
SOUNDNESS AND COMPLETENESS OF FORMAL LOGICS OF SYMMETRIC

ENCRYPTION

Gergei Bana

A DISSERTATION

in

Mathematics

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2005

Andre Scedrov, Supervisor of Dissertation

David Harbater, Graduate Group Chairperson

COPYRIGHT

Gergei Bana

2005

Acknowledgements

I would like to thank Andre Scedrov for his tremendous support as a thesis advisor, and also for

introducing me to the subject and to the information security and cryptography community. I

would also like to thank Pedro Adão from the University of Lisbon for the great hours of research

we spent on the subject, and for reading the manuscript and providing valuable suggestions.

Finally, many thanks are due to Richard V. Kadison for the lunches, and for all that I learned

from him in math and in life matters as well.

During the work on this thesis I was supported by ONR CIP/SW URI “Software Quality and

Infrastructure Protection for Diffuse Computing” through ONR Grant N00014-01-1-0795, with

additional support by NSF Grant CCR-0098096.

iii

ABSTRACT

SOUNDNESS AND COMPLETENESS OF FORMAL LOGICS OF SYMMETRIC

ENCRYPTION

Gergei Bana

Supervisor: Andre Scedrov

In the last two decades, two major directions in cryptography have developed: formal and com-

putational. The formal approach uses simple, manageable formal languages to describe crypto-

graphic protocols; this approach is amenable to automatization, suitable for computer tools, but

its accuracy is often unclear. The computational approach is harder to handle mathematically,

involves probability theory and considers limits in computing power; proofs are done by hand,

but it is more accurate, hence widely accepted.

Much effort has been made to bridge the gap between the two approaches, including the work

of Martin Abadi and Philip Rogaway who considered a formal logic of symmetric encryption and

its interpretations in cryptosystems based on computational complexity. The Abadi-Rogaway

setting has three important ingredients: a formal language along with an equivalence notion of

formal expressions, a computational cryptosystem with the notion of computational equivalence

of ensembles of random distributions, and an interpreting function that assigns to each formal

expression an ensemble of distributions. We say that the interpretation satisfies soundness if

equivalence of formal expressions implies computational equivalence of their interpretations, and

satisfies completeness if computational equivalence of the interpretations requires equivalence of

the expressions.

We consider expansions of the Abadi-Rogaway logic of indistinguishability of formal crypto-

graphic expressions. The formal language of this logic uses a box as notation for indecipherable

strings, through which formal equivalence is defined. We expand the logic by considering differ-

ent kinds of boxes corresponding to equivalence classes of formal ciphers. We consider not only

computational, but also purely probabilistic, information-theoretic interpretations. We present

a general, systematic treatment of the expansions of the logic for symmetric encryption. We

establish general soundness and completeness theorems for the interpretations. We also present

applications to specific settings not covered in earlier works: a purely probabilistic one that in-

iv

terprets formal expressions in One-Time Pad, and computational settings of the so-called type 2

(which-key revealing) cryptosystems based on computational complexity.

v

Contents

Acknowledgements iii

Abstract iv

Contents vi

Introduction 1

1 Three Views of Cryptography 8

1.1 The Abadi-Rogaway Formal Language . 9

1.1.1 The Formal Model for Messages: Expressions 9

1.1.2 What a formal adversary cannot distinguish: Equivalence 11

1.1.3 Expansions of the Abadi-Rogaway Formal Language 16

1.1.4 Proper Equivalence of Ciphers . 21

1.2 Computational Framework of Cryptographic Schemes 26

1.2.1 Symmetric Encryption Schemes . 26

1.2.2 Levels of Security . 29

1.2.3 Hiding η . 31

1.3 An Information-Theoretic Treatment . 32

1.3.1 One-Time Pad . 33

1.4 A General Probabilistic Framework For Symmetric Encryption 35

2 Interpretations and Soundness 39

2.1 Computational Interpretation of Formal Expressions 40

vi

2.2 Soundness for Type-2 Encryption Scheme . 44

2.3 Interpretation of Expressions for One-Time Pad 52

2.4 Soundness for One-Time Pad . 55

2.5 Interpretation and Soundness in General . 59

2.5.1 Interpretation . 59

2.5.2 Soundness . 61

3 Completeness 66

3.1 Parsing Process . 67

3.2 Completeness . 85

3.2.1 Completeness of Type-2 Encryption Schemes 85

3.2.2 Completeness for One-Time Pad . 91

3.2.3 General Case . 92

Conclusion 100

Bibliography 101

vii

Introduction

Designing and verifying security protocols are complex problems; certain level of idealization is

needed in order to provide manageable mathematical treatment of the protocols and the notion

of security. Idealizations necessarily omit some properties of the real system, which might lead

to leaks in the security. Even if the protocols themselves are quite simple – which is often

the case –, the security properties that they are supposed to achieve might be rather subtle,

hard to formulate, and checking whether they really achieve them may be an almost impossible

task. Difficulties typically arise from subtleties of the cryptographic primitives themselves or

while combining them; security protocols are required to work properly when multiple instances

are carried out in parallel, in which case a malicious intruder may combine data from separate

sessions in order to confuse honest participants.

A number of methods, and different levels of idealizations are used for analyzing security

protocols, the two main being a highly abstract treatment with the help of formal logic, and a

more detailed description using complexity and probability theory. In the former, cryptographic

operations are modeled as functions on a space of symbolic (formal) expressions and their security

properties are also treated formally. Examples are [1, 9, 15, 28, 27, 31, 43, 18, 41, 13, 16]. In

the latter, cryptographic operations act on strings of bits, and their security properties are

defined in terms of probability and computational complexity. Examples for this treatment are

[7, 20, 22, 21, 53, 8]. The first approach has been labeled in the literature as formal view, whereas

the second as computational view.

The computational view gives a more detailed description of cryptographic operations, taking

limited computing power into account; probability plays an important role as well. “Good pro-

tocols are those in which adversaries cannot do something bad too often and efficiently enough”

1

[3]. Keys, plaintexts, ciphers are all strings of bits, encryption, decryption and adversaries are

all probabilistic algorithms, and a mathematically well-defined notion of computability in poly-

nomial time is imposed on all these algorithms. This view originates from the work of Blum,

Goldwasser, Micali and Yao in [8, 53, 21]. A major achievement of this approach has been

that common notions of security such as secrecy, authentication, etc. were given mathematically

precise definition, hence clarifying them and making them amenable to mathematical analysis.

On the other hand, the detailed and less structured nature of this view makes analyzing more

complex protocols a very hard task, which calls for a higher level, more abstract treatment.

Formal methods were first introduced in the works of Dolev, Yao, DeMillo, Lynch, Merritt,

Millen, Clark, Freedman, Kemmerer, Burrows, Abadi, and Needham, and Meadows in [13, 15, 41,

9, 27, 37], with many different approaches and techniques. The main formal approaches include

specialized logics such as BAN logic, [9, 17], special-purpose tools designed for security protocol

analysis, [28], theorem-proving [46, 45] and model-checking methods using several general purpose

tools described in [31, 38, 43, 49, 50]; multiset rewriting framework and strand spaces framework

[12, 18, 16]. Although these methods differ significantly some ways, many of them rely on the

same basic assumptions about how an adversary may interact with the protocol. In the common

model, largely derived from [14] and suggestions found in [44], a protocol adversary is allowed

to choose among possible actions nondeterministically, but the set of messages he may use to

interfere with a protocol must be restricted severely. So, although the idealized assumptions

make protocol analysis tractable, they also make it possible to “verify” protocols that are in fact

susceptible to simple attacks that lie outside the adversary model. It is therefore necessary to

establish criteria about the limitations and applicability of formal methods. It is hoped that

clarifying the relationship between the formal and the computational views will lead to a better

understanding of this problem.

There have been several research efforts recently to relate the highly idealized formal model

of cryptographic techniques and the computational one based on probabilistic polynomial-time

computability, including [3, 2, 40, 29, 4, 6, 5, 11, 10, 30, 42, 32, 47, 48, 24]. These efforts are

developing rigorous mathematical treatment of the relationship between the two models. It is

hoped that they will eventually lead to a new generation of “high fidelity” automated tools for

security analysis, which will be able to express and implement the methods and concepts of

2

modern cryptography.

