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We report on an attempt to find a counterexample to the statement that rank-one convexity does not
imply quasiconvexity in the case of 2x2 matrices. The failure of such attempt is a consequence of some

surprising computations.

1. Introduction

The main ingredient of the direct method of the Calculus of Variations for finding mini-
mizers of an integral functional of the form

I(u) = / o(Vu()) de,

where Q C RY is a smooth domain, and v : @ — R™ is a Lipschitz function, v € W*°(Q),
is the weak lower semicontinuity property

w; = win Wh(Q) implies / o(Vu(z))dx < liminf/ ©(Vu;(z)) de.
Q

Q J—00

This extremely convenient property is in turn always a consequence of some convexity
condition for the integrand ¢, which is a real-valued function defined on m x N matrices.
In the fully vector case N,m > 1 the quasiconvexity condition

1
APV < g [ olF+ Vuta) de (1)

for any matrix F and any test function w € W™ (Q) [10] is a necessary and sufficient
condition for the above weak lower semicontinuity property. We remind the reader that
an equivalent formulation for the quasiconvexity condition is

H(F) < / o(F + VU (2)) da,
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for any function U : T — IR™ which is periodic with respect to the lattice Z" and T
is the unit cube in RY [14]. Moreover, a slightly stronger version of the quasiconvexity
condition gives the partial regularity of minimizers of I (e.g. [1, 7]). These results show
that quasiconvexity is a very natural condition. However, it turns out that in general it
can be very difficult to decide whether a given function is quasiconvex. This difficulty is
related to the nonlocal nature of quasiconvexity [8].

Conditions which are either necessary or sufficient have been derived over the years.
Some of these developments have been crucial in nonlinear elasticity [2]. One such well-
known necessary condition is called rank-one convexity and it requires the usual convexity
inequality

p(tA+ (1 =1)B) <tp(A) + (1 = )p(B), 1€]0,1]

provided A — B is a matrix of rank-one. It is well-known and easy to see [6, 12] that
each quasiconvex function is rank-one convex. This paper is motivated by the open
problem of whether the opposite implication is true when N = m = 2. For N > 2
and m > 3 rank-one convexity does not imply quasiconvexity [9, 13]. We present here
a calculation showing that, in a situation related to the counterexample constructed in
[13] and when N = m = 2, rank-one convexity has much stronger consequences than
for m > 3. More specifically, we explicitly calculate the value at 0 of both the rank-one
convex and quasiconvex envelopes of a nontrivial function on 2 x 2 matrices. These two
values turn out to be the same. This function is again motivated by the counterexample
in [13]. Strictly speaking, the situation we consider here is more special since we will only
work on symmetric 2 X 2 matrices. As a corollary of our calculation, we get an inequality
which seems to be of independent interest.

In what follows, we will be using functions ¢ which can take on the value +00. We could
avoid this by introducing (in a natural way) the notion of quasiconvexity for functions
defined on selected subsets of m x N matrices. We feel that this would unnecessarily
complicate the terminology and that a better solution is to allow infinite-valued functions.
However, we must very strongly stress the following. From the point of view of the
convexity notions we consider in this paper, there is in general an important difference
between everywhere finite functions and the case where functions are allowed to take on
the value +oo (see [3]). In our case, the functions under consideration will be infinite in
the complement of convex, compact sets. It is not difficult to see that if a rank-one convex
(respectively, quasiconvex) function ¢ is infinite in a complement of a convex, compact
set of matrices, then ¢ is a pointwise limit of an increasing sequence of everywhere-finite,
rank-one convex (respectively, quasiconvex) functions. In this case, any nonquasiconvex
function which takes on the value 400 in the complement of a convex, compact set of
matrices automatically produces an everywhere finite, nonquasiconvex function. The idea
of the counterexample in [13] is to show that a suitable perturbation of the function

o(X) = zyz, if X =

n O R

0

g | with mas {Je] Jyl =} < 1.
z

@(X) =400, otherwise,

admits an everywhere-finite, rank-one, continuous extension to all of space of 3 x 2 ma-
trices. This extension (still denoted @) is not quasiconvex at the origin: the periodic
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deformation

