
Simple Pseudorandom Number Generator with
Strengthened Double Encryption (Cilia)

Henry Ng

Henry.Ng.a@gmail.com

Abstract. A new cryptographic pseudorandom number generator Cilia
is presented. It hashes real random data using an iterative hash func-
tion to update its secret state, and it generates pseudorandom numbers
using a block cipher. Cilia is a simple algorithm that uses an improved
variant of double encryption with additional security to generate pseu-
dorandom numbers, and its performance is similar to double encryption.
Futhermore, cryptanalytic attacks are presented.

Keywords. Pseudorandom Number Generator, Block Cipher, Hash Function,
Pseudorandom Function, Cryptanalysis.

1 Introduction

Cryptographic applications heavily rely on pseudorandom number generators
(PRNG) to generate secrets such as session keys, passwords, and key pairs. They
also require random numbers that are public such as salts. Random numbers are
generated with the assumption that they are unpredictable to an attacker. As
well, randomness is collected from real random data to seed a PRNG, and once
seeded, PRNGs produce a long sequence of random numbers.

1.1 Objectives and Definitions of Cilia

A PRNG is an algorithm that generates numbers that appear random. These
numbers should be indistinguishable from real random numbers to an attacker
who has no knowledge of the PRNG secret state. PRNGs are normally con-
structed from primitives such as block ciphers, hash functions, and stream ci-
phers. In addition, the PRNG must update its secret state by collecting real
random data or samples from entropy sources. To maintain and to achieve this
secret state, the PRNG must constantly update itself by processing many sam-
ples. Samples are unpredictable to an attacker. Samples are input to the PRNG,
and pseudorandom numbers are output from the PRNG.

Cilia is constructed using existing cryptographic primitives and it has several
components. Cilia uses two cryptographic primitives: the encryption function E
of an n-bit block cipher with a k-bit key, and an m-bit iterative hash function h.
m = 2k is assumed. A hash function and a block cipher are used because they

are well studied and widely available. The generation mechanism generates the
pseudorandom numbers or outputs using the secret state and E. Samples are
stored in an entropy pool. Cilia uses h to hash the samples in the entropy pool
with the secret state or to reseed to update the secret state. These components
and primitives form Cilia.

Cilia has been designed with a few goals. Attacks on PRNGs such as the
ANSI X9.17 PRNG, the DSA PRNG, the RSAREF PRNG, and CryptoLib were
described in [8]. The PRNGs that were analyzed in [8] have security weaknesses
that the Yarrow PRNG [7] attempts to prevent by addressing all known attacks.
Cilia attempts to resist against all known attacks also. Some comparisons are
made between Cilia and Yarrow [7], which is a generally well-designed and well-
known PRNG, throughout this paper. However, Yarrow uses single block cipher
encryption with a k-bit key to generate outputs and it inputs samples to two
entropy pools. The design of the Yarrow entropy pools is generally complex, and
the security of the Yarrow pseudorandom number generation could be improved.
Cilia, on the other hand, attempts to generate pseudorandom numbers that are
less distinguishable from true random numbers and to utilize a simpler entropy
pool.

1.2 The Rest of This Paper

In this paper, section 2 describes Cilia. Cryptanalytic attacks on Cilia are pre-
sented in section 3. Some performance tests are presented in section 4. Test
vectors are available in the appendix.

2 Description of Cilia

Initialize, AddSamples, and GetOutputs functions respectively initialize,
add samples to the pool, and retrieve outputs. GetOutputs utilizes Gener-
ateBlocks and Reseed functions to generate outputs and to reseed, respec-
tively. These simple functions form Cilia.

Public: Initialize

Output: state S.

//Set the counters C1, C2, the keys K1, K2, and the reseed flag R to zero.

//Set the pool P to the empty string.

(K1, K2, C1, C2, R, P)← (0, 0, 0, 0, 0, ε)

//Package the state S.

S ← (K1, K2, C1, C2, R, P)

return S

Public: AddSamples

Input: state S; samples s (s 6= ε).

//Add samples to the entropy pool P by appending.

P ← P ‖ s

Private: GenerateBlocks

Input: state S (R = 1); number of blocks to generate j.

Output: string of generated blocks g.

//Set the string of generated blocks to empty string.

g ← ε

//Generate blocks.

for i = 1 to j do

g ← g ‖ EK1(C1)⊕ EK2(C2 ⊕ EK1(C1))

C1 ← C1 + 1 mod 2n

if C1 = 0 then

C2 ← C2 + 1 mod 2n

end if

end for

return g

Private: Reseed

Input: state S.

//Hash the samples with the current keys to create two k-bit halves for the keys.

(K1, K2)← get-pair(h(h(P) ‖ K1 ‖ K2))

//Set the reseed flag to one to indicate that a reseed occurred.