Before we go into the details of the relationship of the two model, we discuss a third model as

well. This is called information-theoretic view. While computational security of a cryptographic

system relies on the computational infeasibility of breaking it, information-theoretic security

requires the system to be theoretically unbreakable. This latter condition of course is stronger,

and it does not rely on the assumption of computational security (namely that there are problems

which are “hard” to solve which has not been proved yet). The origins of this approach go back

to the very foundations of cryptography as a science, namely, to Shannon’s 1949 paper on the

communication theory of secrecy systems [52], which was a companion paper to [51], where he laid

the foundations of information theory. However, Shannon’s proof that perfect secrecy requires a

secret key of at least the length of the plaintext is often considered as an evidence that perfect

security can never be practical. But, recent research shows (see e.g. [35, 33, 19, 36, 34]), that

there are possibilities for usful applications of information-theory in cryptography. Therefore,

in this work, we also explore information-theoretic interpretations of the formal cryptographic

expressions.

Previous Work

The original approach of Abadi and Rogaway in [3], of which in this thesis we attempt to give

a fairly complete analysis, uses a simple formal structure by building messages from formal

keys and bits via repeated pairing and encrypting, constructing a set of formal expressions this

way. These formal expressions are then interpreted in a computational framework of symmetric

encryptions. Via this interpretation, an ensemble of probability distributions (parametrized by

a security parameter) on the set of finite bit strings is assigned to each formal expression. In

each of the formal and the computational view, a notion of equivalence expresses security. In the

formal view, equivalence of formal expressions are defined; in the computational, equivalence of

ensembles of probability distributions. The question is, what happens to the equivalence through

the interpretation. If it is true that equivalence of any two formal expressions imply computational

equivalence of their interpretations, then we say soundness holds. If the other direction is true,

namely, when computational equivalence of the interpretations of any two formal expressions

implies that the formal expressions are equivalent too, we then say that completeness holds.

3

Soundness of their formal logic and its interpretation was proved by Abadi and Rogaway in

[3] for the case when the computational encryption scheme in which the formal expressions are

interpreted is so-called type-0, which essentially means that no partial information is revealed

about the encrypted plaintext and the encrypting keys (hence it is impossible to detect when the

encrypting keys or the plaintext is repeated). A little later, in [39], Micciancio and Warinschi

showed completeness for this same situation, but requiring also something they called “confusion

freeness” of an encryption scheme, which requirement ensures that decrypting with the wrong

key be detectable. In this same paper, the authors also indicated how to expand the Abadi-

Rogaway formalism when length of the plaintext might be revealed. The condition of confusion

freeness was relaxed along with a new completeness proof method by Horvitz and Gligor in [26]

replacing confusion freeness with “weak confusion freeness”. Extensions of the method includes

[40] of Micciancio and Warinschi, where they considered public-key encryption, Laud and Corin’s

[29] for composite keys, the works of Herzog, Liskov and Micali [25, 24] for plaintext-aware

cryptosystems, etc. The connection between symbolic and information-theoretic view was also

explored in [23] by Guttman, Thayer and Zuck.

Our Work

We consider the original approach of Abadi and Rogaway, and provide a more complete, more

general, and systematic treatment of it, hoping that it will serve as inspiration for dealing with

more complex formal cryptographic languages and their interpretations in similar generality.

Our work extends applicability of the AR language in two directions, which are then orga-

nized under a single formalism. On one hand, besides interpretations in computational frame-

works, we also consider interpretations for purely probabilistic, information-theoretic encryption

schemes. On the other hand, by expanding the AR language without changing its basic frame-

work, we show how to adjust the formal notion of equivalence in order to maintain soundness

and completeness when the encryption scheme that hosts the interpretation (computational of

information-theoretic) is such that it leaks partial information.

In order to extend the applicability of the AR language, we change the notion of their for-

mal equivalence The language of the Abadi-Rogaway logic uses a box as formal notation for

undecryptable expressions, and equivalence of formal expressions (which expresses the notion of

4

security) is defined with the help of this box. In the expanded formalism that we adopt, different

kinds of boxes are allowed, which - loosely speaking - correspond to different kinds of undecrypt-

able expressions. (This idea is not new, Micciancio and Warinschi already used it in [39] to give a

treatment of encryption schemes that reveal the length of the plaintext.) We establish soundness

and completeness for two specific interpretations. We also give an abstract treatment about how

to handle the different boxes in general, and general soundness and completeness theorems are

also established.

The specific interpretations that are discussed in detail are the following: an information-

theoretic one that interprets formal expressions in One-Time Pad, and another one in the so-

called type-2 (which-key revealing) cryptosystems based on computational complexity. These

two examples shed light on the expansions of the AR logic and on he interpretations from two

different angles, and they prepare us for the general treatment.

The name type-2 cryptosystem stands for an encryption scheme that might reveal when the

same key is used to encrypt twice. We first show soundness of the Abadi-Rogaway interpretation

for an expanded logic that includes a separate box for each key in this case. We also show

completeness of this such expanded logic for weakly confusion-free, strictly which-key revealing

cryptosystems. By “strictly which-key revealing”, we mean that there exists a probabilistic

polynomial-time adversary that can distinguish two pairs of oracles, one always encrypting with

the same key and the other encrypting with different keys. For completeness, we also assume that

decryption with the wrong key is computationally distinguishable from the correct decryption;

this is what Horvitz and Gligor called “weak confusion-freeness” in [26].

In the case of One-Time Pad (One-Time Pad means that for a plaintext of a given length, a key

of the same length is generated uniformly, and XOR’ed with the plaintext), a natural expansion

of the Abadi-Rogaway logic involves boxes indexed by the length of the encrypted message (and

the matching length of the encrypting key; a formal length-function is introduced). On one hand,

we define the formal equivalence of expressions with the help of such boxes. On the other hand,

we postulate One-Time-Pad realizations of two formal expressions to be equivalent, if and only if

their probability distributions are identical. We show both soundness and completeness for this

interpretation, with a specific implementation of the OTP.

In the general treatment, we index the boxes with equivalence classes of formal ciphers, where

5

the equivalence relation expresses the inability of an adversary to distinguish between ciphers.

This equivalence relation must be chosen keeping in mind the security level of the encryption

scheme that will host the interpretation. For example, in case of One-Time Pad, since the

cryptosystem reveals length, this equivalence relation will corresponds to “same length” of formal

ciphers. When we interpret the formal expressions in type-2 cryptosystems, then the equivalence

relation will render ciphers encrypted with the same key equivalent. If the scheme reveals both

key and length, the the equivalence relation has to be defined on formal ciphers so that equivalence

holds iff two ciphers have the same lengths and are encrypted with the same key, and so on.

A general probabilistic framework is also introduced which contains computational and purely

probabilistic treatments as special cases. The advantage of this is that there is no need to

formulate general statements twice when they are true for both computational and information-

theoretic models. In the literature, when computational complexity is considered, probability

distributions are indexed with the security parameter, so ensembles of distributions are dealt

with; in information-theoretic models, there is no notion of security parameter, and therefore, no

ensembles of distributions, only single distributions are handled. To overcome this discrepancy,

we show how to “hide” the security parameter, and so to deal with only single distributions in

the computational view as well.

Finally, we prove a general soundness and a general completeness theorem. These theorems

essentially claim that if soundness or completeness holds for a certain subset of the formal ex-

pressions, then soundness or completeness is valid for all expressions. As it is expectable, it is

necessary to assume soundness for a greater subset of subexpressions than for completeness in

order to derive the theorems. The reason is that the probabilistic view is a much more detailed

description: Indistinguishability of distributions of two n-tuples of random variables does not

follow from the fact that each two corresponding pairs in the n-tuples are indistinguishable (not

even if they are all identical); whereas, equivalence of two n-tuples of formal expressions can be

built up from pairwise equivalence.

Layout

The dissertation is structured the following way: In section 1.1 we review first the formal language

of Abadi and Rogaway, how formal expressions are built, and how their equivalence is defined;

6

then, we introduce an abstract treatment of the expansions, and prove a few propositions about

the notions we introduce there. These propositions are essential for the general soundness and

completeness results.

In section 1.2, we review the definition of symmetric encryption schemes and their security

in the computational framework, and in subsection 1.2.3, we explain how to hide eta and make

the computational formalism compatible with the information-theoretic one. In section 1.3, we

present a specific implementation of the One-Time Pad, and in 1.4, we show how to handle

computational and information-theoretic encryption schemes together. The first four sections

of chapter 2 are devoted to the interpretations and soundness theorems for type-2 encryptions

and for the One-Time Pad. In subsection 2.2, besides proving soundness for type-2 systems, we

also present a detailed example showing the major steps of the proof. Section 2.5, is devoted to

the general interpretation, and the general soundness theorem, together with examples, such as

type-3 cryptosystems.

