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ABSTRACT

The pressure field over a sloping continental shelf subject to freshwater runoff at the coast can be resolved
into a nearly two-dimensional dynamic height field and a residual field, the latter arising from the interaction
of baroclinity and topography. The residual field is essentially three-dimensional and so constituted as to
supply the fluid for the baroclinic alongshore flow off a coastal source of buoyancy associated with the cross-
isobath density gradients. The intensity of the induced residual circulation (its total transport in m?® s™')
varies directly with the buoyancy input and bottom slope, and inversely with the zero-order alongshore flow
velocity and Coriolis parameter. Over the Mid-Atlantic Bight continental shelf the runoff-induced residual
circulation makes a generally weak contribution to the observed mean flow field. It could, however, be more
important over a low-latitude shelf subject to high runoff. ’

1. Introduction

Simple dynamical arguments show that variations
of density over a sloping seafloor, along lines of
constant depth, tend to generate a depth-independent
pressure field, i.e., a pattern of horizontal circulation.
With idealizations appropriate to continental shelf
dynamics, the effect shows up as a source term in the
vorticity-tendency equation, containing along-isobath
density gradients (Hsueh et al, 1976; Hendershott
and Rizzoli, 1976; Csanady, 1979). The calculation
of the resulting flow field is made difficult usually by
the nonlinear interaction of the flow and density
fields, manifesting itself in a self-advection of the
density distribution by its own induced flow field.
Previous studies of the phenomenon have therefore
been numerical (Hendershott and Rizzoli, 1976) or
confined to specific aspects of flow development
(Shaw, 1982; Shaw and Csanady, 1983).

The complications introduced by advection are
irrelevant to the general problem of baroclinity—
topography interaction and it should be possible to
neglect them in a first approximation in a suitably
linearized model. One is naturally led to such a
model by considering the circulation induced by low-
intensity freshwater sources on a continental shelf,
over a long stretch of coastline.

Freshwater runoff from land affects the density
field over continental shelves and generates a pattern
of thermohaline circulation. The simplest models of
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runoff-driven circulation are two-dimensional and
ignore depth variations (Stommel and Leetmaa, 1972;
Kao, 1981). Something like a Hadley cell arises in
the cross-shore plane, driving baroclinic flow parallel
to the coast, along lines of constant density. Obser-
vations show the most intense currents in this type
of flow to occur along a surface-to-bottom front
separating fresher coastal waters from more saline
waters offshore (Beardsley and Flagg, 1976; Blanton
and Atkinson, 1983; Royer, 1981). In the Mid-
Atlantic Bight such a front can be observed at the
edge of the shelf in winter, when winds and surface
cooling combine to maintain a vertically nearly ho-
mogeneous water mass shoreward of the front. The
location and characteristics of this front are of great
current interest, but are not further considered here.

Although the shore-side water mass is nearly ho-
mogeneous in winter, river plumes are nevertheless
discernible in it, e.g., off the Hudson estuary or
Chesapeake Bay (Bowman and Wunderlich, 1977;
Boicourt, 1982). The water column is nearly well
mixed vertically, but is subject to along-isobath density
changes, which may conceivably induce circulation
of local importance, or affect through their aggregate
influence far downstream portions of the shelf. Be-
cause the density changes involved are small (much
smaller than those across the principal density front
at the edge of the shelf) one expects the river plume-
induced circulation to be a small perturbation on a
more vigorous large-scale pattern impressed by winds
and by deep ocean effects. The self-advection of the
density field may then be ignored, and a linearized,
diagnostic model constructed of the induced circula-
tion.
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While the idealizations made in the present ap-
proach are drastic, they are complementary to those
made in the two-dimensional models. The results
reveal certain three-dimensional effects not even
hinted at by two-dimensional models and illustrate
in a concrete manner the pattern of circulation
attributable to the vorticity-generating effect of along-
isobath density variations. The theory also supplies
simple quantitative relationships, exhibiting the rela-
tive importance of the various physical factors gov-
erning the baroclinity—topography interaction, the
value of which to some extent transcends the ideali-
zations of the specific model adopted.