Uz, 2q) = %(cos(%r:z:l),cos(27r:v2),sin(27r(:v1 + 23))), (z1,22) € T =(0,1)7

™

has gradient
—sin(27x,) 0
VU(zq,2q) = 0 — sin(27x,)
cos(2m(xq + x3)) cos(2m(zy + x3))

and by elementary trigonometry
/ S(VU(zy1,23)) dxy dzy = —1/4 < 0 = ¢(0).
T

As remarked earlier, the goal of this note is to point out some interesting facts we came
across when trying to extend this example to 2 x 2 matrices. There are essentially two
ways of looking for such counterexamples. One can fix a rank-one convex integrand,
@, and try to find a deformation that violates the quasiconvexity inequality, or one can
concentrate on a suitable, fixed deformation, VU, and look for a nonlinear, rank-one
convex quantity for which the quasiconvexity inequality does not hold. Since nontrivial,
explicit examples of rank-one convex functions are not abundant, one can reformulate the
above two approaches in terms of quasiconvex and rank-one convex hulls of functions.

Let us recall that the quasiconvexification at F' of a function ¢ is defined by
1
Qe(F) = inf @/ o(F + Vw(z)) dz, (1.2)
w Q

where w € WOI’OO(Q). This notion plays an important role in the analysis of variational
principles [6, 12]. The quasiconvexification can equivalently be defined via the formula

Qe(F) = ir[;f/ o(F + VU(z)) dz,

T

where the infimum is taken over the set of periodic test deformations U. It can also be
obtained by

Qe = sup {9 : ¢ is quasiconvex , 1 < @}. (1.3)
In the same way, the rank-one convexification, Ry, is defined via the equality
Ry = sup {¢ : ¢ is rank-one convex , ¢ < ¢}. (1.4)

It can also be described [5] in a more direct way by
Ro(F) = inf {Z Nip(A;)  {(Xi, Ai))} satisfies the (H,) condition ,
Z MA; = F is a convex combination} ) (1.5)

The (H,) condition is defined recursively. A set of pairs {();, A;)} is said to satisfy the
(H,) condition if
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(i) forn =2, A; — Ay is a rank-one matrix;

(ii) for n > 2 and after a change of order A,,_; — A, is a rank-one matrix and letting

lj’j:)\ja J<n—2,
Un—1 = )\n—l + /\na
Aja .7 S n — 27
1
Bn—l = (An—IAn—l + /\nAn) 5
Hn—1

the set of pairs {(u;, B;)} satisfies the (H,—_;) condition.

j =

Notice that Q¢ < Ry always because the (H,) conditions correspond to gradients or
sequences of gradients.

The first approach referred to above can be restated in the following terms: find a function
whose quasiconvexification at some matrix is strictly less than its rank-one convexification
at the same matrix. The second is equivalent to finding a continuous function ¢ such that
for a given matrix F' and a given deformation VU we have

Ry(F) > / Ro(VU(2)) da.

Q

The starting point of our computations is the function

x4+ z z

o(X)=ayz, ifX = ( . y+z> with max {[z[, [y|, [z} <1, (1.6)
¢(X) =400, otherwise.

Notice that ¢ is finite only for some symmetric matrices. We will always take F' = 0. In
Section 2, we will exactly compute Q¢(0). This calculation seems to be interesting in its
own right. As a consequence we will prove an interesting inequality. In Section 3, we will
compute Rp(0) and conclude that indeed Q¢(0) = Rp(0) so that the counterexample
cannot be found in this way. Finally, Section 4 focuses on the other approach where we
concentrate on the optimal periodic deformation, Vu, introduced in Section 2 for which

Qp(0) = / (V) d,

and look for a continuous, nonlinear quantity, 1, for which we could possibly have

RG(F) > / Ro(Vu(z)) da.

T

We again show that this is impossible.

2. The quasiconvexification

In this section we prove the following theorem.

Theorem 2.1. Let ¢ be the function defined by (1.6). Then
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To establish the lower bound for Q¢(0) we use the new examples of quasiconvex functions
found in [14]. Specifically, the function

det X, if X is symmetric and positive definite,
P(X) =<0, if X is symmetric but not positive definite,

+o0, if X 1s not symmetric,

is quasiconvex. Through the identification

X = (“Z ¢ )H(x,y,z), (2.1)

z Y+ z

172 1
%—gQ,Q7
3
Q(mayvz) - §¢(X + XO)

Notice that the right-hand side is a quasiconvex function of X. Let B be the cube [—1,1]%.

and for

consider the function

Lemma 2.2. For any (z,y,z) € B
q(z,y,2) < (z + 1)y + 1)(z +1).

Proof. Notice that under the identification (2.1) the rank-one cone restricted to B is
given by xy 4+ xz+ yz = 0. Let x denote the right-hand side of the inequality we want to
prove. The inequality follows in an elementary way after the next three remarks:

(i) ¢ is convex along the three coordinate directions; indeed, since ¢ is quasiconvex, it is
in particular rank-one convex; observe that the coordinate directions are rank-one
directions.