//Set the pool to empty string.

(R, P)← (1, ε)

Public: GetOutputs

Input: state S; number of blocks to generate j (2n/4 ≥ j > 0).

Output: string of generated blocks g.

//Reseed if the pool has more than 2k bits of samples.

if get-bit-length(P) > 2k then

Reseed(S)

end if

//Generate blocks. The reseed flag must be set to one in order to generate blocks.

g ← GenerateBlocks(S, j)

//Change keys by using two k-bit halves of the first 2k bits of the generated blocks.

(K1, K2)← get-pair(get-first-2k-bits(GenerateBlocks(S, d2k/ne)))
return g

The GetOutputs function handles output requests. Two counters are used
in GenerateBlocks because they provide an output cycle of 22n. K1 specifies
one permutation on 2n ciphertext blocks using EK1(C1); however, C2 and K1

specify 2n permutations on 2n ciphertext blocks using C2 ⊕ EK1(C1). Figure 1
shows the generation mechanism. When the entropy pool contains more than 2k
bits of samples, a reseed occurs. The Reseed function combines the entropy pool
with the current keys to generate new keys because this requires the attacker
to know the old keys in order to know the new keys even if the samples are
known [7]. New keys are generated after handling the output requests. Changing
the keys in this fashion prevents compromise of past outputs that are generated
under past keys if the current keys are compromised; this is forward security [4].
These are the features of GetOutputs.

2.1 Generation Mechanism

EK1(C1)⊕EK2(C2⊕EK1(C1)) is a pseudorandom function (PRF) in the Gen-
erateBlocks function. Under a fixed key K, a n-bit block cipher is a pseu-
dorandom permutation (PRP) over {0, 1}n [10]. Using two independent PRPs
p1, p2 over {0, 1}n, a PRF is defined by xoring two PRP results p1(x) ⊕ p2(x)
[10].

Theorem 1. The random permutation p over {0, 1}n is a (q, q2/2n+1)-secure
PRF.

Theorem 2. The function f(x) = p1(x)⊕ p2(x) is a (q, q3/22n−1)-secure PRF,
where p1, p2 are independent random permutations over {0, 1}n and q ≤ 2n−1.

An attacker who makes at most q queries from a (q, a)-secure PRF can get
at most advantage or chance a for distinguishing the (q, a)-secure PRF from
an ideal PRF. An ideal PRF is a (∞, 0)-secure PRF. It is assumed that block
ciphers are ideal PRPs. Some block cipher based PRNGs use single encryption
to generate outputs. The attacker can easily distinguish it because q2/2n+1 / 1
if q ' 2n/2. A collision is expected in about 2n/2 output blocks; however, PRPs
produce no collisions. Although the (q, q3/22n−1)-secure PRF is not ideal, it is
better than the (q, q2/2n+1)-secure PRF because 0 < q3/22n−1 < q2/2n+1 if
q > 0. This is a slight security improvement. For Cilia, 2n/4 ≥ q > 0 queries
can be made such that q3/22n−1 ' 0, which is close to the ideal PRF with no
advantage for the attacker. In this paper, assume that getting any n-bit output
block from Cilia has 2−n chance with negligible deviations. Security proofs of
the theorems are available in [10].

E E

K1 K2

C1

C2

O⊕ ⊕- - - - -
?

?
?

6

Fig. 1. The Cilia generation mechanism.

Yarrow uses single encryption in counter mode as its generation mechanism
[7]. It has a (q, q2/2n+1)-secure PRF. Also, it has k/2 bits of security against
key-collision attacks [2], and has k bits of security against exhaustive key search.
It is conjectured that the Cilia generation mechanism is better.

There are other constructions that form a good PRF and are better than
the (q, q2/2n+1)-secure PRF. Post processing the output blocks with a hash
function’s compression function described in [5] is a possible technique to form a
PRF. Except, EK1(C1)⊕EK2(C2⊕EK1(C1)) is generally faster than a hash func-
tion’s compression function. Furthermore, frequent data-dependent re-keying of
the block cipher is another technique of a PRF, EEK(x)(x) [3]. But, frequent
re-keying of the block cipher would repeatedly run the key schedule for every
output block and this is usually computationally expensive in comparison to
encryption where the key remains the same for multiple outputs. Besides, in
contrast to efficient encryption, a design technique for block ciphers is to make
re-keying computationally expensive [11]. Furthermore, EK1(x) ⊕ EK2(x) is a
natural method for a PRF [3]. This simple technique EK1(x) ⊕ EK2(x) is not
used because a constant stream of zeros are generated if K1 = K2, and there-
fore, the technique prohibits 2k pairs of equal keys out of the 22k key pairs from
keying the block cipher. EK1(x)⊕EK2(x) does not have a key space of 22k. Ad-
ditionally, truncating a few bits of the n-bit ciphertext block of the underlying
block cipher can be used to build a PRF [6]. This technique is nearly as fast
as the underlying block cipher encryption unlike most other PRF constructions,
which are generally slow. Single encryption has k/2 bits of theoretic strength
[2] and k bits of security against exhaustive key search. However, the objective
is to provide more security than single encryption with a k-bit key. Also, most
block ciphers cannot extend their key lengths easily, except block ciphers such
as AES [13]. Also, more truncated output blocks need to be generated to com-
plete output requests in multiples of n bits. The Cilia generation mechanism
appears to be sufficient for generating random sequences considering both speed
and security.

