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ABSTRACT

The effect of a mean current on Kelvin waves is considered, including the case when the current is not
in geostrophic balance. Because the problem is non-separable, a perturbation scheme is developed for weak
shear from which the effect of the mean current on the wave phase speed and decay rate are determined.
The perturbation scheme also establishes that in general the Kelvin wave contains all vertical modes. The
special case of a two-layer fluid is considered in more detail.

1. Introduction

Kelvin waves are particularly simple members of
the class of coastal trapped waves. Requiring only the
presence of rotation and a vertical coastal wall, they
propagate along the coast (with the coast to the right
in the Northern Hemisphere) and their amplitudes
decay away from the coast. In the absence of any
basic mean flow there is an infinite set of Kelvin
waves, determined by their vertical modal structure
(see, for instance, LeBlond ‘and Mysak, 1978). The
barotropic mode is characterized by a pressure field
which is approximately depth-independent; its decay
scale is the external Rossby radius of deformation and
its phase speed is that of an external gravity wave.
Since their wavelengths are typically much greater
than the continental shelf width, they are thought to
contribute a significant component to the semi-diur-
nal and diurnal tidal amplitudes at the coast. By con-
trast the baroclinic modes have much shorter length
scales characterized by the internal Rossby radii of
deformation; their phase speeds are those of internal
gravity waves. Internal Kelvin waves have been ob-
served in lakes, estuaries and straits.

The observations which motivated this study are
those of Thomson and Huggett (1980) in Johnstone
Strait, British Columbia. They identified both baro-
tropic and baroclinic Kelvin waves, the latter being
generated by the interaction of the barotropic tide
with a topographic feature. A distinctive feature of
their observations is the presence of a depth-depen-
dent mean flow, which is not in geostrophic balance.
The purpose of this paper is then to explore the effect
of such depth-dependent mean flows on Kelvin
waves. In Section 2 the problem is formulated for an
inviscid, incompressible fluid in the Boussinesq and
hydrostatic approximations, and the governing equa-

tions are derived. Although our main purpose is to -
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consider Kelvin waves we have included some dis-
cussion of Poincaré waves. The principal difficulty
caused by the presence of a depth-dependent mean
flow is that the system of equations and side-wall
boundary conditions are no longer separable. Hence
in Section 3 we develop a perturbation theory for
small shear in the mean flow. Expressions for the
effect of the mean flow on the phase speed and decay

.rate are derived. However, the most significant con-

clusion from the perturbation theory is that each
Kelvin wave in general contains all vertical modes.
In Section 4 we consider the special case of a two-
layer fluid, and obtain more specific results than the
perturbation theory allows for. Section 5 is a sum-
mary. '

2. Formulation

We shall consider an inviscid incompressible fluid
in a rotating frame of reference contained in a chan-
nel of characteristic depth H and width L. We shall
make systematic use of the hydrostatic approxima-
tion (i.e., H/L < 1) and the Boussinesq approxima-
tion for which N,2H/g < 1, where N,? is a typical
value of the Brunt-Viisdld frequency. The basic flow
consists of a current vy(x, z) in the y direction and
a corresponding pressure field py(x, z), density po(x,
z) and free surface displacement {y(x). Using non-
dimensional variables where x, y are scaled by L, z
by H, time ¢ by |f,|™! where f, is the Coriolis param-
eter, the equations governing the basic flow are

—fvo + pox = Fy, (2.1a)
#’Poz + po = 0, (2.1b)
po=0 on z=u%. (2.1¢)

Here the basic current has been scaled by |f,Z], the



44

zZ/N

£/2

P

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 13

T 777777777777 7777777 7777777777

F1G. 1. The coordinate system (x, y, z) where z is vertical;
u, v are the horizontal perturbation velocity components.

pressure by p,f,2L?, the density by p,, and the free
surface displacement by f,2L?/g. The non-dimen-
sional parameter u is defined by

2 _ f12L2
gH ’

and is the ratio of the length scale L to the external
Rossby radius; f is the non-dimensional Coriolis pa-
rameter and takes the values +1 (—1) in the Northern
(Southern) Hemisphere; and Fy(x, z) is a body force
introduced to allow vy(x, z) to be specified arbitrarily,
the case F, = 0 corresponding to geostrophic mean
flow. The non-dimensional Brunt-Vaisila frequency
N is defined by

2.2)

po: = —apoN?, (2.3a)

where :
o = NHg™. (2.3b)

Eliminating the pressure between (2.1a, b and c) we
obtain ‘

—fvo = —SM? + Fo, (2.4a)
foo=Sfox—Fo on z= %, (2.4b)
where
Pox = —0opoM?, (2.4c)
N2H?
= . .4d

The non-dimensional parameter S is the square of
the ratio of the internal Rossby radius to the length

scale L. Note that ¢ = 42S and terms of relative order
¢ are systematically neglected.