(ii)  x is linear along the three coordinate directions. This is trivial.

(ili) ¢ = x on the eight vertices of B. This is an elementary calculation.

Since any point in B can be decomposed along directions parallel to the axes ending up

on the vertices of B, the proof follows from (i), (ii) and (iii). O

If we now write
x=zyz+azy+axzt+yz+aer+y+z+1,

or for (z,y,z) € B
x=¢+1L,

where . = zy+ 2z +yz+x +y + 2z + 1, then we have obtained
q—L <.

This inequality is trivially true outside B as well if we consider ¢ — L to be defined by
+o0o outside B. We claim that this extension of ¢ — L is quasiconvex. Indeed, if we take a
deformation Vu that takes on values outside B then the quasiconvex inequality is trivially
true. If; on the other hand, Vu takes on all its values on B, we know that ¢ restricted to
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B is quasiconvex, and L is in fact a null-lagrangian when restricted to B because is the
sum of the determinant (zy + zz + yz is the determinant in B) plus a linear functional.
Since ¢ — L is quasiconvex, by (1.3) we have

_% = q(0,0,0) — L(0,0,0) < Q(0),

as desired.

In order to show the equality, we will consider the following periodic deformation U : T' —

R? defined by
Ulxy,xg) = (a(xy) + @(x1 + x2), 0(22) + @21 + 22)),

where f denotes the primitive of f

fo= [ s

and we take

where
0 = 2X(0,1/2) -1

in the unit interval 7, and extended periodically to all of IR. X(0,1/2) 18 the characteristic
function of the interval (0,1/2). We have that

u(;ﬁ) + w(:m + ;vg) w(;m + ;vg) ) 7

VU (1, 22) = ( w(zy + ) v(22) + w(zr + 1)

is symmetric, and an easy computation gives

[ o0 dr = L1, 11) % (1, =1, 1) 4 (=11, 1) ol -1, -1, 1)
+% [@(L L, _1) + 99<1’ -1, 1) + 99<_1’ L, 1) + 99<_1’ -1, _1>]
1
-l

Theorem 2.1 is proved.

We would like to show how the exact computation of the quasiconvex hull of our cubic
polynomial ¢ can be translated into an interesting inequality where we concern ourselves
with the best constant for which such an inequality holds. Let us consider the following
estimate

/TU(fcl)v(:v2)w($1 +a2) day ds| < Cllullpoo gy [Vl oo ry 0] 2oy (2.2)

where I = [0,1] is the unit interval, T = I x I is the unit cell in R?, u, v and w are
I-periodic functions with mean value 0 over a period cell, and ' > 0 is some constant.
Obviously, taking C' = 1, (2.2) is correct for any choice of u, v and w. The question is
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to determine the smallest constant C' in (2.2) valid for any choice of u, v and w under
the prescribed conditions. We will see that this question is closely related to determining
the quasiconvexification of ¢ at the origin which we have already done. The best C' is
actually 1/2:

1
/U(ml)v(ﬂfz)w(ﬂh + o) deydey| < Slullpe gy [0l 0l ey » (2:3)
T

for any u, v and w [-periodic, with mean value 0.

Let us explain how the connection of (2.2) with the quasiconvexification of ¢ at the origin
is established. By dividing (2.2) by the L* norms of u, v and w, we may assume in
addition that the three functions are indeed bounded by 1. On the other hand, since
the restrictions on u, v and w are preserved by changes in sign, we are in search of the
minimum value, m, of the integrals

/Tu(ml)v(xz)w(xl + z3) dzy dxs. (2.4)

Consider the periodic deformation U/ : T' — IR? defined by
U(.’L’l, .'L'Q) = (&(.Ll> + L;)(.Ll + .'L'Q),??(.rg) + ’J)(l’l + 35'2)), (25)
where again f represents the primitive of f. As before, we have that

_ u(l‘l) + w(ml + xg) w(xl + xg)
VU(x1,72) = < w(zy + 2) v(xg) + w(z + Jjg)) ’

is symmetric, and clearly (2.4) is written

/T o(VU(2)) de.

In this fashion we see that Qg(0) < m. Since we know that Q(0) = —1/2, then (2.3)
holds. The fact that (2.3) is sharp is shown by considering again the optimal deformation

u=v=40, w=0(-+1/4),
where

0 =2x@1/9 — L.