2.2 Entropy Pool

Yarrow uses two entropy pools [7]. The two pools are the fast and slow pools.
A portion of the samples form one string of samples for the fast pool, and
another portion of the samples form another string of samples for the slow pool.
Each pool is a separate running hash of a portion of the samples. The fast

pool ensures that key compromises have a possibility of a short duration by
providing frequent reseeds. Also, the slow pool ensures that Yarrow eventually
does a secure reseed even though the pools may have very optimistic entropy
estimates. Yarrow reseeds from either the fast pool or the slow pool.

For simplicity, Cilia uses only one pool. This should reduce the possibility
of making mistakes during implementation, and the rate of inputting samples
should be greater. In addition, simpler designs should encourage more crypt-
analysis.

3 Cryptanalytic Attacks on Cilia

3.1 Iterative Guessing Attack

For an iterative guessing attack, the inputs between time t and t+ε are guessable
[8]. The objective is to extend a successful compromise of S at time t to future
outputs at time t + ε.

Attack 1. Assume only x bits of entropy are inputted between time t and t + ε,
where x is small x < k (this makes the attack appear more practical). Assume
that the other entropy sources produce known inputs that are observable. There-
fore, all other inputs are known between time t and t+ε. The attacker successfully
compromises S at time t and extends the compromise to time t + ε by doing a
2x search. The outputs generated between time t and t + ε are compared to the
search in order to conclude (K1,K2) at time t + ε.

3.2 Backtracking Attack

The backtracking attack uses the compromise of S at time t to learn outputs at
time t− ε [8]. The objective is to extend a compromise to previous outputs.

Attack 1. S is compromised at time t, and the attacker learns that the most
recent reseed was at time t − ε. At most 2n/4 outputs blocks are compromised
between t−ε and t since the counters C1, C2, can be decremented with negligible
effort. Also, at most 2n/4 outputs from time t to t + ε can be easily learned by
incrementing C1, C2. However, if the next reseed occurs at time t+ε, the attacker
then loses knowledge of (K1,K2) at time t + ε.

Attack 2. It is possible to backtrack past outputs by observing future outputs
and comparing them to some past outputs. This attack is feasible when the
counters produce a short 22n cycle. It is possible to compromise past (K1,K2)
given future (K1,K2) when C1, C2 contain unknown values.

The attacker finds (K1,K2) without a direct attack on the generation mecha-
nism. Assume that an ordered sequence of outputs is watched starting when C1 =
x1 and C2 = x2 at time t−ε. The attacker waits until time t a total of 22n outputs
when C1 and C2 has cycled back to C1 = x1 and C2 = x2. The output sequence

at t is also observed. Let (K ′
1,K

′
2) denote (K1,K2) at time t−ε, and let (K ′′

1 ,K ′′
2)

denote (K1,K2) at time t. If the sequence O(1), . . . , O(b2k/nc+1), at time t − ε
equals the sequence O(1), . . . , O(b2k/nc+1), at time t, (K ′

1,K
′
2) = (K ′′

1 ,K ′′
2) is

expected with Pr[(K ′
1,K

′
2) 6= (K ′′

1 ,K ′′
2)] = 22k−n(b2k/nc+1) (b2k/nc + 1 is the

unicity distance that is required to make it improbable that those keys do not
equal). When (K1,K2) is known at time t, (K1,K2) is known at time t − ε for
this case. Therefore, past outputs are backtracked.

3.3 Input-Based Attack

The attacker uses knowledge or control of the samples to attack a PRNG when
doing an input-based attack [8]. A hash function h processes the samples in
the pool, and it may be correct to assume that h would securely process the
samples preventing input-based attacks. However, along with timing analysis,
the input-based attack is effective.

Data-dependent execution paths open a timing channel that leaks informa-
tion to an attacker [9]. The attacker monitors the precise timings of the compres-
sion operations when samples are appended to P . The compression operations
of an iterative hash function will leak how many l-bit blocks of samples are
compressed by how much time the operations require. Using the timing attack,
the attacker determines the input rate of an unknown entropy source. With
information about the input rate, a permanent compromise attack is attempted.