The principal assumptions of the model are as
follows; see Fig. 1 for schematic illustration. The
density field is maintained by the diffusion of fresh-
water from a finite-length distributed coastal source
into a wedge of fluid of small angle (= bottom slope
s). The zero-order alongshore velocity v, is constant
and large compared to perturbation velocities. Hori-
zontal diffusion is due to current shear and hence
very effective; see e.g., the discussion by Csanady
(1982, p. 226). It is parameterized by a large effective

~ diffusivity K. Vertically, the water column is supposed
well mixed. The alongshore scale (length of the source
region) is taken to be long enough for advection to
dominate diffusion in the alongshore direction (vY/
K > 1). The density of the fluid is related to freshwater
concentration through an equation of state describing
the empirical mixing line in the 7-S diagram between
shelfwater and slopewater. The boundary condition
at infinity is zero freshwater concentration: the pres-
ence of a distant edge-of-the-shelf front is ignored
and only coastally trapped density and flow fields are
considered.

The circulation generated by the density field cal-
culated according to the above assumptions is sup-
posed steady and subject to linearized equations of
motion with linear bottom friction. As in other
related problems (Csanady 1978, 1979) the relevant
cross-isobath length scale is:

172
(2
S5
where r is a bottom resistance coefficient and f the
Coriolis parameter. At midlatitudes, L is typically 10
km or more. Thus the Rossby number v/fL formed
with the zero-order advection velocity is small, as is
the ratio of horizontal to vertical friction force. The
equation for the induced pressure field is then as used
in earlier studies of this kind (Csanady, 1979; Shaw
and Csanady, 1983), and simple heat conduction-
type solutions are readily found. Viewed as an exten-
sion of those earlier studies, the present paper gives
concrete examples of circulation induced by realistic
along-isobath variations of bottom density, arrived at
analytically. -
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2. Freshwater diffusion

The coordinate system used is shown in Fig. 1.
Given the idealizations just described, the concentra-
tion of freshwater x in the wedge between the surface
and the bottom is subject to the equation:

i) ax) 8( 8)()
—=—|Ksx =)+ —|Ksx —]. 1
VoSX ay ax( X ax) T 5y X % (1)

The boundary condition at the coast is constant
inflow rate over a limited segment of the coast:

Ix

d

q = —Ksx X = constant, y,<y<y +Y
9x1 o

g = 0, otherwise

()

Far from the coast the concentration of freshwater
is negligible:
x =0, x— oo. 3)

The advection number A4 of the problem (akin to
Peclét number) is supposed large:

4)
so that alongshore advection dominates diffusion.
Typical quantities to be used in estimates below are
v%,=0lms! , K=300m?’s!, Y=5X 10" m,
giving 4 = 165. The second term on the right of Eq.
(1) may then be dropped. The value of X is consistent
with shear diffusion and comparable to empirically
deduced values of Ketchum and Keen (1955) and
Loder et al. (1982).

The remaining simple parabolic equation contains
the time-like coordinate y/v,. For a source at the
origin, the solution extends to positive values of y for
vy > 0, negative y for vy < 0. A source distributed
along the y-axis gives rise to the concentration field
(see e.g., Carslaw and Jaeger, 1959):

Y q(y) ( x? ) dy’
- €xp| — ; 2
2sK k(y—=y)y—vy

(&)

x(y) =

Freshwaler
Infiow, q(y)

%0\@“

Alongshore

depih, sx Current, vix)

FIG. 1. Inclined plane beach model with freshwater inflow.
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where k = K/v, is a quantity of the physical dimension
of length. It is convenient to place the limited line
source between 0 < y < Yforv > 0,and Y <y
< 0 for v < 0. The freshwater concentration field is
then in the two cases:

2
X=_‘1_E1(x_), —Y<y<0

Uy <0 25K \4xy
k<0 x2 x2
=l 5(0) 2o )]
25K | \dxy 4(y + Y)
y<-—Y, (6a)
q x?
=———E r——
v>0 | X 25K ‘(4xy)’ O<y<Y
0 x5 (i) - Blao=)]
X =53k P\aey) " E\ae= 1))’
y>1Y, (6b)

with (Abramowitz and Stegun, 1964)
o e—t
El(Z) = f "t— dt.