The perturbation equations are obtained by
linearizing the full nonlinear equations about the ba-
sic flow. The horizontal perturbation velocities u, v
(see Fig. 1) are scaled by U, and the vertical velocity
w by HU/L; neglect of the nonlinear terms requires
that the Rossby number U/|f,L| be small, The per-
turbation pressure p is scaled by p,U|f,L|, the per-
turbation density p by op,U/|f,L|, the perturbation
free surface displacement by |f,L|U/g, and the ver-
tical displacement n by HU/|f,L|. Using the hydro-
static and Boussinesq approximations the perturba-
tion equations are

U+ vou, — fo+p. =0, (2.5a)

v, + vovy + fu + v u + vo,w + p, =0, (2.5b)

p:+Sp=0, (2.5¢)

pi + Dopy — N2w — M?u = 0, @.5d)

U+ v,+w,=0, (2.5¢)

, N+ v, — w= 0. (2.51)
The bouhdary conditions are

w,orp=0 on z=—h, (2.6a)

p—§¢=0 on z=p%b, (2.6b)

WS + voby + foxt) —w =0 on . z=p2f. (2.6c)
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The equations contain two parameters u and S. For
the baroclinic modes which scale with the internal
Rossby radius, the divergence parameter p is small.
Neglecting terms of O(u?) replaces the free surface
boundary conditions with a rigid lid. For the baro-
tropic mode which scales with the external Rossby
radius S is a small parameter; neglecting terms of
O(S) shows that the pressure p is depth-independent
and equals {. The equations are supplemented by
side-wall conditions at x = 0, / say, where the x com-
ponent of velocity ¥ must vanish.

We seek solutions which describe sinusoidal waves
propagating in the y direction with frequency w and
wavenumber m. Thus suppose that all variables are
of the form

2.7

For further simplicity and in view of the applications
proposed in the Introduction we shall also assume
henceforth that ve(z) is independent of x, and that
{ = 0. From (2.4a) it follows that M? is a constant
and that F, is likewise independent of x. Integration
then gives

p = Re[p(x, z) exp(imy — iwt)}, etc.

fvo = SM?z — F,. (2.8)
Substituting (2.7) into (2.5a-f) and simplifying yields

u(f? — &) = ia(p, — fm&~'p + fvom), (2.92)
u(f? - &%) = fp, — map + &*vo.m, (2.9b)
(f* — @®)(p; + SN?y) }
= SM*(p, — fm&~"'p + fvo:m), (2.9¢)
Pxx — mPp = (f* — &),
= —fvodny + fma~'n), (2.9d)
where
W= w— my. (2.9¢)

For notational simplicity we have omitted the cir-
cumflex. The boundary conditions are

=0

n=up’p on z=0.

on z=-—h, (2.10a)

(2.10b)
The side-wall conditions are

Dx— fma™'p+ foom=0 at x=0,L (2.11)

Since the set of equations (2.9a-d) and boundary
conditions (2.10a, b) contain no explicit dependence
on x, they possess solutions which are proportional
to exp(ikx). For k real these solutions describe Poin-
caré waves, and for k pure imaginary, Kelvin waves.
Substitution into (2.9¢c, d) yields

(f* — &)p. + SN*p)

= SM?[(ik — fma™Yp + fvem], (2.12a)
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(f2 — & + (K> + m*)p
= foolik + fma@~")y. (2.12b)

Imposition of the boundary conditions (2.10a, b) de-
termines a dispersion relation which we shall regard
as determining k as a function of m and w.

In the absence of a basic flow (v, = 0 and M?
= (), the equations (2.12a, b) and the boundary con-
ditions (2.10a, b) reduce to

1z + SN?Ap = 0, (2.13a)
=0 on z=-—h, (2.13b)
M=y, on z=0, (2.13¢)
where P
A= -wz—_—f—z . (2.13d)

Egs. (2.13a-c) describe a complete set of orthogonal
modes n4(z), s = 0, 1, 2, - - - with real, positive ei-
genvalues Ag, Ay, Az, . . . . The corresponding pressure

is given by ' v
AsDd2) = n5A2) (2.14)
and the orthogonality conditions are
0
f pspdz=0, r+#s. (2.15)
—h

Each eigenvalue \; determines a dispersion relation
from (2.13d). One mode (s = 0) may be identified as
the barotropic mode, and the remaining modes as
baroclinic modes. Recalling that the Boussinesq ap-
proximation has already been invoked, in which
terms of relative order o = u?s are systematically ne-
glected, we can show that the barotropic mode is
given by ‘

Do =1 + O(o), (2.16a)
z+ h

Mo = pz[( 7 ) + O(o')] , (2.16b)

Xo = w271 + O(o)]. (2.16¢)

The baroclinic modes are given by (2.13a, b) with
(2.13c) replaced by = 0 at z = 0, to within an error
of O(o) (formally let x> — 0).

Again assuming that there is no basic shear flow
(vo = 0 and M? = 0) the side-wall conditions may be
satisfied by each mode with an appropriate choice of
k. The Kelvin waves have k = —ifm/w and are given
by

n = Re[ny(z) exp(fmw™'x + imy — iwp)], (2.17a) _
w? = m?\,7, (2.17b)
foreach s = 0, 1, 2, .... The Poincaré waves have

kl=nmx,n=1,2,...,and are given by
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n= Re[m(z)(f—'-”- sin 2%
2 )
+ n77r cos -’?C) exp(imy — iwt)] , (2.18a)
2
v+ ()
w? — f? - — (2.18b)