Attack 1. Assumptions are made to simplify the attack. Assume that the itera-
tive hash function parses inputs into l-bit message blocks, and the compression
function of the iterative hash function operates on the l-bit message blocks indi-
vidually. An x-bit input produces bx/lc l-bit message blocks with the remaining
x mod l input bits handled by a padding rule and with those remaining inputs
compressed during hash finalization. SHA-256 is one example of this [12]. As-
sume the samples are parsed and compressed on the fly as they are appended to
P (generally, practical implementations have a running hash of all the samples).
The number of compression operations is watched through a timing channel,
and the attacker can count the number of calls to AddSamples. There are two
entropy sources e1, e2. Assume that the strings of samples from e2 all have one
common fixed length x1, and one string of samples from e2 is appended to P
after every one common fixed time interval x2. One string of samples with x1

bits and x1 bits of entropy is appended to P after every x2 seconds from e2.
x1 > 0 and x2 > 0. Also, assume that the attacker has full control of e1. These
assumptions are made to simplify the presentation.

The attacker determines the rate at which the entropy is accumulated from
e2. Later, with the knowledge of the rate, a permanent compromise of (K1,K2)
is attempted. The first objective is to solve for x1, x2. This works as follows:

1. Force a reseed by inputting more than 2k sample bits and requesting an
output. Now, P is empty.

2. Wait until c1 compression operations that are triggered by one string of sam-
ples from e2 that is appended to P is detected, where c1 > 0. Since one string
of samples from e2 that is appended to P requires one call to AddSamples,
the attacker knows when the wait for c1 compression operations finishes.
Record the time t′ seconds required for the wait. Keep count of the num-
ber of one string samples c2 from e2 that are appended to P during the t′

seconds.
3. For i = 1 to l/8, do:

(a) Input more than 2k sample bits and request an output. Now, P is empty.
Append i arbitrary bytes to P . If one compression operation was de-
tected, then c3 ← 1, else c3 ← 0. Assume this requires no time to exe-
cute.

(b) Wait for c2 strings of samples from e2 to append to P , and sum the
number of compression operations c4 that occurred during this wait with
c3, c3 ← c4 + c3.

(c) If c3 = c1 + 1, break the loop.
4. The attacker learns that b = c3 · l − 8i bits of entropy accumulates every

t′ seconds, where i is the i-th iteration when breaking the loop in step 3c.
Finally, the attacker learns that one string of samples with x1 = b/c2 bits of
entropy is appended to P after every x2 = t′/c2 seconds from e2.

3.4 Permanent Compromise Attack

The permanent compromise attack uses the compromise of S at time t to learn
all past or future S [8]. The objective is to extend a compromise to all past or
future outputs.

Attack 1. The following attack is a continuation of the input-based attack (de-
scribed above), and it is a simple example of doing a permanent compromise
attack given knowledge of the input rate of e2. Assume that the attacker com-
promised S immediately after a reseed occurred. To make this attack appear
practical, assume that the attacker knows that one string of samples with x1

bits and x1 bits of entropy is appended to P after every x2 seconds from e2,
where x1 = 8 bits, x2 = 60 seconds. Executing the permanent compromise
attack works as follows:

1. Input 2k bits to the pool using e1. These inputs are known.
2. Wait x2 seconds for e2 to append one string of samples to P . Then, force a

reseed by requesting an output O. Now, P is empty.
3. The current (K1,K2) has x1 bits of entropy. Do a 2x1 search to recover the

current (K1,K2). Verify the search by comparing with the output block O.
4. Redo steps 1 to 3 for every reseed. Since the same search is carried for

all future keys with small effort, the attacker permanently breaks Cilia—it
should never recover.

3.5 Meet-in-the-Middle Attack

Using the meet-in-the-middle attack, the attacker recovers S at t+ε with knowl-
edge of S at time t and t + 2ε [8]. However, it is unlikely that this attacks is
useful because (K1,K2) and P are processed with h, which is one-way. If h has
x unknown input bits, then about 2x work is required to find the unknown bits.

In addition, meet-in-the-middle attacks apply to multiple encryption. Al-
though EK1(C1)⊕EK2(C2⊕EK1(C1)) is similar to double encryption (multiple
encryption), it is unlikely that a meet-in-the-middle attack is useful since the
plaintext EK1(C1) for EK2 is xored with the ciphertext from EK2 .

3.6 Key Search Attack

To attack the generation mechanism, the attacker searchs for (K1,K2). Once
(K1,K2) is recovered, the attacker learns all outputs generated under (K1,K2)
until Cilia accumulates enough entropy to reseed and to recover from the com-
promise.