Chapter 3 is devoted to our completeness results. First we need to formalize mathematically

the process of decrypting everything that is possible in a sample from the interpretation of a

formal expression. This is done in section 3.1, and section 3.2 is the one with the completeness

theorems for type-2 schemes, One-Time Pad, and the general case. Again, there is an elaborate

concrete example both in section 3.1 and section 3.2 following through all the steps of the theorems

there.

7

Chapter 1

Three Views of Cryptography

8

1.1 The Abadi-Rogaway Formal Language

1.1.1 The Formal Model for Messages: Expressions

Abadi and Rogaway introduced a simple formal language to model symmetric cryptographic

protocols. Although this language is too simple to describe realistic situations, it is very suitable

to isolate the subtleties of the relationship between the formal and the computational treatments

of cryptography. In this formal setting, a set of expressions correspond to the messages that

are transmitted during a cryptographic protocol. Encryption operates on the set of expressions,

resulting new expressions. All expressions are built from keys and blocks of bits via pairing and

encryption. Accordingly, the formal definition of expressions is the following.

Definition 1.1 (Expression). Let Keys be a discrete set of symbols, namely,

Keys := {K1,K2,K3, ...}.

Let Blocks be a nonempty subset of finite bit-strings:

Blocks ⊆ {0, 1}∗.

We define the set of expressions, Exp, by the grammar:

M,N ::= expressions

K key (for K ∈ Keys)

B block (for B ∈ Blocks)

(M,N) pair

{M}K encryption (for K ∈ Keys)

The set of expressions are denoted by Exp. We will denote by Keys(M) the set of all keys

occurring in M . Let Ciphers denote the set of all encryptions.

The set Blocks is to model a fixed set of strings of messages, whereas Keys stands for the

encrypting keys, which are usually random variables in reality. But, we emphasize, that in the

9

formal view, these sets are purely sets of symbols. An example of an expression looks like

Example 1.2.

M =

((
{0}K6 , {{K7}K1}K4

)
,

((
K2,

{
({001}K3 , {K6}K5)

}
K5

)
, {K5}K2

))
,

It is of course not necessary to use the first 7 keys, we could have used others. In our case,

Keys(M) = {K1,K2,K3,K4,K5,K6,K7}.

Expressions are unambiguous, i.e., (M,N) = (M ′, N ′) means that M = M ′ and N = N ′,

and {M}K = {M ′}K′ means M = M ′ and K = K ′.

We will also need the notion of subexpression defined as follows:

Definition 1.3 (Sub-Expression). We define the set of sub-expressions of an expression M ,

sub(M), inductively as follows:

sub(K) = {K}, for K ∈ Keys;

sub(B) = {B}, for B ∈ Blocks;

sub((M,N)) = sub(M) ∪ sub(N) ∪ {(M,N)};

sub({M}K) = sub(M) ∪ {{M}K}.

We say that N is a sub-expression of M , and denote by N vM , if N ∈ sub(M).

In order to be able to formulate statements about expressions conveniently, we will need some

more terminology, such as:

Definition 1.4 (Encrypted Expressions, Cyclic Set of Keys). We say that a key K

encrypts an expression N in M if there is an expression N ′, such that N is a subexpression of N ′

and {N ′}K is a subexpression of M . For an expression M , we say that a subset S of Keys(M) is

cyclic in M if there exists L1, ..., Ln ∈ S such that Li+1 encrypts Li (1 ≤ i < n), and L1 encrypts

Ln, in M .

10

Cyclicity of Keys(M) can lead to serious difficulties in practice, and it is better to avoid them.

Nevertheless, we try to reduce our conditions on cyclicity to the minimal, and in our theorems

we will always indicate the cyclicity condition that is needed for the theorem to be true.

The problem of cyclicity suggests that it might be useful to restrict our attention to valid

expressions ExpV , which is a subset of Exp defined by some set of restricting rules (like cyclicity

is excluded).

Definition 1.5 (Valid Expressions, Valid Ciphers). A set of valid expressions is a subset

ExpV of Exp such that

(i) all keys and all blocks are contained in ExpV ,

(ii) If M ∈ ExpV then all subexpressions of M are in ExpV , and any number of pairs of

these subexpressions are in ExpV . Given a set of valid expressions, the set of valid ciphers is

CiphersV := Ciphers ∩ExpV .

1.1.2 What a formal adversary cannot distinguish: Equivalence

We continue the presentation of the Abadi-Rogaway logic by introducing the notion of equivalence

of two expressions, which is meant to capture an adversary’s incapability of distinguishing parts

of expressions.

When an adversary looks at an expression built up from keys and blocks, he can see those

keys that are not encrypted. With the help of these unencrypted keys, he can decrypt those

messages that were encrypted by these keys, but he is unable to decrypt anything else. That is,

when the adversary sees the message ({0}K10 ,K5), he cannot see what is inside the encrypted

part, because K10 is not revealed, only K5. On the other hand, if he sees ({0}K10 ,K10), then

he can decrypt the encryption, and hence see that there is a 0 inside. In our previous example,

an adversary can see K2, and with the help of that he can decrypt the last encryption (counting

from left), hence revealing K5; with the help of K5, he can then reveal K6, and see that the

first encryption (from the left) contains 0. But, he cannot recover K3 and K4, and therefore, he

cannot decrypt the parts that were encrypted with these keys.

Accordingly, we see that we need the notion of recoverable keys, those keys that can be

extracted from an expression via a succession of descriptions. For the precise definition, we need

11

first a key recovering function R : Exp×2Keys → 2Keys, which, to a pair (M,S) of an expression

M and a set of keys S, assigns that set of keys, which is the union of S and the keys that are

recoverable from M with the help of the keys in S:

R(K, S) := S ∪ {K}, for K ∈ Keys;

R(B,S) := S, for B ∈ Blocks;

R((M,N), S) := R(M,S) ∪R(N,S);

R({M}K , S) :=

 S , if K /∈ S

R(M,S) , otherwise.

With the help of this function, given an expression M , we can define a succession of sets of keys,

Ki(M), (i = 0, 1, 2, ..) by

K0(M) = ∅;

Ki(M) = R(M,Ki−1(M)).

Clearly,

K0(M) ⊆ K1(M) ⊆ K2(M) ⊆ ...,

and, since an expression has finite length, there is an n natural, such that

Kn(M) = Kn+1(M) = Kn+2(M) = ...

Then,

Definition 1.6 (Recoverable Keys).

R-Keys(M) :=
⋃
i

Ki(M).

Definition 1.7. For an expression M , let

B-Keys(M) =

K ∈ Keys(M)

∣∣∣∣∣∣∣
There is an M ′ expression such that {M ′}K vM ,

and no unrecoverable key encrypts {M ′}K in M

 .

12

We are now in a position to consider equivalence of expressions. Again, equivalence is sup-

posed to express that two expressions look the same from an adversary’s point of view. In the

formalism that Abadi and Rogaway considered, to an adversary, all undecryptable encryptions

look the same, therefore, equivalence is formulated via replacing undecryptable parts of a mes-

sage by a box �. The formula that we obtain this way is called a pattern. Here is the formal

definition:

Definition 1.8 (Pattern). We define the set of patterns, Pat0, by the grammar:

P,Q ::= patterns

K key (for K ∈ Keys)

B block (for B ∈ Blocks)

(P,Q) pair

{P}K encryption (for K ∈ Keys)

� undecryptable

We use the notation Pat0, because later we will define patterns that may contain more kinds

of boxes.

We now define the function patt0, which, given a set S ⊆ Keys, creates a pattern from an

expression by replacing all encryptions that cannot be decrypted by the keys in S by a box:

Definition 1.9. Let S ⊆ Keys. We define the function patt0 : Exp×2Keys → Pat0 inductively:

patt0(K, S) = K, for K ∈ Keys

patt0(B,S) = B, for B ∈ Blocks

patt0
(
(M,N), S

)
=
(
patt0(M,S), patt0(N,S)

)
patt0

(
{M}K , S

)
=

 {patt0(M,S)}K for K ∈ S

� for K /∈ S

13

Finally, the pattern of an expression is defined as

Definition 1.10 (The Pattern of an Expression). For and expression M , let pattern0(M),

be defined as

pattern0(M) = patt0(M,R-Keys(M)).

This exactly means that all encryptions in M that cannot be decrypted with keys recoverable

from M itself, are replaced with a box.