The nondimensional density excess will be written

1 dp
=—— (85— 85) =85S — S
€ o dS( 0) = B( 0)
with § = salinity, S, =
concentration, so that

€= "ﬂSoX. (73)

The value of 8 depends on the T-S relationship
applicable to the mixing process between shelf and
slope waters. In the Mid-Atlantic Bight in winter this
is about 8 = 0.36, or S, = 12.6 X 1073,

@)

salinity at zero freshwater

3. Equation for surface pressure

For the determination of the perturbation pressure
field linearized equations of motion may be used
because, as mentioned in the introduction, the Rossby
number v,/f L, formed with the zero-order advection
velocity, is already small. Momentum advection by
the zero-order flow is thus negligible, similar advection
by the perturbation velocities being of an even smaller
order of magnitude. As in previous shelf circulation
models, a linear bottom stress law is used, 7,/p = rv.
The force of this, distributed over the water column,
rvH ™', is typically much larger than the horizontal
momentum-flux divergence:

v _
K—=(H")~ Ks/rL <1
ox
the value of this ratio being 0.1 with the typical
quantities used in the calculations. Neglecting thus
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momentum advection by either zero-order or pertur-
bation flow, and horizontal momentum diffusion, for
steady motion and a well mixed water column of
depth H = sx, the depth integrated equations are

SV _ 8 ()% 7w
g g ox 2 0x pog
2
f—U=—sx§—-——(sx)ﬁ—M - (8)
g dy 2 Iy pog
oU oV
dx dy

with { surface elevation and (U, V) the components
of transport (depth-integrated velocity). The bottom
stress (7., 7,5) Will be taken to be proportional to
the bottom_geostrophic velocity:

T _ 98 rsx de
pg [y [ 9y ©
Tw _rof rsx de
pog fox  f ox

where r is a bottom friction coefficient of the dimen-

sion of velocity with a typical magnitude of 5 X 107*
-1

ms .

Substituting the bottom stresses into Egs. (8) and
taking curl, one arrives at the vorticity tendency
equation:

’ Vlz.(

2
+f7sa—i - —owte— 2 LX)

i) x r oy’

This is very similar in form to the diffusion equation
in two dimensions, with the quantity f5/r correspond-
ing to vy/K = «~!, the ratio of an advection velocity
(along the y-axis) to horizontal diffusivity. The differ-
ence is that fs/r is, in a given hemisphere, always of
the same sign, positive north of the equator. Thus
the vortex stretching effect of bottom slope produces
results akin to advection in the direction of shelf-
wave propagation (negative y). Moreover, for a large
value of the equivalent advection number,

(11

where Y is a typical along-isobath scale of the {-field,
advection along y swamps diffusion in the same way
as in the freshwater diffusion problem. The second
derivatives of y may then be dropped on both sides
of Eq. (10). The simpler equation remains

P B P s frxae

X e — s — .2
ax*>  rady r dy (12)

5X -5
ax* T ox
As is known from similar advection-diffusion

problems, the simplification leading to Eq. (12) causes

significant errors mainly in the immediate neighbor-
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hood of concentrated sources. Other aspects of this
approximation were discussed by Csanady (1978),
where the heat-conduction analogy was invoked for
a physical interpretation of Eq. (12).

Confining attention to coastally trapped pressure
fields, the boundary condition at infinity will be taken
to be

(13)

This is consistent with a coastally trapped density
field.

At the coast, the depth and the cross-shore transport
reduce to zero. So must, by Egs. (8), the bottom
stress, in the absence of wind stress as supposed here.
This yields the boundary condition with the aid of

Eq. (9):

=0, x— oo.