For simplicity, assumptions are made when attacking the generation mech-
anism. The generation mechanism is similar to Davies Meyer hashing mode
x ⊕ EK(x) [11], and block ciphers such as DES are insecure in Davies Meyer
hashing mode [14]. Assume that the underlying block cipher is not weak when it
is used in Davies Meyer hashing mode and it does not have other weak proper-
ties. Assume that C1, C2, and O blocks are freely available for all cases of attack.
Furthermore, assume keys (K1,K2) are unchanging targets, except for a collision
attack. Use these assumptions for the attacks on the generation mechanism.

Table T contains known counters and known outputs. For i = 1 to b2k/nc+1,
T contains (C(i)

1 , C
(i)
2 , O(i)), where C

(i)
1 determines a unique tuple. These will be

used for verifying a successful key search.

Attack 1. Do 22k steps. Use table T . This works as follows:

1. For i = 1 to 22k, do:
(a) Choose keys K ′,K ′′. (K1,K2) = (K ′,K ′′) is expected with Pr[(K1,K2) 6=

(K ′,K ′′)]= 22k−n(b2k/nc+1) if ∀j (EK′(C(j)
1) ⊕ EK′′(C(j)

2 ⊕ EK′(C(j)
1))

= O(j)), where j ∈ {1, . . . , b2k/nc+1}. Assume this is one step of work.

Attack 2. The attacker guesses the EK1(C
(1)
1) ciphertext block. To find K1, do

2n · 2k = 2n+k steps. 2n · 2k−n = 2k false key hits of K1 are expected. For every
possible K1 key found, search for K2. To find K2, do an additional 2k · 2k = 22k

steps. Do 22k + 2n+k ≈ max{22k, 2n+k} steps in total. Use table T . This works
as follows:

1. For a = 1 to 2n, do:
(a) Choose a ciphertext block B. Assume this requires negligible work and

storage.
(b) For b = 1 to 2k, do:

i. Assume this is one step of work. Choose a key K ′. If B = EK′(C(1)
1),

then for c = 1 to 2k, do:
A. Choose a key K ′′. (K1,K2) = (K ′,K ′′) is expected with

Pr[(K1,K2) 6= (K ′,K ′′)] = 22k−n(b2k/nc+1) if ∀i(EK′(C(i)
1) ⊕

EK′′(C(i)
2 ⊕ EK′(C(i)

1)) = O(i)), where i ∈ {1, . . . , b2k/nc + 1}.
Assume this is one step of work.

Attack 3. The attacker guesses the EK1(C
(1)
1) ciphertext block. To find K1, do

2n · 2k = 2n+k steps. To find K2, do 2n · 2k = 2n+k steps. For every guessed
EK1(C

(1)
1), 2k−n false key hits of K1 and 2k−n false key hits of K2 are expected.

Possible keys are stored in the list L1 for possible K1 keys and the list L2 for
possible K2 keys. Therefore, 2 · 2k−n = 2k−n+1 units of storage are required.
With L1, L2, do 2k−n · 2k−n = 22k−2n steps to test if the possible keys equal
(K1,K2) for every guessed EK1(C

(1)
1). Do 2n · 22k−2n = 22k−n steps in total

when keys in L1, L2 are used. Do 22k−n + 2n+k+1 ≈ max{22k−n, 2n+k+1} steps
in total to complete the attack. Use table T . This works as follows:

1. For a = 1 to 2n, do:
(a) Choose a ciphertext block B, and empty L1, L2. Assume this requires

negligible work and storage.
(b) For b = 1 to 2k, do:

i. Choose a key K ′. If EK′(C(1)
1) = B, store K ′ into L1. Assume this

requires one step of work, and one unit of storage.
ii. Choose a key K ′′. If EK′′(C(1)

2 ⊕ B) = B ⊕ O(1), store K ′′ into L2.
Assume this is one step of work, and requires one unit of storage.

(c) Let K ′
1, . . . ,K

′
2k−n , denote all keys in L1. Let K ′′

1 , . . . ,K ′′
2k−n , denote

all keys in L2. (K1,K2) = (K ′,K ′′) is expected with Pr[(K1,K2) 6=
(K ′,K ′′)] = 22k−n(b2k/nc+1) if ∀b∀c∀d(EK′

b
(C(d)

1 ⊕EK′′
c
(C(d)

2 ⊕EK′
b
(C(d)

1))
= O(d)), where b, c ∈ {1, . . . , 2k−n} and d ∈ {1, . . . , b2k/nc+1}. Assume
this is 2k−n · 2k−n = 22k−2n steps of work.