Example 1.11. Continuing our example

M =

((
{0}K6 , {{K7}K1}K4

)
,

((
K2,

{
({001}K3 , {K6}K5)

}
K5

)
, {K5}K2

))
,

The set of recoverable keys are

R-Keys(M) = {K2,K5,K6},

and the pattern of M is

pattern0(M) =

((
{0}K6 , �

)
,

((
K2,

{
(� , {K6}K5)

}
K5

)
, {K5}K2

))
.

Now we are ready to define equivalence of two expressions, following the route taken by Abadi

and Rogaway. In their treatment, elements in Keys model randomly generated keys that have

the same distribution. That is, they all model the same key-generation algorithm. Therefore,

replacing a key with another in an expression (each occurrence must be replaced), should result

in an equivalent expression.

Definition 1.12 (Key-Renaming Function). A bijection σ : Keys → Keys is called key-

renaming function. For any expression (or pattern) M , Mσ denotes the expression (or pattern)

obtained from M by replacing all keys K in M by σ(K).

14

Definition 1.13 (Equivalence of Expressions). We say that two expressions M and N are

equivalent (with respect to pattern0), and denote it by

M ∼=0 N,

if there is a key-renaming σ such that

pattern0(M)σ = pattern0(N).

Example 1.14. Taking M to be the same as in our previous example, let

N =

((
{0}K8 , {100}K1

)
,

((
K7,

{
({0101}K9 , {K8}K5)

}
K5

)
, {K5}K7

))
.

Then

R-Keys(N) = {K5,K7,K8},

and the pattern of N is

pattern0(N) =

((
{0}K8 , �

)
,

((
K7,

{
(� , {K8}K5)

}
K5

)
, {K5}K7

))
.

Since, with the changes K2 → K7, K5 → K5 and K6 → K8, the pattern of M turns into the

pattern of N , M and N are equivalent.

On the other hand, for

N ′ =

((
{0}K8 , {100}K1

)
,

((
K7,

{
({0101}K9 , {K8}K5)

}
K7

)
, {K5}K7

))
,

we have that

pattern0(N
′) =

((
{0}K8 , �

)
,

((
K7,

{
(� , {K8}K5)

}
K7

)
, {K5}K7

))
,

and therefore M and N ′ are not equivalent, because there is no bijection on the keys that transfers

15

the pattern of M into the pattern of N ′.

1.1.3 Expansions of the Abadi-Rogaway Formal Language

The equivalence of expressions as it was defined in the previous section is suitable for a situation

when the formal language models protocols where an adversary cannot distinguish between any

two encryptions with unknown encrypting keys. This, however, may not always be the case. For

example, if, an adversary can detect whether two encryptions used the same keys or used different

ones, then we cannot simply replace all encryptions with a single box, we need to differentiate

the boxes according to the keys that were used for the encryption.

Another immediate concern is that a single key generation algorithm may not be enough,

and we have to group the set of keys according to what kind of key generation processes they

represent. For example, as we will see for the case of One-Time Pad, the length of the key needs

to be matched with the length of the encrypted plaintext. Naturally, when equivalence is defined,

in this case the key-renaming function σ should only be allowed to shuffle keys within the same

group.

We therefore can expand the logic of Abadi and Rogaway in the following way: Let ExpV be

a subset of valid expressions of Exp. We assume that an equivalence relation ≡K is given on the

set of keys. For simplicity, we also assume, that each equivalence class contains infinitely many

keys. Let

QKeys := Keys
/
≡K .

Example 1.15. We will later see, that the formal language we have to use for One-Time Pad,

includes a length-function l : Keys → {4, 5, ...} on the keys (and ultimately on all valid expres-

sions). Two keys there will be equivalent under ≡K if and only if they have the same length.

We have to modify then the notion of key-renaming function, because keys should only be

allowed to be renamed by other keys of the same sort. Therefore,

Definition 1.16 (Key-Renaming Function Relative to QKeys). A bijection σ : Keys →

Keys is called key-renaming function, if σ(K) ≡K K for all K ∈ Keys. For any expression M ,

16

Mσ denotes the expression obtained by changing all keys in M to their images via σ.

We now restrict the definition of valid expression, because we want to require that M is valid

if and only if Mσ is valid:

Definition 1.17 (Valid Expressions, Valid Ciphers). A set of valid expressions is a subset

ExpV of Exp such that

(i) all keys and all blocks are contained in ExpV ,

(ii) if M ∈ ExpV then all subexpressions of M are in ExpV , and any number of pairs of these

subexpressions are in ExpV ,

(iii) for any σ key-renaming function relative to QKeys, M ∈ ExpV if and only if Mσ ∈ ExpV .

Given a set of valid expressions, the set of valid ciphers is CiphersV := Ciphers ∩ ExpV .

We also assume that there is an equivalence relation, ≡C given on the set of valid ciphers,

with the property that form any M,N ∈ CiphersV and σ is a key-renaming function relative

to QKeys, M ≡C N if and only if Mσ ≡C Nσ. The purpose of this relation is to capture what

ciphers an adversary cannot distinguish, in other words, what partial information (length, key,

etc...) can an adversary receive about the cipher. Let

QCiphers := CiphersV
/
≡C .

Example 1.18. We will consider cryptosystems where an adversary can recognize when two

ciphers were encrypted with different keys. For this case, we will need to define ≡C so that two

ciphers are equivalent if and only if they are encrypted with the same key.

Example 1.19. In [39], the authors find it useful to define a length-function on Exp in the

17

following way:

l(K) := 1 for K ∈ Keys

l(B) := 1 for B ∈ Blocks

l((M,N)) := l(M) + l(N)

l({M}K) := l(M) + 1

Two ciphers are then considered to be indistinguishable for an adversary if and only if they have

the same length. Then, ≡C is chosen so that it equates ciphers with the same length, and an

element of QCiphers will contain all ciphers that have a specific length.

Naturally, we have to require (this is a condition on ≡C), that renaming keys will carry

equivalent ciphers into equivalent ones, i.e., M ≡C N ∈ CiphersV , if and only if Mσ ≡C Nσ

whenever σ is a key-renaming function relative to QKeys. Hence a key-renaming function σ

generates a renaming on QCiphers, which we also denote by σ.

Definition 1.20 (A Formal Logic for Symmetric Encryption). A formal logic for sym-

metric encryption is a triple ∆ = (ExpV ,≡K,≡C) where ExpV is a set of valid expressions, ≡K

is an equivalence relation on Keys, and ≡C is an equivalence relation on CiphersV ; we require

the elements of QKeys to be infinite sets, and that for any σ key renaming function relative to

QKeys,

(i) if M ∈ Exp, then M ∈ ExpV if and only if Mσ ∈ ExpV ,

(ii) if M,N ∈ CiphersV , then M ≡C N if and only if Mσ ≡C Nσ.

The patterns then need to reflect the fact that ciphers contained in different elements of

QCiphers can be distinguished by an adversary. Therefore, we need to introduce a different box

for each element µ ∈ QCiphers. Accordingly, the set Pat∆ is defined as

18

Definition 1.21 (Patterns for ∆). We, again, proceed via induction:

P,Q ::= patterns

K key (for K ∈ Keys)

B block (for B ∈ Blocks)

(P,Q) pair

{P}K encryption by K ∈ Keys

�µ undecryptable, with µ ∈ QCiphers.

The corresponding pattern-creating function is defined the following way:

Definition 1.22. Let S ⊆ Keys. patt∆ : ExpV × 2Keys → Pat∆ is defined inductively:

patt∆(K, S) = K, for K ∈ Keys

patt∆(B,S) = B, for B ∈ Blocks

patt∆
(
(M,N), S

)
=
(
patt∆(M,S), patt∆(N,S)

)
patt∆

(
{M}K , S

)
=


{patt∆(M,S)}K if K ∈ S

�µ

if K /∈ S and

{M}K ∈ µ, (µ ∈ QCiphers)

Then

Definition 1.23 (The Pattern of a Valid Expression of ∆). The pattern of a valid expres-

sion M , pattern∆(M), is

pattern∆(M) = patt∆(M,R-Keys(M)).

19

Example 1.24. In the case when the elements of QCiphers contain ciphers encrypted with the

same key, there is a one-to-one correspondence between QCiphers and Keys, and therefore we

can index the boxes with keys instead of element in QCiphers: �K , K ∈ Keys. Then, if

N =

((
{0}K8 , {100}K1

)
,

((
K7,

{
({0101}K9 , {K8}K5)

}
K5

)
, {K5}K7

))
,

R-Keys(N) = {K5,K7,K8},

and the pattern of N is

pattern∆(N) =

((
{0}K8 , �K1

)
,

((
K7,

{
(�K9 , {K8}K5)

}
K5

)
, {K5}K7

))
.