(14)

4. Resolution of the pressure field

As suggested by Csanady (1979), it is convenient
to split the surface elevation { into a generalized
dynamic height component {; and a residual field {>:

=60+ 6,
where
%__f"& L
ax e dz sxa (15)

Upon integration, the dynamic height distribution
becomes

$1 =—sxe—sfm edXx. (16)

X

Because the freshwater plume is long and narrow,
this gives an almost two-dimensional pressure distri-
bution, with surface geostrophic velocity nearly par-
allel to the coast. For a coastally trapped density
field, {; vanishes as x — oo. By the second of Egs.
(15), the {-field also satisfies the boundary condition
at the coast, so that the conditions on the residual
field ¢, become '

a3
a_§'2=0, x—0
x (17)

§'2=0, X = Q0

Furthermore, backward from all source terms in
the time-like y-coordinate {, is supposed to vanish;

=0, y— 0. (17a)

Upon substituting (15) into (12) one finds the
differential equation for the residual field

8% | f586  f57 [ de
6x2+ rdy r dx

e (18)
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The only source term in this equation is now due
to the cross-isobath baroclinic flow. Interpreted as a
vorticity tendency, d¢/dy > 0 tends to produce cyclonic
(d¢/dy < 0 anticyclonic) circulation; for further dis-
cussion see Shaw and Csanady (1983).

Expressed as hydraulic head, the bottom pressure
is

1
$p=——pp =+ sxe. (19)
Po&
Substituting from Eq. (16), this is also
G=t-—s f edx. (20)

The components of the bottom geostrophic velocity
are

u— 805 [0
P fay e 0y o)
b f ox

In the presence of density variations along isobaths,
this velocity is divergent, as pointed out by Shaw and
Csanady (1983):

duy
dx oy

(22)

In the absence of density variations along isobaths,
{> vanishes everywhere, and so does the bottom
geostrophic velocity. Steady flow induced by cross-
isobath density gradients alone is then parallel to the
isobaths, and is equal to the thermal wind relative to
the bottom. The corresponding surface pressure (as
hydraulic head {;) is the dynamic height relative to
the bottom, and is given by Eq. (16). :

With the density field given by Egs. (6a) or (6b),
the ¢, equation (Eq. 18, with boundary conditions
17) is readily solved. The right-hand side of (18)
represents distributed sources for the {>-field, akin to
internal heat generation in the conduction problem,
the effects of which are described by the appropriate
Green’s function.

5. Transport streamlines

The depth-integrated transport is represented by
contour lines of the stream function ¥, where

N ___%
ax’ v oy’

The replacement of Eq. (10) by (12) is tantamount
to the neglect of the x-component bottom stress.
Applying the same approximation to Eq. (8) for
consistency, one arrives at the expression for :

V= (23)
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_& ("
‘p—fo(sxax
_8 (sx

2 X
7 2) €— SJ; ((r i sxe)dx] . (29

This satisfies the coastal constraint, U = 0 at x
= 0, by making the coast a streamline. At large
distances from the coast the first two terms in the
brackets, proportional to {; and ¢, respectively, vanish.
The remaining term can be evaluated upon integration
of Eq. (18), making use of the boundary conditions
(17):

% _ (s )
2 ox

[sxs“z -

a {eo]
5J; ($2 — sxe)dx = 0 (25)

or

f $dx = f sxedx + constant. (25a)
0 (1]

The value of the integral on the right follows from
the diffusion equation: from Eq. (1), with the y-
diffusion term deleted, one finds

0

A sxedx, (26)

the second form following from Eq. (7a). Outside the
source regions g(y) vanishes, and the integral on the
right-hand side of Eq. (25a) becomes constant. The
integrated surface level deficiency ¢{; (equivalent to
the total heat content in the conduction analogy) is
thus also constant outside the source regions, as is
the value of the streamfunction at infinity according
to Eq. (24).

In the case of the basic flow toward negative y,
both ¢ and ¢, vanish at y > 0, so that in the same
domain both integrals in (25a) are zero, and so is the
value of the constant. Hence the streamfunction at
infinity vanishes. The entire induced circulation is
confined to the half plane y < 0. When the zero-
order flow is toward positive y, however, one finds at
y>Y:

[}
f sxedx = —@qY=£¢/m, y>7Y, v5>0. 27)
0 Vo gs
The backward boundary condition on {, (Eq. 17a)
now shows that the constant in Eq. (25a) is nonzero.
At y < 0, where ¢ vanishes in this case, one has
therefore

[(oac=B2ar-Ty, y<o w>o0 a8
0 Vo gs

The streamfunction at infinity thus has a constant
value, given by (27) or (28). Physically, one may
think of the two integrals in Egs. (27) and (28) as
two independent contributions to the flow field, giving
rise to total transport of the same magnitude ¢,,. In
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the case of zero-order flow to negative y, the two flow
contributions oppose each other in direction, and
overlap in space. Thus they cancel each other to
some degree, the details depending on just how
closely their cross-shore scales coincide. In the case
of zero-order flow to positive y, the two flow contri-
butions point in the same direction. They do not,
however, overlap so much as replace each other, the
transport being handed over from the baroclinic flow
of the density field to the barotropic flow of the
induced {,-field. This is best seen in the calculated
examples below.