foreachs =0, 1, 2, - - - (see, for instance, LeBlond
and Mysak, 1978). Note that from (2.17b) Kelvin
waves can exist for all frequencies, but, from (2.18b),
Poincaré waves have a low-frequency cutoff.
However, in the presence of a basic flow no such
simple theory is generally possible. Although Egs.
(2.12a, b) with the boundary conditions (2.10a, b)
still define a set of vertical modes with corresponding
dispersion relations, in general there is no longer a
complete orthogonal set. Further, it is apparent from
the side-wall condition (2.11) that no single vertical
mode can alone satisfy such a condition, and a su-
perposition of modes will generally be required. Also
the presence of a basic flow leads to the possibility
of an instability (i.e., complex values of w for real k
and m), and to critical levels where «? = f? and Eqgs.
(2.12a, b) are singular. We shall not pursue either of
these topics here but see Grimshaw (1975) for a com-
prehensive discussion of the behavior near a critical
level when Fj is zero. The vertical wave action flux

is
F = =2 Im{pn*}. (2.19)

It is readily shown from (2.12a, b) that for real m and
w,

(f2 — AF, = —si(-fa,ﬂ Fo, + 2SM? Imk)

— 2Fy, Im{ik*py*} + 2|p|* Im(k*?). (2.20)

When £ is real and Fj = O (i.e., the basic flow is geo-
strophically balanced), the right-hand side of (2.20)
is zero and & is then a wave invariant; this was the
case discussed by Grimshaw (1975). ¥ is then piece-
wise constant and can change its value only at a crit-
ical level. Since the boundary conditions (2.10a, b)
show that 7 is zero at the boundaries, it follows from
the analysis of Grimshaw (1975) that the vertical
modes contain no critical levels. When either k is
complex or Fy is non-zero, no such general conclu-
sion concerning critical levels can be made.

Next we observe from (2.12a, b) and the boundary
conditions (2.10a, b) that, for real m and w,

0 (k**+m?), ., SM*fv,,
[* s + St e - LS
_ [2SM? Imk — Fyik* — fma)]

] P dz

Il

+p

+#lplo=0. (221
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When k is real and F;, = 0, it follows that either &
> f2or (f2 — @»)SN? < S?M*. When either k is com-
plex or Fy is non-zero, no such general conclusions
can be drawn.

It is difficult to pursue any further the general an-
alytical theory of (2.12a, b). Hence we shall resort to
approximation procedures and special cases. In Sec-
tion 3 we shall develop a perturbation technique
when the shear of the basic flow is small. In Section
4 we shall consider a two-layer fluid.

3. Perturbation method for small shear

The equations to be solved are (2.9¢) and (2.9d),
with the boundary conditions (2.10a, b), and the side-
wall conditions (2.11). In this section we shall assume
that the shear flow vy(2) is small, by which we mean

VoA2)

max 1,
—h<z<0 [ f ] <

with similar statements for the higher derivatives of
vo(z). The perturbation method proceeds in two steps.
First, we determine the structure of solutions which
are proportional to exp(ikx) and so satisfy (2.12a, b),
with the boundary conditions (2.10a, b). Using the
left-hand side of (3.1) as an implicit small parameter,
we introduce the expansions

mvy(2)
w

3.1

s

=p® 4+ M4 ...
p=p7TpT } (3.2a)
17=7)(°)+71(”+ [N

and -
k=kO+ kD4 ..., (3.2b)

while w and m are held fixed. To leading order, the
solutions are those which hold in the absence of a
basic shear flow and are described by (2.13a, b, ¢, d).
Thus '

17(0) = nd2), p(o) =plz) = xs—lnsz(z), (333)
k©2 4+ m?
o (3:3b)

Here s =0, 1, 2, - - - and is the modal number for

the vertical mode n(z). These modes form a com-

plete, orthogonal set where the orthogonality condi-

tion is (2.15). Each mode has an eigenvalue A, from

which £© is determined as a function of w and m.
At the next order

p(zl) + SNzn(” = FM
} s (3.4a)
:,1(21) — )\Sp(l) = G(l)
where
FO(f2 — w?) = SMYik® ~ fmw™'1p®
G2 — ) = [-2kWk® — 20mA]p® | . (3.4b)

+ foodik® + frno 1@

The boundary conditions are that =0 at z
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= —h, and 9"V = p?pMat z = 0. The compatibility
condition for Egs. (3 4a) is then

f [nFM + p,GM1dz = 0 (3.5)
—h

Substituting the expressions (3.4b) for F and G
and using (2.8) we find that (3.5) yields the following
expression for k-

0 .
2k Ok f pldz = —2wmh,

—h ~h

0
VoD 2dz

0
) {2SM%ik® — Fo,[ik® + fmw™'1}n,pdz.

(3.6)

For the barotropic mode s = 0; invoking the approx-
imations (2.16a, b, c¢) it may be shown that (3.6) be-
comes

2
2kOK®Op = [—20m — f(ik + fmw™)] % fo vodz
-k

+ f(ik + fmw Yuvy(0). (3.7)
For the baroclinic modes s = 1, 2, - it may be
shown that
0
2kOk™ p 2dz = —2wm\; | vopdz

—h
0
+ = [k® + fmow™) f Foomidz.  (3.8)
2>‘s —h ’

It is apparent from either of these expressions that for

real w, mand k@, k¥ is complex-valued. This implies -

that the presence of a basic shear flow may cause an
instability. Indeed, if instead of keeping w and m fixed
and expanding k [(3.2b)], we had kept k and m real
and fixed and expanded w = &@ + ", then on the
left-hand side of (3.7) or (3.8) we would replace k @k
by —A0Pu®; @ is real, but for Im ™ > 0 there
is an instability. For instance, for the baroclinic
modes there is instability whenever w2 > f2 and

5 f Founidz <. (3.9)

The geostrophically balanced flows for which F,
= () are thus stable to this order in the expansion, but
since w® [given by (3.3b)] can take either sign a non-
geostrophic basic flow is generally unstable.