Attack 4. Using the key-collision attack [2], the attacker finds (K1,K2) with 2k+1

steps and 2k storage. Assume C1, C2, are unchanging, outputs are all generated
under random keys, and n > 2k. This attack is practical when the attacker
frequently calls Initialize to freeze C1 = 0, C2 = 0. h has m/2 = k bits of
security against collision attacks. 2k outputs are generated with random keys,
and they are stored in a table. For each output request that the attacker makes,
the output’s existence in the table is checked. According to the birthday paradox,
it is expected that one of the first 2k requested outputs discloses a (K1,K2). This
works as follows:

1. For i = 1 to 2k, do:
(a) Choose keys K ′,K ′′, randomly. Let O′ = EK′(C1)⊕EK′′(C2⊕EK′(C1)).

Store (O′, (K ′,K ′′)) in the table T ′ indexed by O′. Assume this requires
one step of work, and one unit of storage.

(b) Reset C1, C2. Request an output O. If O is in T ′ as an index with
(K ′,K ′′), (K1,K2) = (K ′,K ′′) is expected with Pr[(K1,K2) 6= (K ′,K ′′)]
= 22k−n. Assume this requires one step of work.

Table 1. The complexities of attacking the Cilia generation mechanism.

Steps Storage Attack model

22k — Exhaustive search

22k + 2n+k — Exhaustive search; EK1(C
(1)
1) guess

22k−n + 2n+k+1 2k−n+1 Exhaustive search; EK1(C
(1)
1) guess; key lists

2k+1 2k Key-collision; C1, C2 fixed; n > 2k

Additional Security Observations. According to Table 1, the most efficient
attack against Cilia with two unknown k-bit keys should have a complexity of
about 2k. n ≥ k − 1 should be a design requirement. If resetting C1, C2, is
disallowed and n ≥ k−1, the most efficient attack on the generation mechanism
should have a complexity of 22k instead of 2k.

Also, the 2k bits of security of the generation mechanism is not like double en-
cryption EK1(EK2(x)), and EK1(EK2(x)) is weaker in comparison because there
is a known-plaintext meet-in-the-middle attack on EK1(EK2(x)) with a complex-
ity of 2k. Generally, attacking double encryption should have a complexity of 2k

(with or without a collision attack) and attacking the Cilia generation mecha-
nism should have a complexity of 22k (without a collision attack). Although the
complexities of attacking the Cilia generation mechanism can vary, the Cilia
generation mechanism is generally securer.

Full Exhaustive Key Search on Double Encryption. Let y = EK1(EK2(x)). The
attacker finds (K1,K2) with 22k steps. For simplicity, assume n > 2k so it is
unlikely there is a false key hit. The plaintext-ciphertext pair (x, y) is known.
This works as follows:

1. For i = 1 to 22k, do:
(a) Choose keys K ′,K ′′. If y = EK′(EK′′(x)), (K1,K2) = (K ′,K ′′) is ex-

pected with Pr[(K1,K2) 6= (K ′,K ′′)] = 22k−n. Assume this requires one
step of work.

Known-Plaintext Meet-in-the-Middle Attack on Double Encryption. Let y =
EK1(EK2(x)). A known-plaintext meet-in-the-middle attack on EK1(EK2(x))
requires 2k+1 steps and 2k storage. For simplicity, assume n > 2k so it is unlikely
there is a false key hit. The plaintext-ciphertext pair (x, y) is known. This works
as follows:

1. For i = 1 to 2k, do:
(a) Assume this is one step of work, and requires one unit of storage. Choose

K ′′. Store (EK′′(x),K ′′) in the table T ′ indexed by EK′′(x).
2. For i = 1 to 2k, do:

(a) Assume this is one step of work. Choose K ′. If E−1
K′ (y) is in T ′ as an index

with K ′′, (K1,K2) = (K ′,K ′′) is expected with Pr[(K1,K2) 6= (K ′,K ′′)]
= 22k−n.

Key-Collision Attack on Double Encryption. Let y = EK1(EK2(x)). Using the
key-collision attack, the attacker finds (K1,K2) with 2k+1 steps and 2k storage.
For simplicity, assume n > 2k so it is unlikely there is a false key hit. Assume x
is constant. Assume that keys K1,K2, are randomly generated for every request
y. This works as follows:

1. For i = 1 to 2k, do:
(a) Choose keys K ′,K ′′, randomly. Let y′ = EK1(EK2(x)). Store (y′, (K ′,K ′′))

in the table T ′ indexed by y′. Assume this requires one step of work, and
one unit of storage.

(b) Request a y. If y is in T ′ as an index with (K ′,K ′′), (K1,K2) = (K ′,K ′′)
is expected with Pr[(K1,K2) 6= (K ′,K ′′)] = 22k−n. Assume this requires
one step of work.