Finally,

Definition 1.25 (Equivalence of Valid Expressions of ∆). We say that two valid expressions

M and N are equivalent, and denote it by

M ∼=∆ N,

if there is a key-renaming σ such that

pattern∆(M)σ = pattern∆(N),

where for any pattern Q, Qσ denotes the pattern obtained by renaming the keys and the box-

indexes in Q via σ.

Example 1.26. Taking N as it was in our previous example, defining M as

M =

((
{0}K6 , {{K7}K1}K4

)
,

((
K2,

{
({001}K3 , {K6}K5)

}
K5

)
, {K5}K2

))
,

20

The set of recoverable keys are

R-Keys(M) = {K2,K5,K6},

and the pattern of M is

pattern∆(M) =

((
{0}K6 , �K1

)
,

((
K2,

{
(�K9 , {K6}K5)

}
K5

)
, {K5}K2

))
.

Since, with the changes K2 → K7, K5 → K5, K6 → K8, K4 → K1 and K3 → K9, the pattern of

M turns into the pattern of N , M and N are equivalent.

1.1.4 Proper Equivalence of Ciphers

In this section we introduce a natural property for the equivalence ≡C, satisfied by a large class

of expanded Abadi-Rogaway logics, namely all that is known to us with any significance.

Definition 1.27 (Proper Equivalence of Ciphers). We say that an equivalence relation ≡C

on CiphersV is proper, if for any finite set of keys S, if µ ∈ QCiphers contains an element of the

form {N}K with K /∈ S, then µ also contains an element C such that Keys(C) ∩ S = ∅, and

K 6v C.

In other words, if µ contains an element encrypted with a key K not in S, then µ has a

representative in which no key of S appears, and in which K may only appear as an encrypting

key, but not as a subexpression.

Example 1.28. If ≡C denotes the equivalence of example 1.18 (i.e. two ciphers are equivalent

iff they have the same encrypting key), then it is clearly proper, since if {M}K ∈ µ, K /∈ S, then

C = {K ′}K works for any K ′ /∈ S; there is such a K ′, since we assumed that there are infinitely

many keys. C = {B}K (B ∈ Blocks) is also a good choice since Blocks is not empty.

Example 1.29. If ≡C denotes the equivalence of example 1.19, then it is clearly proper, because

if {M}K ∈ µ, K /∈ S, then a good choice is C = {M ′}K where M ′ is constructed from a K ′ /∈ S

by pairing K ′ with itself l(M) many times; there is such a K ′, since we assumed that there are

infinitely many keys.

21

The following propositions will be useful for proving our general soundness and completeness

results.

To be able to state the following proposition, for each µ ∈ QCiphers, we first introduce the

set

µkey :=
{

K ∈ Keys
∣∣∣ there is an M valid expression with {M}K ∈ µ

}

Proposition 1.30. Let ∆ = (ExpV ,≡K,≡C) be such that ≡C is proper. Then, the equivalence

relation ≡C is such that for any equivalence class µ ∈ QCiphers, µkey has either one, or infinitely

many elements.

Proof. Let µ ∈ QCiphers, and assume that there are more then one encrypting keys in µ, that

is, there are two different keys K, K ′ such that {M}K , {M ′}K′ ∈ µ with some M,M ′ valid

expressions. Since ≡C is proper, we can assume that K /∈ Keys(M ′). Since we assumed that

each equivalence class in QKeys contains infinitely many elements, there is a key L, such that

L ≡K K, and

L /∈ Keys({M}K) ∪Keys({M ′}K′).

Then, defining σ to do nothing else but to switch the keys L and K, {M}Kσ = {Mσ}L and

{M ′}K′σ = {M ′}K′ . But, since

{M}K ∼=V {M ′}K′ ,

it is also true that

{M}Kσ ∼=V {M ′}K′σ.

Therefore, since {M ′}K′ ∈ µ, it must hold that {Mσ}L ∈ µ. There are infinitely many choices

for L, so there are infinitely many encrypting keys in µ.

Proposition 1.31. Let ∆ = (ExpV ,≡K,≡C) be such that ≡C is proper. If σ is a key-renaming

function (relative to ≡K), then for any µ ∈ QCiphers, |µkey| = |σ(µ)key|.

Proof. If |µkey| =∞, then |σ(µ)key| =∞, since for any {M}K ∈ µ, {M}Kσ = {Mσ}σ(K) ∈ σ(µ).

Since σ is a bijection, and since any µ contains either only one or infinitely many elements, the

claim follows.

22

The meaning of the next proposition is that if ≡C is proper, then given a set of valid ciphers

C = {{Ni}Li
}ni=1 such that none of the encrypting keys are in S, and if µ1, ...µl are all the

equivalence classes of the elements in C, then it is possible to choose a representative of each

of µj , denoted by Cµj
, such that no key of S occurs in any of Cµj

, none of Li’s occurs as

a subexpression in any Cµj
, and no key occurs in two of Cµj

unless the corresponding two

equivalence classes both have only the same, single encrypting key.

Proposition 1.32. Let ∆ = (ExpV ,≡K,≡C) be such that ≡C is proper. Let C = {{Ni}Li
}ni=1

be a set of valid ciphers, and S a finite set of keys with Li /∈ S (i ∈ {1, ..., n}). Let µ(C) denote

the set of all equivalence-classes with respect to ≡C of all elements in C. Then, for each ν ∈ µ(C),

there is an element Cν ∈ ν such that

(i) Keys(Cν) ∩ S = ∅ for all ν ∈ µ(C),

(ii) Li 6v Cν for all i ∈ {1, ..., n} and all ν ∈ µ(C) ,

(iii) and if ν 6= ν′, then Keys(Cν) ∩ Keys(Cν′) 6= ∅ if and only if νkey = ν′key = {K} (the set

containing K only) for some K key, and in that case Keys(Cν) ∩ Keys(Cν′) = {K}. Then, Cν

and Cν′ are both of the form {·}K with the same K, and K is not a subexpression of either Cν

or Cν′ .

Proof. Observe, that if µ({Ni}Li
) denotes the equivalence class of {Ni}Li

in QCiphers, then

ν ∈ µ(C) if and only if ν = µ({Ni}Li
) for some i ∈ {1, ...n}.

Proof goes by induction. The statement is clearly true if n = 1, since ≡C is proper. Suppose

it is true for n − 1. Let {N1}L1 , {N2}L2 ,..., {Nn}Ln
be valid expressions, and let S be a set of

keys such that Li /∈ S. Without loss of generality, we can assume, that the numbering is such

that there is an l, 1 ≤ l ≤ n, such that

|µ({Nn}Ln
)| =

 1 if i ≤ l

∞ if i > l.

Let us first assume that l = n and that there is an m ∈ {1, ..., n− 1} such that Lm = Ln. Since

the statement is assumed to be true for n− 1, we can choose Cµ({Ni}Li
) for i ≤ n− 1 such that

conditions (i), (ii), (iii) hold for these {Cµ({Ni}Li
)}n−1

i=1 and S. If µ({Nn}Ln
) = µ({Ni}Li

) for

some i ≤ n−1, then there is nothing to prove, Cµ({Nn}Ln) = Cµ({Ni}Li
) has already been chosen.

23

If there is no such i, then consider

Sn−1 :=

((
n−1⋃
i=1

Keys(Cµ({Ni}Li
)) ∪ {Li}

)
\ {Ln}

)
∪ S

According to the assumption, there is a C ∈ µ({Nn}Ln
) such that Keys(C) ∩ Sn−1 = ∅ and

Ln 6v C, which implies that Cµ({Nn}Ln) := C is a good choice: (i) follows from the fact that

Keys(C) ∩ Sn−1 = ∅. (ii) is true, since Lm = Ln 6v C is ensured by the way properness allows

us to choose C; Li 6v C for i ≤ n− 1, i 6= m, because Keys(C)∩ Sn−1 = ∅, and Ln 6v Cµ({Ni}Li
),

because we assumed that Lm = Ln; Lm 6v Cµ({Ni}Li
) by the induction hypothesis. Finally, (iii)

follows, because if K ′ ∈ Keys(Cµ({Ni}Li
)) for i ∈ {1, ..., n− 1}, then, since Keys(C) ∩ Sn−1 = ∅,

K ′ ∈ Keys(C) implies that K ′ = Ln. Clearly, in this case both Cµ({Ni}Li
) and C are of the form

{·}Ln
, and Ln is not a subexpression of any of them because of the way properness allows us to

chose the Cν ’s.