However, we do not propose to consider the ques-
tion of stability of the basic flow any further, and
instead will proceed to determine the structure of
Kelvin and Poincaré waves. Considering first the
Kelvin waves, we replace k in (2.12a, b) and (3.2b)
by iK; or —iK,, respectively, and we similarly replace
k©® and k" in (3.2b) and other subsequent equations
by iK® and iK'V, or —iK® and —iK'", respectively.
We then propose that
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o0

{A exp(—K;x)

5=

+ By explK(x — D]}ndz), (3.10)

with a similar expansion for the pressure p; here 74(z)
and py(z) are defined by (3.2a) and the subscript (s)
indicates that the leading term n? is the vertical mode
n4(z), while n{" is then found from (3.4a). To satisfy
the side-wall conditions (2.11) we must also expand
either w or m. We choose the latter and so
m=m®+m"+ . (3.11)
We also expand the constants 4, B, in a similar way.
On substituting (3.10), its counterpart for p [(3.2b)],
and (3.11) into the side-wall conditions (2.11) we find
that
A9 =0 for s#R, B®=0, al s,
() (02
mf [m—] = . (3.12b)
w

(3.12a)

K = -

w

The solution to this order is the Kelvin wave in the
absence of a shear flow, described by (2.17a, b), and
with mode number R. Note that with m©® given by
(3.12b) it follows from (3.3b) that

[KOP = [KOP = O\ — Mo? + Mf2 (3.13)
Since the eigenvalues A, are positive and increase with
mode number s it follows that K@ is real and positive
for s < R, but may be pure imaginary for sufficiently
large s if w? > f2. Also we choose K® = —K©.

At the next order the side-wall conditions imply
that

5 -

5=0

(0 f
o |4 + | =K — Aafvo
i ff ’]Ag‘»ps + fvoZAﬁo’ns}

[ KO — _f] B" exp[-KO!p, =0, (3.14a)

o

(0)
> {[—K@ - ”’Tf]Ag"ps - [—K&” ~ Afo

5=0

+ 0@ =) ff )]Aﬁ"’ps + fvozA§°’ns'}

(0)
X exp[—KI] + [K§°’ - mTf]Bg”p, =0. (3.14b)

The compatibility condition for solution of these
equations is most readily obtained by first multiplying
each equation by p, and integrating over the depth.
Using (3.12a, b) it follows that
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-

0
+ f fvoznxp,dZ}Aﬁ‘a” + [KR + K91BY
-h

o2 — f2
— Arfvo + m(l)( ff )]PrPRdZ

0
X exp[-K‘,"’I]f pldz =0, (3.152)
—h .
0
KR — K?1AY exp[—K1] f plrdz
° D Cilad )
* f —K% — Aefvo + m® ———= of D,Prdz
—h

0
+ f fvozmzp,dZ}AS?’ exp[—KR]
—h

o
+ (k9 + k0180 [ praz=0, (.150)
-h

for each r = 0, 1, 2, .... Putting r = R gives the
compatibility conditions which are

J‘_h ["K(R — Arfvo +m(l)( ffZ)] pRidz

0
. fvomrprdz = 0,

BY = 0. (3.16b)
, (3.12b) for K and (2.8), Eq.

(3.16a)

Using (3.6) for K%
(3.16a) reduces to

0 . 0
m® f,,pRZdz = -—w)\Rf vopr’dz. (3.17)

It follows that, to the order considered, the phase
speed of the Kelvin wave is given by

0
f voPr2dz

w -
=__+_—."0 + oo,

@
(0)
m m
f pRidz
—h

(3.18)

and thus the correction to the phase speed due to the
presence of a basic flow is simply a weighted Doppler
shift. The wave remains non-dispersive to this order
of approximation. The decay rate of the dominant
mode r = R is K, where

Ke= K9+ K —om®Wf 1+ ... (3.192)
or
0
fvomrPrRAZ
Kg=—fmO ™ + =t t - ... (3.19b)

J‘ pgzdz
h
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The last term in (3.19a) comes from substituting
(3.11) into the expression (3.3b) for K. For the baro-
clinic modes R = 1, 2, 3, ..., the correction term in
(3.19b) may also be written as

1 0 0 -1 .
~ Fo;:ﬂRZdZ(J pRZdZ) . (320)
2hg Jop -h

and is thus present only if the basic flow is not in
geostrophic balance.
Returning to (3.15a, b) for r # R it follows that

0
f (A=fvop.pr — fvo-PmR)dz

A9 (KR — K] = 0.
R ' f p,de
~h
1 — exp{—[K® + K‘,"’]l}]
X 21
[ 1 — exp[—2K¥1} » (3:213)
0
B® f (Arfvop.Pr — fvo:PmR)dzZ
o KR + K01 =| =
R