With previously used typical parameters, and ¢
= 100 X 10~ m?s~!, Y = 500 km, one finds for the
total transport of one of the flow components
BSoqYv,™! = 6.3 X 10* m?® s7!, or 12.6 times the
freshwater inflow rate gY.

6. Calculated examples

For the computations it is convenient to adopt the
following scales

4r
: - 4 =—,
X,y ) v %
Yy g
. ¢ = Sel
g" S-O 2’y 5
s 2€ol?
o=
where v = v/|«|, and v = r/(f5), x = K/v,, as used
before.

An example with flow toward negative y, which is
the forward direction of the parabolic equation (12),
is relatively easily calculated. The scaled density field
(¢/eg — ¢) is in this case:

x2
=-b(r), —reye<o

2
-ef-v3) sl

where x, y, Y now stand for x/I, y/I, Y/I. The surface
pressure scaled by ¢ is

2

) r<-¥ @

{ = {2 + (—_41ry)”2lerfc('y F})x)lT) 5 -Y< y< 0

= 5o+ (—4m9)” exte( 3 ) — [y + 1)
X erfc('y [—_—(—;—EW) , y<-Y, (30)
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where {, is to be calculated as follows:

[ (7 v v = X’)Z:I
L= L'=o x'=0 oy ){expl: y=y

(x+ x')z]} dx'dy’ 31
* exp[ y=y B I-(y—-yn”~ G1
with
d’(—x” y,) = ,)1/2 erfC(‘Y x,)l/z) s -Y < y< 0
R S ( x’ ) B 1
Ot A TS ST
X erfc('y W) , y<-—Y.

The bottom pressure field is given by

2
§o = S’—/vaEl(vZ %) » ~Y<y<0

xZ
—(y + Y)) ’
(32)

The nondimensional stream function becomes

2
={- 27xE1(72 f—y) + 2vxE1(72

y<-Y.

l X
V=5 [xe -[ fz(x')dx'] +5255 (1 - ™),
2y (] 2y
-Y<y<O
1 1 Y v
= —2-; [ngz f Ol )dx] +t =+ 2y s e YUY
Y
y;; evzxz/(erY), y<-~Y. (33)

Quantitative parameters used in the calculated
examples are shown in Table 1. Figures 2-5 illustrate
the calculated fields of density, surface pressure, bot-
tom pressure and transport stream function respec-
tively. The source extends from y = 0 to —25 in

TABLE 1. Quantitative parameters used in calculations.

Freshwater inflow rate g (m? s™") 0.01
Bottom slope s 1073
Horizontal diffusivity X (m? s™!) 300
Advection velocity vy (m s7') 0.1

Density factor 85, : 12.6 X 1073
Friction coefficient 7 (m s™*) 5% 107
Coriolis parameter f(s™') 10~

Source length Y (m) 5% 10°
Density deficiency scale ¢ 2.1 X 1074
Horizontal length scale / = 4v (m) 2 % 104
Diffusivity ratio y 1.291
Surface elevation scale {, (m) 1.677 X 1073
Transport scale ¥, (m? s7}) 8400
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FIG. 2. Contours of constant density, with flow toward negative
y and freshening over —25 < y < 0. Units of distance are [ = 4v
= 4r/fs, of density €.