If still l = n holds, but there is no m ∈ {1, ..., n − 1} such that Lm = Ln, then {N1}L1 ,

{N2}L2 ,..., {Nn−1}Ln−1 and S′ := S ∪ {Ln} satisfy the conditions of the induction hypothesis.

If l < n, then |µ({Nn}Ln
)| = ∞, and without loss of generality, we can assume that there is

no m ∈ {1, ..., n − 1} such that Lm = Ln, and again, {N1}L1 , {N2}L2 ,..., {Nn−1}Ln−1 and

S′ := S ∪ {Ln} satisfy the conditions of the induction hypothesis. So in both of these cases,

for S′, we can choose Cµ({Ni}Li
) for i ≤ n − 1 such that the conditions (i), (ii), (iii) hold for

S′ replacing S. If µ({Nn}Ln
) = µ({Ni}Li

) for some i ≤ n, then there is nothing to prove,

Cµ({Nn}Ln) = Cµ({Ni}Li
) has already been chosen; (i) and (iii) are obviously satisfied, and (ii)

holds because Ln ∈ S′. If there is no such i, then consider

Sn−1 :=

(
n−1⋃
i=1

Keys(Cµ({Ni}Li
)) ∪ {Li}

)
∪ S.

According to the assumption, there is a C ∈ µ({Nn}Ln
) such that Keys(C) ∩ Sn−1 = ∅, which

implies that Cµ({Nn}Ln) := C is a good choice: (i) follows from the fact that Keys(C)∩Sn−1 = ∅.

(ii) is true, since Ln 6v C because of properness; Li 6v C for i ≤ n−1 because Keys(C)∩Sn−1 = ∅;

Ln 6v Cµ({Ni}Li
), because Keys(Cµ({Ni}Li

))∩(S∪{Ln}) = ∅ by the induction hypothesis. Finally,

(iii) follows, because Keys(Cµ({Ni}Li
)) ∩Keys(Cµ({Nn}Ln)) = ∅ in this case.

24

Given sets C and S as in the conditions of the proposition, let R(C, S) denote the nonempty

set

R(C, S) :=

{Cν}ν∈µ(C)

∣∣∣∣∣∣∣
Cν ∈ ν, and {Cν}ν∈C and S satisfy conditions

(i), (ii), (iii) of proposition 1.32


Another useful property satisfied by all common logics, and that we will need for the com-

pleteness result is the following:

Definition 1.33 (Independent ≡K and ≡C). We say that ≡K and ≡C are independent, if

for any finite set of keys S, and any finite set C of ciphers such that no key in S appears in any

element of C, given any key-renaming function σ, there is a key renaming σ′ for which σ′(K) = K

whenever K ∈ S, and for all C ∈ C, Cσ ≡C Cσ′.

In other words, ≡K and ≡C are independent, if for any finite set of keys S, and any finite

set C of ciphers such that no key in S appears in any element of C, it is possible to alter any σ

key-renaming function such that the altered key-renaming leaves all elements in S unchanged,

whereas on C it does the same thing as the original σ. We will need this property in for the

general completeness theorem.

25

1.2 Computational Framework of Cryptographic Schemes

1.2.1 Symmetric Encryption Schemes

The computational modeling of encryption schemes provides a much more detailed description

of a cryptographic protocol than the formal language that we presented in the previous section.

It captures the fact that key generation and encryption is probabilistic, and it includes the fact

that computers have limits in their computational power. Here, key generation algorithms are

represented by random variables, messages are bit strings of finite length, and all algorithms, like

encryption, decryption, key generation, must be computable in polynomial time relative to a so

called “security parameter”.

The field of actions here is the set strings := {0, 1}∗. A fixed subset, plaintext ⊆ strings

represents the messages that are allowed to be encrypted. We fix an element 0 in plaintext.

Another subset, keys ⊆ strings is chosen for the possible encrypting keys. In order to be able to

build up messages from basic ingredients, we assume that an injective pairing function is given:

[. , .] : strings× strings→ strings.

The range of the pairing function will be called pairs:

pairs := Ran[. , .].

A symmetric encryption scheme has the following constituents:

Security parameter. A security parameter η takes all values of the natural numbers.

Computationally, it is represented by a finite string containing only 1, as many as its value is.

The purpose of the security parameter is to measure the difficulty of computations. Functions,

defined in terms of η, can be tested whether they are computable within a time interval that is

no larger then some polynomial function of η.

Key-generation algorithm. Keys for encryptions are assumed to be randomly generated.

The random generation must be computable in polynomial time with respect to the security

parameter. Mathematically, key-generation is represented by a random variable Kη : ΩK,η →

keysη ⊂ keys, over a discrete probability field (ΩK,η,PrK,η). We denote the function η 7→ Kη

26

by K. As η in the index of the probability field indicates, the probability field can depend on the

security parameter. We also put K in the index to remind that this probability field is for key

generation, because we will consider other probability fields too.

Encryption algorithm. Encryption works as follows: For a given k ∈ keys, and a given

x ∈ plaintext, Ek(x), the encryption of x using k as the encrypting key is a random variable over

some discrete probability field (ΩE ,PrE). The values of this random variable are in strings and

will be denoted by Ek(x)(ω), whenever ω ∈ ΩE . We do not assume that Ek(x) makes sense for

any pair (k, x); we denote by DomE the subset of keys× plaintext for which Ek(x) is defined.

I.e., if RV(ΩE , strings) stands for the set of random variables over ΩE taking values in strings,

then

E : DomE → RV(ΩE , strings),

where

DomE ⊆ keys× plaintext.

We assume that for a sequence of keys and x plaintext, kη ∈ keysη, Ekη
(x) is polynomial-time

computable in η whenever it is defined. Let

ciphers :=
⋃

(k,x)∈DomE

RanEk(x)

Decryption algorithm. An encryption must be decryptable, so we assume that for each

k ∈ keys, a function D : (k, x) 7→ Dk(x) is given on a subset DomD of keys× strings satisfying

Dk

(
Ek(x)(ω)

)
= x

for all ω ∈ ΩE . Again Dkη (x) must be polynomial-time computable.

Computational Equivalence In the computational setting, we assume that an adversary

has access to computers with limited computing power. The purpose of security is that an

adversary should have very small probability of getting valuable information about encrypted

messages, which is expressed mathematically as having little chance to tell different ciphers from

apart. Namely, messages are random variables, since key generation and encryption is random;

more exactly, they are ensembles of random variables (because of the security parameter), and

27

the adversary is trying to distinguish these random ensembles. In order to express what it means

to have little chance to distinguish two ensembles, we need the notion of negligible function:

Definition 1.34 (Negligible Function). A function ε : N → R is said to be negligible, if for

any c > 0, there is an nc ∈ N such that ε(η) ≤ η−c whenever η ≥ nc.

Now we formulate when there is very little chance to tell two ensembles apart. Our definition is

the same as the usual notion of computational indistinguishability, except that we formulate this

for random variables that take values in a more general set then strings, because we will need that

in our proofs. We consider random variables with values in a set, which is a Cartesian product of

strings with itself finitely many times, that is, sets like (strings×strings)×(strings×strings)

(which we do not identify with strings4).

Definition 1.35 (Computationally Equivalent Probability Ensembles). Let str be a set

which is obtained by taking Cartesian products of strings with itself finitely many times. Let

Fη : ΩFη
→ str and Gη : ΩGη

→ str be two sequences of random variables on (ΩFη
,PrFη

) and

(ΩGη ,PrGη) respectively. Let Dist(Fη) and Dist(Gη) denote their probability distributions. We

say that the ensembles Fη and Gη (or, also, that Dist(Fη) and Dist(Gη)) are computationally

equivalent, if for any probabilistic polynomial-time adversary Aη, i.e. for any function

Aη : ΩAη
× str→ {0, 1}

computable in polynomial time (where (ΩAη ,PrAη) is a probability field),

PrAη ⊗ PrFη

({
(ωA, ωFη) | Aη

(
ωA, Fη(ωFη)

)
= 1
})
−

−PrAη
⊗ PrGη

({
(ωA, ωGη

) | Aη

(
ωA, Gη(ωGη

)
)

= 1
})

is a negligible function of η. The tensor product stands for the product probability.