0
f pldz
—h

y [exp[—K(f?’l] — exp[-K/]
1 — exp[—2K1]

] . (3.21b)

Since the right-hand sides of these expressions are
generally non-zero, we have shown that one of the
effects of a basic shear flow on a Kelvin wave is to
excite all the vertical modes in addition to the dom-
inant mode. It is interesting to note here that the
decay rate K© [(3.13)] of these other modes for w?
> f? is greater than KR for r < R, but smaller for r
> R and becomes imaginary for large values of r; if
w? < f2 KO is real but smaller than K%’ for r < R
and greater for r > R. One consequence of this is the
difficulty of determining phase speeds by modal anal-
ysis of data obtained from vertical sections, as in the
presence of a basic mean flow there is no longer a
unique vertical mode associated with a given wave
(see Thomson and Huggett, 1980).

If / — oo, so that the channel has infinite width,
a slightly modified theory is required. In the expan-
sion (3.10) the coefficients B; are set equal to zero,
and the decay coefficients K are chosen so that either
K, is real and positive, or if K; is pure imaginary, its
sign is chosen so that the term represents an outgoing
Poincaré wave (Im K has the opposite sign to w). At
leading order Egs. (3.12a, b) follow as before, and at
the next order we again obtain (3.17) and (3.19a, b),
while 4" is given by (3.21a) with the second factor
replaced by unity.

For Poincaré waves in a channel of finite width a
similar theory can be developed, which we shall out-
line briefly. Let
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1, = 2 [A; exp(ik,X) + B, exp(—ik,x)Ine(2), (3.22)
s=0 -

with a similar expression for the pressure p, where we
have replaced k in (2.12a, b) and (3.2b) by k, or
—k,, and similarly we replace k@ and k£ in (3.2b)
and other subsequent equations by £ and k{, or
—k® and —k{" respectively. At the leading order

A9=B® =0 for s#R, (3.23a)
[k“” mOf ]A“’) [k“” m>f ]B“” (3.23b)

k1 = k1 = nr, (3.23c)

[m<°>2 + (Ei’f)z] . (3.23d)

Here n is an integer, n = 1, 2, .... This is just the
Poincaré wave in the absence of a basic shear flow
described by (2.18a, b), with mode number R. At the
next order we find that

0
m f DR’dz
A

while

2_.f2

0 0
= —wlAg f UoPRZdZ - "f_ f Fomrprdz, (3.24)
2w —~h

which describes the correction to the leading order
phase speed. The crosschannel wavenumbers are
given by

0
i f nrPR(SM? — VaFy)dz
~h

kR = _n_;r + 5 + oo,
f pRidz
_h.
(3.25a)
0
f NRPR(SM 2 — hFy)dz
T hw . J_p
kg = 7 — 1 o + o
' f PRZdZ
—h
(3.25b)

The correction terms are imaginary, and induce an
asymmetry in the cross-channel structure. For s # R,

2i sink®! -inT" - mOf ] AD
L w
{(—1)" — exp(—ik®D], (3.26a)
2i sink®! nm | mOf ] B
i w
= H{(~1)" — exp[ik{I]}, (3.26b)
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where

0
H f pldz = 4 + BY]
—h
0 m2f
X f , (7 VoPPr ~ fvoZans)dz, (3.26c)

2
k2 = (”T") + (A — AR)@? — f3).  (3.26d)

As for the Kelvin wave all the vertical modes are
excited in addition to the dominant mode. Note that
the cross-channel wavenumbers k¥ for w? > f? are
real for s > R, but may be imaginary for s < R; if
w? < f? then kO is real for s < R, but becomes imag-
inary for sufficiently large s. Note also that the ex-
pansion procedure outlined above fails if /= is an
integer; in this case the sth mode must be included
at the leading order and there is a coupling between
these modes at the next order.

We conclude this section by evaluating some of the
expressions derived above for a number of special
cases. First, for the barotropic mode R = 0 which is
described by (2.16a, b, c), Egs. (3.12b), (3.18) and
(3.19b) for the Kelvin wave become

072 2
[”’—] =L (3.27a)
I3 h
w w [0
‘n—1=m+f~hvodz+'°°, (3.27b)
(0) 2 0
Ko = —fﬂ—+“—[f Fodz—Fo(O)]+
%) hLJ_,
(3.27¢)

Second, to discuss the baroclinic modes, we shall sup-
pose that N? is a constant, whence it follows that for

R=1,2 ..
SN?Ag = (1;") , (3.28a)
MR = sin& (z+ h),
2
DPr = Sz h cos & (z+ h). (3.28b)
If we also suppose that
2
vo(2) = Vo+ V & “; h > Lyt ;zh) . (3.29)

then the phase speed and decay rate for the Kelvin
wave are given by (3.12b), (3.18) and (3.19b), where

0

f vopkzdz
- 1
= _yrivalgs ( h

2
W,

f" ) 2" "% 2Rx ) (3.30a)
Dpr°dz
R
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f fvomrPrdz W
0 - 27 *
piddz 2SN?h
~h

(3.30b)