nondimensional units, or over a 500 km distance,
with a total freshwater inflow of 5000 m? s™!, about
equal to the entire inflow to the Mid-Atlantic Bight
over its 1500 km long coastline (Bumpus, 1973).
The units of the density in Fig. 2 correspond to
0.21 ounits. The far-field influence is therefore slight,
and only close to shore within the source region are
density perturbations of order 1 ounit found. This
field is very similar to the one calculated numerically
by Shaw (1982). The surface pressure distribution is
more or less as expected from the density distribution.
The unit here corresponds to 0.163 cm: again, values
of order 1 cm are confined to a region close to the
source. The bottom pressure distribution is of similar
amplitude, but it contains an interesting trough off-
shore, its deepest point lying just downstream of the
source, on the outer shelf (about 80 km from the
coast). The function of this trough is to supply fluid
for the downstream flow nearshore; see the pattern
of transport streamlines. The bottom pressure trough

OFFSHORE

F1G. 3. Distribution of surface pressure, same case
as in Fig. 3 (units of {o).
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LONGSHORE

OFFSHORE

~15

FiG. 4. Distribution of bottom pressure, same case as in Fig. 3
(units of {). Note low just downstream and offshore from source.

and the associated closed streamline pattern consti-
tutes the crucial difference between the (nearly) two-
dimensional view provided by the {;-field and the
three-dimensional solution.

The maximum downstream flow induced is about
2.1 in streamfunction units, or 17 600 m> s~!, only
3% times the freshwater inflow rate, or 28% of the
maximum calculated from Eq. (28). The reason is
that the inflow and outflow regions largely overlap
on account of the similarity of scales in the two
diffusion equations, (1) and (12) [y = (v/l«])!/?
= 1.29]. Thus the pressure fields {; and ¢{, cancel
each other to a considerable extent, leaving only a
‘feeble residual circulation. The character of this cir-
culation follows from the vorticity tendencies asso-
ciated with the density field, cyclonic where the
density increases toward positive y, anticyclonic where
the opposite gradient prevails.

The case of advection velocity v, opposite to the
time-like direction of the parabolic equation (12)
(negative y) provides instructive contrast. The density
field remains the same by hypothesis (ignoring the
distorting effect of perturbation velocities), but the
streamlines are quite different (Fig. 6). This case takes
much longer computation time, because the whole
positive y axis contains source terms for Eq. (12),
while the flow is everywhere toward negative y. The
pattern shown in Fig. 6 was drawn by hand on the
basis of only 27 calculated points, the calculation
having taken nearly three hours of computer time. A
weak anticyclonic cell near the coast 3t high positive
y does not show up on this coarse grid. Surface and
bottom pressure amplitudes are about the same as in
the previous case, a bottom pressure trough lying
offshore. Because the time-like coordinates of Egs.
(1) and (12) are oppositely directed, there is now no
cancellation, and the maximum transport is what one
calculates from Eq. (28), 72 streamfunction units, or
63 000 m?s™!.
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7. Discussion

The results of the above calculated examples show
that, under conditions prevailing in the Mid-Atlantic
Bight, the baroclinity-bottom slope interaction makes
a weak local contribution to mean circulation, justi-
fying the linearized approach. In the far field, the
transports shown in Fig. 5 correspond to maximum
velocities less than 0.5 cm s™!, an order of magnitude
smaller than the observed long-term mean velocity.
They point in the same direction as the long-term
mean flow.

Although the details of the flow calculated near the
source may not be fully realistic, the cross-isobath
transports have to be more or less accurate to satisfy
continuity. The values one may read off from Fig. 5
are of order 3 X 1072 m? s™!, corresponding to average
cross-isobath velocities of order 0.1 cm s™!, This is
much less than cross-isobath flow induced by mod-
erate wind stress.

There are several reasons for the weakness of the
induced circulation. One is the cancellation effect
mentioned above, brought about by an order-one
value of the parameter

2 _ o
BK°

When the flow is opposite to the time-like coordi-
nate of Eq. (12), cancellation does not occur, as seen
in Fig. 6. The perturbation velocities are then larger
by about a factor of 3 under otherwise identical
conditions.

A further contributing factor to small induced
transports in the Mid-Atlantic Bight is the smallness
of 8Sy. This results from the density compensation
in the applicable 7-S relationship. When cold and
fresh water is replaced by warm and saline slopewater,
the change in density is rather less than would be
due to freshening at constant temperature. The density
and pressure fields arising in response to coastal
freshening of waters are therefore of lesser amplitude
than they would be without the temperature compen-
sation effect, by about a factor of 2%.