Definition 1.36 (Encryption scheme). A computational encryption scheme is a quadruple

Π = (K, E, D,≈)

28

where K is a key-generation algorithm, E is an encryption algorithm, D is a decryption algorithm

that decrypts ciphers encrypted by E, and ≈ is the relation of computational equivalence. We

require that the probability distribution of K be distinguishable from any constant string, and

also that the distribution of (k, k′) be distinguishable from the distribution of (k, k) if k and k′

are independently generated: k, k′
R←− Kη. Furthermore, we require the following property as

well:

either RanKη
× {x} ⊂ Dom(E) for all η, or (RanKη

× {x}) ∩Dom(E) = ∅ for all η

holds for all and x ∈ plaintext.

The condition on the domain is to express the requirement that if for some, η value of the

security parameter, and ω ∈ ΩK,η, EKη(ω)(x) is defined, then it is defined for all η, and, for any

ω′ ∈ ΩK,η, EKη(ω′)(x) must also be defined. In other words, if x can be encrypted with a certain

outcome of a key generation algorithm, then it must be encryptable with all outcomes of this

same algorithm for all values of the security parameter.

1.2.2 Levels of Security

Security of computational encryption schemes is formulated via the notion of encryption oracles.

For any key k ∈ keys, an encryption oracle Ek(·) assigns to an element x ∈ plaintext∗, x =

(x1, x2, ..., xl) the encrypted (Ek(x1), Ek(x2), ..., Ek(xl)), where if (k, xi) /∈ DomE for some i,

then Ek(xi) is Ek(0). We will denote by Ek(0) the oracle that outputs (Ek(0), Ek(0), ..., Ek(0))

upon receiving x = (x1, x2, ..., xl).

Definition 1.37 (Type-0 Security). We say that a computational encryption scheme is

type-0 secure, if no probabilistic polynomial-time adversary can distinguish the pair of oracles

(Ek(·), Ek′(·)) and (Ek(0), Ek(0)) as k and k′ are randomly generated. That is, for any probabilistic

polynomial-time algorithm, Aη, querying either (Ek(·), Ek′(·)) or (Ek(0), Ek(0)),

Pr
[
k, k′

R←− Kη : AEk(·),Ek′ (·)
η = 1

]
− Pr

[
k

R←− Kη : AEk(0),Ek(0)
η = 1

]

is a negligible function of η.

29

The above formula means the following: The adversary is given one of two pairs of oracles,

either (Ek(·), Ek′(·)) or (Ek(0), Ek(0)) (where the keys were randomly generated prior to handing

the pair to the adversary), but he does not know which. Then he has to query the pair and try

to figure out which pair it is by flipping coins and doing polynomial-time computations with the

responses from the oracles. The queries that the adversary submits may depend on the previous

responses from the oracles. The keys that the oracles use for encryption do not change while

the adversary queries the oracles. At the end, he has to come up with a number, either 1, or 0.

Since the adversary is probabilistic, as well as the encryptions done by the oracles, moreover, the

keys were randomly chosen at the beginning too, therefore, for each case, namely for each pair of

oracles, there is a certain probability that the adversary comes up with 1 (or 0). We emphasize

that this probability includes the randomness of the key generation done by the oracles at the

beginning. If the difference of these two probabilities is negligible as a function of η, then we

say that the two pairs are indistinguishable for the adversary, and hence the encryption is type-0

secure.

What type-0 security is meant to express is that not only no adversary can tell whether the

oracles encrypt the plaintexts that the adversary submits or that they encrypt 0’s instead, but

he cannot tell either whether the encryptions by the pair were done with the same key, or the

keys had been separately generated.

If we do not require from the encryption scheme to be such that repetition of keys must not

be detected, then the security level we get this way is called type-2 security:

Definition 1.38 (Type-2 Security). We say that a computational encryption scheme is type-2

secure, if no probabilistic polynomial-time adversary can distinguish the oracles Ek(·) and Ek(0) as

k is randomly generated. That is, for any probabilistic polynomial-time algorithm, Aη, querying

either Ek(·) or Ek(0),

Pr
[
k

R←− Kη : AEk(·)
η = 1

]
− Pr

[
k

R←− Kη : AEk(0)
η = 1

]

is a negligible function of η.

Another important notion in the literature is type-1 security, when key repetition is concealed,

but the length of the encrypted message may be revealed. In this case, we require that adversaries

30

cannot distinguish pairs of oracles (Ek(·), Ek′(·)) and (Ek(0|·|), Ek(0|·|)), where Ek(0|·|) denotes the

oracle that upon receiving x = (x1, x2, ..., xl), returns

(Ek(0|x1|), Ek(0|x2|), ..., Ek(0|xl|))

where Ek(0|xi|) denotes encryption of the string of as many 0’s as the length of xi whenever

(k, xi) ∈ DomE , and Ek(0) if (k, xi) /∈ DomE :

Definition 1.39 (Type-1 Security). We say that a computational encryption scheme is

type-1 secure, if no probabilistic polynomial-time adversary can distinguish the pair of ora-

cles (Ek(·), Ek′(·)) and(Ek(0|·|), Ek(0|·|)) as k and k′ are randomly generated. That is, for any

probabilistic polynomial-time algorithm, Aη, querying either (Ek(·), Ek′(·)) or (Ek(0|·|), Ek(0|·|)),

Pr
[
k, k′

R←− Kη : AEk(·),Ek′ (·)
η = 1

]
− Pr

[
k

R←− Kη : AEk(0|·|),Ek(0|·|)
η = 1

]

is a negligible function of η.

Finally, the combination of type-1 and type-2 security results in type-3 security, which might

reveal both key repetition and length:

Definition 1.40 (Type-3 Security). We say that a computational encryption scheme is type-

3 secure, if no probabilistic polynomial-time adversary can distinguish the oracles Ek(·) and

Ek(0|·|) as k is randomly generated. That is, for any probabilistic polynomial-time algorithm,

Aη, querying either Ek(·) or Ek(0|·|),

Pr
[
k

R←− Kη : AEk(·)
η = 1

]
− Pr

[
k

R←− Kη : AEk(0|·|)
η = 1

]

is a negligible function of η.

1.2.3 Hiding η

In this subsection we mention that it is possible to formulate the computational theory of cryp-

tography by considering only single probability spaces instead of ensembles. The trick is, that

31

instead of considering random variables fη : Ωη 7→ S over probability fields (Ωη,Prη), we can

simply consider a single random variable over a field (Ω,Pr):

F : Ω 7→ S∞,

with

F (ω) = (F1(ω), F2(ω), ...)

such that the random variables Fη : Ω 7→ S are all independent, and the distribution of Fη

coincides with the distribution of fη. The probability space Ω can be constructed via the infinite

Cartesian product of the spaces Ωη, whereas Pr is the product measure of all the Prη.

In this terminology, instead of considering {0, 1}∗ as the basic set on which encryption and

decryption operates, we take ({0, 1}∗)∞. Key generation results an element in keys∞. The

encryption E assigns to an element in keys∞×plaintext∞ an element in strings∞ by encrypting

each component of the element in plaintext∞ by the corresponding component of the element

in keys∞. Decryption is done similarly, component-wise.

Computational equivalence of two random variables of the form F (ω) = (F1(ω), F2(ω), ...)

can of course be defined component-wise.

The advantage of this formalism is, that in this way we can incorporate the computational and

the information-theoretic formalism that we present in the next section into a single formalism.

1.3 An Information-Theoretic Treatment

The information-theoretic treatment of cryptographic protocols is similar to the computational

one, except that no condition on computational power is assumed, and hence no security param-

eter appears. We will only consider a specific example for this case, namely, the One-Time Pad

(OTP), the idea of which originates from Shannon, who proved in [52] that for perfect secrecy,

the encrypting keys has to be at least as long as the encrypted message is. One-Time Pad is

the name for the encryption scheme that, given a plaintext with certain length, it generates a

uniformly distributed random key with the same length as the plaintext, an the two are XOR’ed

together. Each time, the key must be generated again to avoid leaking information. We will

32

consider a special implementation of OTP, that suits our purposes.

1.3.1 One-Time Pad

Consider the following realization of the one-time pad: Let

strings := {0, 1}∗, (1.1)

with the following pairing: For any two strings x, y ∈ strings we can define the pairing as

[x, y] := 〈x, y, 0, 1|y|〉 (1.2)

where 〈 , , ... , 〉 denotes the concatenation of the strings separated by the commas, 1m stands

for m many 1’s, and for any x ∈ {0, 1}∗, |x| denotes the length of the string. The number of 1’s

at the end indicate how long the second string is in the pair, and 0 separates the strings from

the 1’s.

