word choice problem for a finitely
presented semigroup. For groups it is an open problem whether there are (NP
∩ coNP)-complete word choice problems.

Let Snp = (X, R) be a finitely presented semigroup with NP-complete
word problem, as constructed in [3]; this presentation was derived from
any nondeterministic polynomial-time Turing machine that recognizes an
NP-complete language.

Proposition. The word choice problem of the finitely presented semigroup Snp

above is an (NP ∩ coNP)-complete premise problem.

Proof. Let L be any problem in NP ∩ coNP. Consider a nondeterministic
polynomial-time Turing machine that recognizes L and consider also
a nondeterministic polynomial-time Turing machine that recognizes the
complement L. Without loss of generality we can assume that these two Turing
machines are actually the same Turing machine (let’s call it M), except for the
accept states: L is accepted by M using accept state q1, and L is accepted
by M using accept state q2. In [3] the acceptance problem “does M accept a
word w using accept state qi?” (for i = 1, 2) is reduced to the word problem
“F (q0w) =Snp F (qi) ?”; here, q0 is the start state of M , and F is a linear-time
computable function from the words over the symbol set of M to the words
over X; F is the function that reduces the decision problem of M to the word
problem of Snp. Observe that the same word F (q0w) is used for both L and
L. Therefore, w ∈ L iff F (q0w) =Snp

F (q1), and w /∈ L iff F (q0w) =Snp
F (q2);

hence also, F (q1) 6=Snp
F (q2). So, F reduces the language L to the word choice

problem of the semigroup Snp, relative to the two words F (q1) and F (q2). �

Appendix 2: The common action problem

Let G be a group generated by a finite set X ⊂ G and acting faithfully (by
total or partial injective or bijective maps) on the set A∗ (the set of all words
over a finite alphabet A). The common action problem problem of G (with
generating set X, acting on A∗) is specified as follows:
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Input: words w1, . . . , wn over X ∪X−1;
Question: does there exist (x, y) ∈ A∗ × A∗ such that for each i = 1, . . . , n:
(x)wi = y ?
The search version of this problem consists of outputting any such pair (x, y),
rather than just finding out whether there is one.

The circuit common action problem is specified as follows:
Input: combinational circuits Ci (with I/O function fi : {0, 1}n → {0, 1}n), for
i = 1, . . . , k;
Question: is there (x, y) ∈ {0, 1}n × {0, 1}n such that for each i = 1, . . . , k:
fi(x) = y ?

Proposition. The common action problem for combinational circuits is
NP-complete.

Proof: We will reduce the circuit satisfiability problem (which is NP-compete)
to the circuit common action problem. In the circuit satisfiability problem the
input is a combinational circuit and the question is whether there is a circuit
input x ∈ {0, 1}n for which the circuit produces the all 1s output 1n. A circuit
C has an input x that produces the output 1n iff the following two circuits
C ′

1, C
′
2 have a common action pair: C ′

1 on input x first uses C and then checks
whether the output of C (on input x) is 1n; if is, C ′

1 outputs 1n, otherwise C ′
1

outputs 0n. The circuit C ′
2 always outputs 1n. So, x is a satisfying input of C

iff (x, 1n) is a common action pair of C ′
1 and C ′

2, which is iff C ′
1 and C ′

2 have a
common action pair at all. �

We would like to reduce the common action problem of circuits to the
common action problem of the group G = 〈Gmod 3

3,1 (0, 1;#) ∪ {κ321}〉 by using
methods similar to those of [1]. However, those methods only show that the
common action problem of G is NP-complete when we restrict the question to
pairs (x, y) with x ∈ 0{0, 1}∗ ∪ 0{0, 1}∗2. It seems likely that the common
action problem of G is NP-complete, but this remains a conjecture.

5 Conclusion

The general idea for a public-key cryptosystem proposed by Wagner and
Magyarik in 1984, is an interesting subject for research. The original idea is too
vague to be called a cryptosystem, and it is an interesting challenge to make the
idea precise in such a way as to obtain a secure system. Also, the idea needs a
better analysis; in particular, it is not based on the word problem (as has been
claimed so far) but on the word choice problem, which is a less difficult problem
and which is related to (NP ∩ coNP)-completeness of premise problems. It seems
possible to construct public-key cryptosystems based on a combination of finite
presentations and transformation groups. We describe such a system, based
on groups related to the Higman-Thompson groups. The security evaluation
of these schemes leads to interesting new complexity problems in combinatorial
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group theory.
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