The first three terms in (3.30a) are just the mean value
of vy(z) and only the last term contains the effect of
the vertical structure of the basic flow; note that this
last term is not present unless the basic shear flow
contains a non-trivial curvature. In particular, this
last term is not present for a geostrophically balanced
basic flow. Similarly (3.30b) shows that the decay rate
is affected by the basic flow only when there is a non-
trivial curvature. :

As an illustration of the application of these results
we shall use the data obtained by Thomson and Hug-
gett (1980) in Johnstone Strait, British Columbia.
Putting L = 3 km, H =03 km, N, = 5 X 107357},
. f=1.1254 X 10~*s7!, we find that S = 19.74. In the
non-dimensional variables #=1;, N=1, f=1 and
we find from (3.28a) that yz'”2 = 0.707R. Thus in the
absence of a basic flow the phase speed (3.12b) of the
first mode baroclinic Kelvin wave is +1.414, and its
decay rate K% is 70.707. Using the data provided by
Thomson and Huggett (1980) we estimate that W
= —3.328 and V = 0.555, with V, chosen to make
the mean value of vy(z) zero. It then follows from
(3.18), (3.19b) and (3.30a, b) that the correction to
the phase speed is —0.084, and the correction to the
decay rate is 0.084. Note that our estimate for W is
mainly based on the curvature of the observed flow
near the bottom of the channel where there is con-
siderable scatter in the data, and the value quoted
above is probably rather too large in absolute value.
Even so, we see that the corrections obtained from
(3.30a, b) are quite small relative to the values ob-
tained at leading order.

4. Two-layer fluid

In this section we shall consider the two-layer fluid
for which the basic density and velocity are given by

po =1+ ocH(—z — d), (4.1a)
vo = 0,H(z + d) + v,H(—z—d). (4.1b)

Here v,, v, are constants and H(-) is the Heaviside
function; the interface between the two fluids is at z
= —d in the basic flow, and at z = —d + « in the
perturbed flow. Since the basic density is constant in
each fluid, N? and M? are both zero in each fluid.
The equations to be satisfied in each fluid are again
(2.5a-f), with boundary conditions (2.6a-c) and
sidewall conditions (2.11). They are now supple-
mented by conditions at the interface which are

[pIf + Sa =0, 4.2)

where [ -] denotes a discontinuity across the inter-

and n=a at z=-d
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face. Since the perturbation density p is now zero in
each fluid, integration of (2.5c) and use of the bound-
ary.conditions (2.6b) and (4.2) show that

p= ¢+ SaH(—z — d). 4.3)

Next, using (2.9d) and the boundary conditions
(2.10a, b) the vertical displacement 7 in each fluid is
determined. Finally, again using the boundary con-
dition (4.2) we obtain the following pair of coupled
equations for ¢ and a:

d(§ex — m*) — W3 (2 — @Y

ta(ff - &) =0, (4.4a)
h(§xx — m*§) — X(f* — &%) + Sth — d)
X (o — MPa) — (@2 — 3,2 = 0, (4.4b)
where
w; = w — my;. (4.4¢)
The side-wall conditions (2.11) become
G fma7'e =0 }
G — fmay ¢ + Slaw — fma;'a) = 0
at x=0,l. - (4.5)

The vertical modes are obtained from (4.4a, b) by
secking solutions proportional to exp(ikx). There are
only two such modes; the barotropic mode is given
by

w@ — @2 -

2 2 _ \

m = O der— )+ dog = 462
and

- 2 (h - d)(‘:’l2 — fz)

G Ty oty B

while the baroclinic mode is given by
, _(h—d)el’ — )+ d@? - )

k*+ m? = Sdh —d) (4.7a)

and
L (h = d)a? — ) ]
£= S"‘[(h “dal- A+ dar - Pl

Here we have again applied the Boussinesq approx-
imation and neglected terms of O(s). The analytical
advantages in treating this two-layer fluid model can
now be seen. First, explicit expressions can be ob-
tained for the vertical modes without the approxi-
mation of small shear, here represented by (vi — v,).
Second, there are only two vertical modes and con-

. sequently the side-wall conditions can also be satisfied

without the approximation of small shear. However,
before proceeding to discuss the side-wall conditions,
the dispersion relations (4.6a) and (4.7a) can be used
to derive conditions for instability. This is achieved
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by keeping k and m real, and determining the con-
ditions for Im w > 0. For the barotropic mode, it can
be shown from (4.6a) that there is stability for

f2 h2
m*(v, =3
Otherwise the flow is unstable for sufficiently large
values of (k? + m?)/u®. For the baroclinic mode, it
can be shown from (4.7a) that there is stability when-
ever (4.8) is satisfied. Otherwise the flow is unstable
whenever

) < (4.8)

f2h2
dh—d)’

To determine the structure of Kelvin waves, we
shall suppose that the dispersion relations (4.6a) and
(4.7a) determine k as a function of m and w, both
real-valued. Considering first the Kelvin waves, we
replace k in (4.6a) and (4.7a) by iK, and K|, respec-
tively. We can propose that [see (3.10)]

§ = Ao exp(—Kox) + By exp[Ko(x — 1)}
— SQ{A, exp(—K,x) + B, exp[K (x — ])]}, (4.10a)

a = u?Q{Ao exp(—Kox) + B, exp[Ko(x — D]}

(k* + m*)Sh < m*(v, — v,)* — 4.9)