SOURCE

420

FiG. 5. Streamlines for same case as in Fig. 3 (units of y;). Note
that inflow comes from the “forward” time-like direction along the
y-axis.
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It is interesting to reflect that in the absence of
temperature compensation, and without the cancel-
lation effect between the {; and ¢ fields, the calculated
perturbation velocities are comparable to the observed
mean velocities. Furthermore, on a shelf with weak
advection, ¥, becomes high, because the density
deficiency increases. Finally, on a steep (e.g., Pacific-
type) shelf ¢, is higher because the same density
gradients generate larger transports in deeper water,
provided of course that the assumptions of the theory
are satisfied, i.e., the water column is mixed to the
bottom. Thus, while the result of the above investi-
gation shows the freshwater inflow-induced contri-
bution to Mid-Atlantic Bight circulation to be insig-
nificant, it is also clear that this result is site-specific,
and that significant large-scale circulation might well
arise from land drainage in other locations. Even
along the east coast, the weak induced flow into river
plumes such as those of the St. Lawrence, Hudson,
or the Chesapeake, could be locally important. There
is some observational evidence supporting this con-
clusion (Boicourt, 1982).

The present model also throws further light on the
validity of dynamic height calculations in coastal
regions. The ¢ field gives dynamic heights relative to
the bottom (see, for example, the {; distribution over
the east coast shelf shown by Csanady, 1979) and
generally suggests a two-dimensional circulation pat-
tern. Geostrophic velocities associated with the ¢;-
field, however, do not give any hint of the inflow or
outflow induced by the {,-field, which is necessary to
satisfy continuity. On the east coast shelf the main
feature of the {)-field is the shelf-edge geostrophic
current associated with the front. Given that the front
is in some manner a product of upstream freshwater
sources, one may legitimately infer considerable cross-
isobath transport somewhere in an establishment
region of the shelf-edge geostrophic currrent. The
two-dimensional view of thermohaline circulation
one gains by postulating density contours to be
parallel to isobaths (e.g., Csanady, 1978) is presumably
a correct zero-order picture, but is certainly incom-
plete. With the freshwater sources located at the coast,
isopycnals must cross isobaths somewhere.

It was pointed out above that the total {,-deficiency
is conserved in the wake of a freshwater source [Eq.
(28) above]. As discussed elsewhere (Csanady, 1981),
the {,-field may be thought of as a cold spot spreading
out in the cross-isobath direction, proceeding toward
negative y, with the cross-shore scale increasing as
(—ry/fs)'?. The slope (dy/dx) of the streamlines is
proportional to (r/fs)/?> and becomes small over a
steep bottom, or large where f is small. At low
latitudes the approximations of the theory break
down, but while they remain valid, they suggest
steeper streamlines and larger transports (Eq. 28) as
f decreases. The one-way transport Y, for the same
qY could thus easily become an order of magnitude
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FI1G. 6. Streamlines for case of zero-order flow toward positive y.
Density field is as in Fig. 3, reflected about the x-axis. The incoming
baroclinic (perturbation) flow opposes the zero-order flow and
escapes toward negative y. Same units as in Fig. 3.

greater on a low-latitude shelf than in the Mid-
Atlantic Bight, without invalidating the theoretical
approach. The corresponding transport, and especially
the cross-isobath flow, would then certainly be of
practical significance.

The case of zero-order advection toward positive y
(backward direction of the parabolic equation for {)
is especially interesting. The freshwater inflow-induced
perturbation is in this case inherently more important,
as already pointed out, because inflow and outflow
do not cancel. The Hudson River plume has occa-
sionally been reported hugging the Long Island shore,
instead of the usual New Jersey shore. This is a case
corresponding to the illustration of Fig. 6 and should
result in more effective offshore transport of river
water.

The general principle emphasized by the above
results is that geostrophic transports associated with
the freshening of coastal waters are subject to conti-
nuity. In steady state, closed circulation patterns must
arise. Over a sloping shelf, and with bottom friction
dominant, streamlines are closed by extending the
flow pattern in the forward direction of the parabolic
{-equation. When other forces dominate, the flow
pattern will no doubt be different. It is always a
nontrivial question, however, where a baroclinic
coastal current comes from and where it goes to.
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