3. The rank-one convexification

In this section, we prove that Rp(0) = —1/2 as well.
Theorem 3.1. Let ¢ be the function defined by (1.6). Then

Re(0) = .
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On the one hand, the quasiconvexification at a particular matrix is always a lower bound
for the rank-one convexification, so that —1/2 = Q¢(0) < Re(0). On the other hand,
since Ryp(0) is obtained in (1.5) as an infimum, it suffices to find some set of pairs {(A;, 4;)}
satisfying the (H,,) condition for which

Z Xig(A

These computations are inspired by [11].

For the sake of simplicity, we are going to stick to the identification (2.1), so that rank-one
directions are given by the vectors (z,y, z) such that zy + 2z + yz = 0. We claim that
the set of pairs

(126 (—1,1 1)) (116 (1,1 1)) ; (%,(1,1,—1))} (3.1)

satisfies some (H,) condition. To convince the reader of this assertion, let us consider the
following set of points in the cube B

Py =1(0,0,0), P =(=1/2,1,1),

P, = (1/10,-1/5,-1/5), P; :( —5/7,1),
Py = (—=1/11,—1/11,-5/11), = (1,1,-1),
Ps=(-1,-1,0), P;= ( 1 ~1,1),
Ps=(—1,-1,-1).

The following facts can be verified after some careful computations:
(i) Pj; — Pj_; are rank-one directions for j = 2,4, 6, 8;

(i1)

1 5 21 99
P0:6P1+6P2, PQ:EPB—{_mP%

5 6 1 1
T 5+11 65 6= 3 7+2 85

1
Py = 2(1, S+ S,

7

If we begin with Fy and decompose

1 )
PO:EP]—I_EPQ’ PQ—P] rank—one,
and then substitute P, by
21 99
P=—DP + —PF,, P, — Ps rank-one,

120 120
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and so on according to the decompositions in (ii) above until all points involved are
vertices of B, then we prove that the set of pairs (3.1) truly satisfies some (H,) condition.
Then,

3 2
< (=1 -1 — (-1 — - _
2 1 5
—op(—1,1.1 —op(1,1,1 —op(1,1,—1
+16‘P( 1y )+ ]699( 1y )+ 16‘/9( s b )
. 1

This finishes the proof of Theorem 3.1.

4. The optimal deformation

In this final section, we investigate the possibility of fixing an appropriate periodic defor-
mation, VU, and then looking for a suitable continuous function, ¥ such that

Ry (0) > / Ro(VU(z)) da. (4.1)

T

The first step 1s to choose a good candidate for having such an inequality. The choice
we tried is the optimal deformation in the computation of the quasiconvexification of the
cubic polynomial ¢, that is to say the deformation U such that

1
/ ¢(VU('I)) de = E [¢(17 17 1) + ¢(17 _17 _1) + ¢(_17 17 _1> + ¢(_17 _17 1)]
T
3
+E [2/)(17 1a _1> + 1/5(17 _17 1) + 77Z)<_1a 17 1) + ¢<_17 _17 _1>]

1

5
Is it possible to find a continuous function on the cube B such that (2.2) holds? The
answer is once again negative. This has been shown in [11]. As a matter of fact, if we
consider the probability measure v supported on the set of vertices of the cube

1
v = E [5(171’1) + 5(1’_1,—1) + 5(—1,1,—1) + 5(_17_171)]
3
then
1 4 1 + 1
V= —U — U %
3 1 3 2 3 3

where vy is the probability measure verifying some (H,,) condition introduced in Section 3

3 3 2
v = ﬁ5(—1,—1,—1) + ﬁ5(-1,_1,1) + E(S(L‘l’l)
2 1 5
+E5(_]’1’1) + E(S(]’m) + E(S(LL—])’
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and vy and v3 are obtained from vy by symmetry:

3

Vy = 16 (5(—17—1*_1) + 5(_1’1’_1))

2
6 (5(—1,1,1) + 5(1,1,—1))

1
16

_|_

+ (5(1,1,1) + 55(1,—1,1)) )

3
vy = 6 (5(—1,—1,—1) + 5(1,—1,—1))

2

+E (5(1,1,—1) + 5(1,—1,1))
1

+E (8(1,1,1) + 58(<1,1,1)) -

Thus, v; and v3, and consequently v itself, satisfy some (H,) condition. This implies that
for a rank-one convex function, Ry, we always have

Ri0) < (Rbv) = [ RO(VU()) da,

against (4.1).
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