+ A4; exp(—Kx) + B, exp[Ki(x — )], (4.10b)
where '
__ h-a@t-
Ot dar - P aer - G

Substitution of these expressions into the side-wall
conditions (4.5) yield four homogeneous equations
for Ay, A, By and B;, whose determinant gives the
dispersion relation relating w and m. To keep the
analysis as simple as possible we shall suppose that
the channel has infinite width (/ — o0), in which case
we can set By and B, equal to zero. The sidewall
condition (4.5) at x = 0 then yields

)i 2)
(fm fm)(Ko K)=0, (4.11a)

(Ko + fL”)Ao = SQ(K, + wfm)A,. (4.11b)
1

For the baroclinic mode we may let u> — 0 and
so Ky = m (>0). It can be verified a posteriori that
the error so induced has relative order ¢. Eq. (4.11a)
then simplifies to

Kim™'[(h — d)o(&, — f) + day@, —
+ flth — d)@, — f) + d(@, —

N

M=0. 412)
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With £ = iK, in (4.7a), we may substitute for K, in
(4.12) and further simplification then gives
m?Sd(h — d)((h — d)@, — f + d(&; — f)*]

= [(h — d)oy(® — f) + da(@, — /P, (4.13)

This is a quartic equation for w; only those solutions
which give a positive value for K, in (4.12) can be
chosen. The solutions determine w as a function of
m, and in general the waves are dispersive, in contrast
to the case when there is no shear. To analyze these
expressions we write them in the form

] Gz d)

— f¢ - ,
= (@ — W)@ — W)@ — W)@ — wp), (4.14)
Km™ = h(‘:’mj S“‘;‘&(‘i;)“”") ., (a.14b)
where
JRRPPIR P (T i

| (4.140)

= 2 D
+ 4m2S d—('i;—d)]m, (4.14d)
a=w—mvl@-%l (4.14¢)

Note that w,, are the roots for @ of the right-hand
side of (4.13). Also @ is just the frequency with the
same Doppler shift as that given by (3.18), if, in that
formula, the Doppler shift term is evaluated for the
special case of a two-layer fluid. For sufficiently small
shear [m?(v, — 1,2 < f, wo =~ f, wp =~ 0if f > 0
and the roots of (4.14a) are

- 2
E)zwo+%2d—)m( )2(“’0 f{l’)
+ o[~——m (”‘f: v2) ] . (4.15a)
K__f dh—d m*(v; — v,y
m wo R weH(wo — f)
X [(wo — f)? — wof] + o['" (”'f v) ] . (4.15b)
where
w2 = m2S dh—d) (4.15¢)

h

In the limit m?(v, — v,)?f~2 — 0, these expressions
agree completely with (3.18) and (3.19b); for small
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but finite values of m*(v, — v,)*f 2 they give the con-
tinuation to the second order of the approximation
 scheme developed in Section 3.'Eq. (4.15a) shows
clearly the dispersive nature of the waves. If the shear
is increased further but w,, and hence w, , are all
real, with w, > w, > wp > wp then we must choase
those solutions of (4.14a) which make K, (4.14b) pos-
itive; hence either @ < wy or @ > w,. From (4.14a)
it is readily shown that there is a unique root for
which @ < w for all m; this root is just the contin-
uation of (4.15) as the shear increases. If

. (v, —v)? > Sh, (4.16)

then there is also a second root for which & > w, for
all m. These results remain valid if w,; cease to be
real, but w,/; remain real. However, if both w,;, and
wgp become complex-valued [ie., 2 + 4m2Sd(h
— ! < 4d(h — dym¥(v, — vz)zh'z] then both so-
lutions will continue to exist provided that mz(v,
— 1,)% is not too large. Exact analytical expressions
other than (4.15a) are not readily obtained for these
roots. However, for

2g dh — d) 4dh — d)

h n

the following approximate expressions can be de-

rived:
- : dh—-d) ]'/ 2
s — 2
W ~ wb . [m S | h (wa, _ wb,)z
dh—~d)

2

+ O[m S 7

_ dh—d) fop ]”2
~ Wy 2

@~ Wy + [m S A (@ — op)

’ + O[mz S M] .
, h
Correspondingly, K, [(4.14b)] is given by

_ fwa'h ]1/2
K~ [m2Sd(h -d)l
K| ~ [

fwb' h ]1/2
m?Sdh — d)]
Note that (4.18b) and (4.19b) apply only when (4.16)
holds.

As an illustration of these results we again use the
-data obtained by Thomson and Huggett (1980). With
the same scaling employed at the end of Section 3,
we choose (v; — v;) = —1.2, and d = 5. In the
absence of a shear flow the phase speed of the Kelvin
wave is —2.094 (our sign convention in this section
requires that m > 0, and since K; > 0, w < 0); the
decay rate is 0.478. Using the approximate expres-
sions (4.15a, b) with the frequency w = —1.25 [the
semi-diurnal (M,) frequency], we find that the shear

<fr- mi(v, — v), (4.17)

fwa

] , (4.18a)

(4.18b)

(4.19a)

(4.19b)
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flow alters the phase speed to —2.224, and the decay
rate to 0.530. [These calculations do not include the
effect of the Doppler shift given by (4.14a).] As was
the case in Section 3, the corrections due to the shear
flow are quite small.