Exhaustive Key Search on Single Encryption. Let y = EK1(x). The attacker
finds K1 with 2k steps. For simplicity, assume n > k so it is unlikely there is a
false key hit. The plaintext-ciphertext pair (x, y) is known. This works as follows:

1. For i = 1 to 2k, do:
(a) Choose a key K ′. If y = EK′(x), K1 = K ′ is expected with Pr[K1 6=

K ′] = 2k−n. Assume this requires one step of work.

Key-Collision Attack on Single Encryption. Let y = EK1(x). Using the key-
collision attack, the attacker finds K1 with 2k steps. For simplicity, assume n > k
so it is unlikely there is a false key hit. Assume x is constant. Assume that K1

is randomly generated for every request y. This works as follows:

1. For i = 1 to 2k/2, do:
(a) Choose a key K ′ randomly. Let y′ = EK1(x). Store (y′,K ′) in the table

T ′ indexed by y′. Assume this requires one step of work, and one unit of
storage.

(b) Request a y. If y is in T ′ as an index with K ′, K1 = K ′ is expected with
Pr[K1 6= K ′] = 2k−n. Assume this requires one step of work.

Table 2. The complexities of attacking double encryption and single encryption.

Encryption Steps Storage Attack model

Double 22k — Exhaustive search; n > 2k

Double 2k+1 2k Meet-in-the-middle; n > 2k

Double 2k+1 2k Key-collision; n > 2k

Single 2k — Exhaustive search; n > k

Single 2k/2+1 2k/2 Key-collision; n > k

4 Performance

A C implementation of the generation mechanism runs at about the same perfor-
mance as double encryption. It is about two times slower than single encryption.
The tests used a C implementation of AES with k = 128 and n = 128 on a
1.82 GHz Pentium 4 with the Windows 98 operating system. K1,K2, were con-
stant. C1, C2, were incremented. In Table 3, the Cilia generation mechanism is
compared with double encryption and single encryption.

When inputting samples to the pool, the performance is expected to be iden-
tical to performance of the iterative hash function. Therefore, no tests were
done.

Table 3. Performance comparisons.

Output Generation MB/s

EK1(C1)⊕ EK2(C2 ⊕ EK1(C1)) 26.2
EK1(EK2(C1)) 27.4
EK1(C1)) 53.5

5 Conclusion

The generation mechanism is a (q, q3/22n−1)-secure PRF assuming the block
cipher is an ideal PRP. The n-bit outputs are less distinguishable in comparision
to outputs from a (q, q2/2n+1)-secure PRF.

Cilia is weak when there is insufficient entropy in the samples. System unique
entropy sources such as configuration files, variable sources such as date and
time, and external random sources such as keystroke timings can be generalized
respectively to have low, medium, or high entropy [1]. To ensure that sufficient
entropy is provided, high entropy samples from high entropy sources should be
used only.

In addition, many entropy sources should be sampled to thwart the attacker.
It is more difficult for the attacker to permanently break Cilia if samples are
collected from many entropy sources. Thus, any information about the samples
such as the rate at which samples are input is more difficult to determine.

The maximum number of outputs that can be requested by the user is 2n/4. If
backtracking of past outputs is of high concern, this number should be lowered.

The 22n cycle is a minor issue if n is large. For example, if n = 128, the cycle
would be 2256, which is generally impossible for the attacker to wait. This attack
is impractical for most contemporary n-bit block ciphers.

n ≥ k − 1 is a requirement. If this is met, it is conjectured that the Cilia
generation mechanism can provide 2k bits of security. It may be possible to
achieve this level of security if C1, C2, do not reset.

Like other new designs, Cilia should not be used until it has received ad-
dtional cryptanalysis.

6 Acknowledgements

Thanks to reviewers for helpful comments.

References

1. M. Atreya, “Pseudo Random Number Generators (PRNGs),” RSA Laboritories,
http://www.rsasecurity.com/products/bsafe/overview/Article4-PRNG.pdf.

2. E. Biham, “How to Forge DES-Encrypted Messages in 228 Steps,” Technical Report
CS884, Technion, August 1996.

3. M. Bellare, T. Krovetz, P. Rogaway, “Luby-Rackoff Backwards: Increasing Se-
curity by Making Block Ciphers Non-Invertible,” Advances in Cryptology—
EUROCRYPT ’98 Proceedings, Springer-Verlag, 1998, pp. 266–280.

4. A. Desai, A. Hevia, and Y.L. Yin, “A Practice-Oriented Treatment of Pseu-
dorandom Number Generators,” Advances in Cryptology—EUROCRYPT 2002,
Springer-Verlag, 2002, pp. 368–383.

5. P. Gutmann, “Software Generation of Practically Strong Random Numbers,”
USENIX Security Symposium, 1998.

6. C. Hall, D. Wagner, J. Kelsey, and B. Schneier, “Building PRFs from PRPs,” Ad-
vances in Cryptology—CRYPTO ’98 Proceedings, Springer-Verlag, 1998, pp. 370–
389.