For the barotropnc mode, we anticipate that Ky/K,
is O(¢'/?); then to within an error of relative order

o' (4.11a) 51mp11ﬁes to

a2

With k equal to iK, in (4.6a), we may substitute for
K, in (4.20). The result is

Ko + (4.20)

2h
MZZIZ— 2 (w - 2)((-0 - wbz) .
= [&® — f* + m(v, — v,Pd(h — k), (4.21a)
K __ o  mu-uv)dh-d
mf ‘:’l;’z W@ h
(@ = &) (4.21b)

{w ~ 2+ m¥(v, — v’ dh - d)h™%}°

Here w,, and @ are defined in (4.14c) and (4.14e),
respectively. This is a sixth-order equation for w; how- -
ever, for sufficiently small shear [m*(v, — v,)* < f?]
the only root of interest here is

w—wo+m|:%'lé+ z(h;d)]
2 o dh—d) By — 2f?)
F O T e — 1)
+ O[m*(v, — v2)Y/f7], (4.22a)
K __1 { _Ldh—d)
mf ™ 1+ m(v, — v —5— 7
3 mi (v, — 02)3]}
X36i 5t o[ 7 , (4.22b)
where )
B = %zf i (4.22¢)

In the limit m*(v; — v,)?f~2 — 0 these expressions
agree completely with the formulas (3.18) and (3. 19b),
for small but finite values of m*(v, — v,)*f 2 they give
the continuation to the second order of the approx-
imation scheme developed in Section 3. Note that the
second term on the right-hand side of (4.22a) is just
the Doppler shift term defined by (3.18), where for
the barotropic mode p, = 1 [see (2.16a)].

5. Summary

This paper has examined the effects of a depth-
dependent mean flow on Kelvin waves, and to a lesser
extent; on Poincaré waves. In Section 2 the problem
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was formulated for an inviscid, incompressible fluid
in the hydrostatic and Boussinesq approximations.
The governing equations are (2.9¢, d), together with
boundary conditions (2.10a, b) at the rigid bottom

(z = —h) and free surface (z = 0), respectively (sce -

Fig. 1). Although these equations and boundary con-
ditions have modal solutions in which the cross-chan-
nel dependence is represented by the factor exp(ikx),
it is apparent that in general no single such mode can
satisfy the side-wall conditions (2.11)at x = 0, /. Thus
Kelvin and Poincaré waves in the channel in general
are represented by a superposition of vertical modes;
only in the absence of a depth-dependent mean flow
can a single vertical mode represent a Kelvin or Poin-
caré wave. An important consequence of this is the
difficulty of determining phase speeds by modal anal-
ysis of data obtained from vertical sections, as in the
presence of a basic mean flow there is no longer a
unique vertical mode associated with a given wave.
Because the effect of the side-wall conditions is to
render the problem non-separable, we proceeded in
Section 3 to develop a perturbation scheme for small
shear [see (3.1)]. This scheme describes the super-
position of vertical modes required to define a Kelvin
wave and leads to expressions for the effect of the
mean shear flow on the wave phase speed (3.18) and
decay rate (3.19b). To the order considered the phase
speed correction is simply a weighted Doppler shift.
Similar expressions (3.24) and (3.25a, b) were ob-
tained for Poincaré waves. As an illustration of the
application of our results we used the data obtained
by Thomson and Huggett (1980) in Johnstone Strait,
- British Columbia. Although the observed shear flow
was quite strong [using the criterion (3.1)] the cal-
culated corrections to the phase speed and decay rate
were relatively small, thus suggesting that the for-
mulas obtained from our perturbation scheme may
be quite useful.
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In order to get some results beyond the perturba-
tion scheme of Section 3 we considered in Section 4
the special case of a two-layer fluid [see (4.1a, b)).
However, even in this special case the analysis was
very complicated and some approximations were
made. For small shear the results obtained extended
the perturbation scheme to second order. Otherwise
only qualitative statements could be made except in
the limit of weak stratification (4.17).

In this paper we have not considered the stability
of the mean flow although some results were obtained
from the perturbation scheme, and for the special
case of a two-layer fluid. In particular, the results from
the perturbation scheme suggest that non-geostrophic
basic flows are generally unstable. Also, critical level
effects have not been considered here although it
should be noted that the analysis of Grimshaw (1975)
shows that for geostrophically balanced flows the ver-
tical modes contain no critical levels. In general we
would expect critical level effects to be associated with
transience and an inability to establish vertical modes.

Acknowledgments. The author wishes to thank Dr.
R. Thomson for pointing out the non-separable na-
ture of the problem considered, and for his hospita-
bility when the author was visitng the Institute of
Ocean Sciences, Patricia Bay, British Columbia where
much of this work was completed.

REFERENCES

Grimshaw, R., 1975: Internal gravity waves: critical layer absorp-
tion in a rotating fluid. J. Fluid Mech., 70, 287-304.

Le Blond, P. H., and L. A. Mysak, 1978: Waves in the Ocean.
Elsevier Oceanography Series, Vol. 20, 602 pp.

Thomson, R. E., and W. S. Huggett, 1980: M, baroclinic tides in
Johnstone Strait, British Columbia. J. Phys. Oceanogr., 10,
1509-1539.