7. J. Kelsey, B. Schneier, and N. Ferguson, “Yarrow-160: Notes on the Design and
Analysis of the Yarrow Cryptographic Pseudorandom Number Generator,” Selected
Areas in Cryptography—SAC ’99 Proceedings, Springer-Verlag, 1999, pp. 13–33.

8. J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Cryptanalytic Attacks on Pseu-
dorandom Number Generators,” Fast Software Encryption—FSE ’98 Proceedings,
Springer-Verlag, 1998, pp. 168–188.

9. P.C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems,” Advances in Cryptology—CRYPTO ’96 Proceedings,
Springer-Verlag, 1996, pp. 104–113.

10. S. Lucks, “The Sum of PRPs Is a Secure PRF,” Advances in Cryptology—
EUROCRYPT 2000 Proceedings, Springer-Verlag, 2000, pp. 470–484.

11. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, “Handbook of Applied Cryp-
tography,” CRC Press, 1996.

12. National Institute of Standards and Technology (NIST), “FIPS Publication 180-2:
Secure Hash Standard,” August 2002.

13. National Institute of Standards and Technology (NIST), “FIPS Publication 197:
Advanced Encryption Standard (AES),” November 2001.

14. B. Preneel, R. Govaerts, and J. Vandewalle, ”Hash functions based on block ci-
phers: a synthetic approach,” Advances in Cryptology—Crypto ’93 Proceedings,
Springer-Verlag, 1994, pp. 368–378.

A Test Vectors

The following tests used SHA-256 with m = 256 and AES with k = 128 and
n = 128.

============
===Test 1===
============
@ t = 0
;K1 = 00000000000000000000000000000000
;K2 = 00000000000000000000000000000000
;C1 = 00000000000000000000000000000000
;C2 = 00000000000000000000000000000000

@ t = 1
Input s =
00

@ t = 2
;h(P1)‖K1‖K2 =
;7f9c9e31ac8256ca2f258583df262dbc7d6f68f2a03043d5c99a4ae5a7396ce9
;00
;h(h(P1)‖K1‖K2) =
;6d816c62cacfa92a73fd4a3c91538257c472632e44af249872a150a77266dee3
;K1 = 6d816c62cacfa92a73fd4a3c91538257
;K2 = c472632e44af249872a150a77266dee3
;C1 = 00000000000000000000000000000000
;C2 = 00000000000000000000000000000000
;O = 11696bd7fe7e3cb2bcb9e113b4dda6fe
;C1 = 01000000000000000000000000000000
;C2 = 00000000000000000000000000000000
;O = a3c6d55719324bf878a1b676ff214218
;C1 = 02000000000000000000000000000000
;C2 = 00000000000000000000000000000000
;O = 48252e5997198cc04cbf7adcb69389d5
;C1 = 03000000000000000000000000000000

;C2 = 00000000000000000000000000000000
;K1 = a3c6d55719324bf878a1b676ff214218
;K2 = 48252e5997198cc04cbf7adcb69389d5
Get O = 11696bd7fe7e3cb2bcb9e113b4dda6fe

============
===Test 2===
============
@ t = 0
;K1 = 00000000000000000000000000000000
;K2 = 00000000000000000000000000000000
;C1 = feffffffffffffffffffffffffffffff
;C2 = fffffffffffffffffffffffffffffffe

@ t = 1
Input s =
00

@ t = 2
;h(P1)||K1||K2 =
;7f9c9e31ac8256ca2f258583df262dbc7d6f68f2a03043d5c99a4ae5a7396ce9
;00
;h(h(P1)||K1||K2) =
;6d816c62cacfa92a73fd4a3c91538257c472632e44af249872a150a77266dee3
;K1 = 6d816c62cacfa92a73fd4a3c91538257
;K2 = c472632e44af249872a150a77266dee3
;C1 = feffffffffffffffffffffffffffffff
;C2 = fffffffffffffffffffffffffffffffe
;O = eeb20aa047023a584070cbbba6a6f908
;C1 = ffffffffffffffffffffffffffffffff
;C2 = fffffffffffffffffffffffffffffffe
;O = 2a3a742cf180a57c9d6cb44ac6704feb
;C1 = 00000000000000000000000000000000
;C2 = 000000000000000000000000000000ff
;O = 91372a7b1c179429e9cf232265669669
;C1 = 01000000000000000000000000000000
;C2 = 000000000000000000000000000000ff
;K1 = 2a3a742cf180a57c9d6cb44ac6704feb
;K2 = 91372a7b1c179429e9cf232265669669
Get O = eeb20aa047023a584070cbbba6a6f908