Suppose N is a fixed natural number, and let

blocks := {b|b ∈ {0, 1}∗, b ends with 100} (1.3)

The ending is just a tag, it shows that the meaning of the string is a block.

In case of the one-time pad, a plaintext is encrypted by generating a uniformly random binary

string (a key) that has the same length as the plaintext and the two (the key and the plaintext)

are XOR’ed together. Actually, we will need to tag the keys too, so, in fact we will generate a

key that is three digits longer then the plaintext, but when we encrypt, we drop those last three

digits. So let

keys := {k | k ∈ strings, k ends with 010}. (1.4)

For any n ∈ N, n ≥ 4, let

keysn := {k | k ∈ strings, |k| = n, k ends with 010}. (1.5)

Key-Generation. For each key-length, there is a separate key generation algorithm, that is,

33

for each n > 3, Kn is a random variable over some (ΩK,n,PrK,n) such that its values are equally

distributed over keysn. For k ∈ keys, let core(k) denote the string that we get from k by cutting

the 010 at the end off.

Encryption. The domain of the encryption will be those elements (k, x) ∈ keys× strings,

for which |k| = |x|+ 3:

DomE := {(k, x) ∈ keys× strings | |k| = |x|+ 3} (1.6)

This expresses that we can only use those keys for encryption that have the same length as the

encrypted message. The encryption function is defined by

E(k, x) = Ek(x) := 〈core(k)⊕ x, 110〉 (1.7)

The tag 110 informs us, that the string is a cipher. Notice that this encryption is not probabilistic,

Ek(x) is not a random variable.

Let

ciphers := {c | c ∈ strings, c ends with 110} (1.8)

and

ciphersn := {c ∈ ciphers | |c| = n}.

Observe, that pairs, keys, blocks and ciphers are all disjoint.

Decryption. The decryption function Dk(x) is defined whenever |k| = |x|, and, naturally

the value of Dk(x) is the first |k| − 3 bits of k ⊕ x.

Equivalence For One-Time Pad, we say that two probability distributions are equivalent if

and only if they are identical.

Encryption Scheme Our realization of One-Time Pad is the quadruple

Π = ({Ki}i∈{4,5,...}, E, D,≈),

where the elements of the quadruple are the above defined set of key generations, encryption,

decryption and equivalence.

34

1.4 A General Probabilistic Framework For Symmetric En-

cryption

As we have seen, it is possible to reformulate the computational view so that the probability fields

and the random variables are not parametrized by the security parameter, instead it is already

built into them. This fact allows us to give a formalism that includes both the computational

and the information theoretic view. We list the mathematical objects of such a formalism,

which are only slight modifications of what we have already seen in the computational and the

information-theoretic framework.

The field of actions now is a more general set, strings. In case of a computational framework,

this is ({0, 1}∗)∞, in the information-theoretic case, it is {0, 1}∗. A fixed subset, plaintext ⊆

strings represents the messages that are allowed to be encrypted. Another subset, keys ⊆

strings is chosen for the possible encrypting keys. In order to be able to build up messages from

basic ingredients, we assume that an injective pairing function is given:

[. , .] : strings× strings→ strings.

The range of the pairing function will be called pairs:

pairs := Ran[. , .].

A symmetric encryption scheme has the following constituents:

Key-generation. Keys for encryptions are assumed to be randomly generated. Mathe-

matically, key-generation is represented by a random variable K : ΩK → keys, over a discrete

probability field (ΩK,PrK). We put K in the index to remind that this probability field is for

key generation, because we will consider other probability fields too. In a given protocol, more

then one key-generation is allowed.

Encryption. Encryption works as follows: For a given k ∈ keys, and a given x ∈ plaintext,

Ek(x) is a random variable over some discrete probability field (ΩE ,PrE). The values of this

random variable are in strings and are denoted by Ek(x)(ω), whenever ω ∈ ΩE . We do not

assume that Ek(x) makes sense for any pair (k, x); we denote by DomE the subset of keys ×

35

plaintext for which Ek(x) is defined. I.e., if RV(ΩE , strings) stands for the set of random

variables over ΩE taking values in strings, then

E : DomE → RV(ΩE , strings),

where

DomE ⊆ keys× plaintext.

Decryption. An encryption must be decryptable, so we assume that for each k ∈ keys, a

function D : (k, x) 7→ Dk(x) is given on a subset DomD of keys× strings satisfying

Dk

(
Ek(x)(ω)

)
= x

for all ω ∈ ΩE .

Equivalence. Just as in the case of computational equivalence, we assume that an equiv-

alence relation is defined on distributions over each finite Cartesian products of strings with

itself. We call this notion indistinguishability, and denote it by ≈, no matter what the Carte-

sian product is, because this negligence will not lead to confusion. Let str be such a Cartesian

product. We will also say that two random variables taking values in str are indistinguishable

if (and only if) their distributions are equivalent (indistinguishable); we will use ≈ for denoting

this equivalence between random variables as well. For ≈, we require the followings:

(i) Random variables with the same distribution are indistinguishable.

(ii) Constant random variables are indistinguishable if and only if the constants are the same.

For random variables F and G with values in str, if F ≈ G then the followings must hold:

(iii) Invariance under projections: If πi
str

(i = 1, 2) denotes the projection onto one of the two

components of str, then πi
str
◦ F ≈ πi

str
◦G.

(iv) Invariance under coupling: Let πi
str

be as above. If F ′ : ΩF → str′, G′ : ΩG → str′ are

also indistinguishable random variables such that F and F ′ are independent and G and G′ are

also independent, then ωF 7→ (F (ωF), F ′(ωF)) and ωG 7→ (G(ωG), G′(ωG)) are indistinguishable

random variables; moreover, if α, β : str → str′′ are arbitrary functions that preserve ≈ (i.e.

α ◦ F ≈ α ◦G and β ◦ F ≈ β ◦G whenever F ≈ G), then ωF 7→ ((α ◦ F)(ωF), (β ◦ F)(ωF)) and

36

ωG 7→ ((α ◦G)(ωG), (β ◦G)(ωG)) are indistinguishable random variables if F ≈ G.

(v) Invariance under pairing: If str = strings× strings, then [·, ·] ◦ F ≈ [·, ·] ◦G.

(vi) Invariance under depairing: If str = strings, then [·, ·]−1 ◦ F ≈ [·, ·]−1 ◦G.

We think of this relation as the generalized notion for computational or information-theoretic

equivalence. It needs to satisfy some further properties under encryption and decryption that we

specify under the definition of encryption schemes:

Definition 1.41 (Symmetric Encryption scheme). A symmetric encryption scheme is a

quadruple

Π = ({Ki}i∈I , E, D,≈)

where {Ki}i∈I is a set of key-generations for some index set I, E is an encryption, D decrypts

ciphers encrypted by E and ≈ gives an equivalence relation as defined above. We require that for

any i ∈ I, the probability distribution of Ki be distinguishable from any constant in strings, the

distributions of Ki and of Kj be distinguishable whenever i 6= j, and also that the distribution of

(k, k′) be distinguishable from the distribution of (k, k) if k and k′ are independently generated:

k
R←− Ki k′

R←− Kj for any i, j ∈ I. Moreover, we require the following properties as well:

either RanKi × {x} ⊂ Dom(E), or (RanKi × {x}) ∩Dom(E) = ∅

holds for all i ∈ I and x ∈ plaintext. This property is to express the requirement that if for some

i ∈ I, and ω ∈ ΩK, EKi(ω)(x) is defined, then for all ω′ ∈ ΩK, EKi(ω′)(x) must also be defined.

In other words, if x can be encrypted with a certain outcome of a key generation algorithm, then

it must be encryptable with all outcomes of this same algorithm for all values of the security

parameter.

The equivalence relation ≈, besides satisfying the properties in the previous paragraph, needs to

be such that if F and G are random variables taking values in strings, and Ki is key-generation

such that the joint distribution of (Ki, F) is indistinguishable from the joint distribution of

(Ki, G), then

(i) (ωE , ωK,i, ω) 7→ EKi(ωK,i)

(
F (ω)

)
(ωE) and (ωE , ωK,i, ω) 7→ EKi(ωK,i)

(
G(ω)

)
(ωE) are equivalent

random variables.

(ii) (ωK,i, ω) 7→ DKi(ωK,i)

(
F (ω)

)
and (ωK,i, ω) 7→ DKi(ωK,i)

(
G(ω)

)
are also equivalent random

37

variables.

The probability over ΩKi×ΩF is the joint probability of Ki and F , which are here not necessarily

independent. Similarly for G. The encryption is of course independent of Ki and F (and G).

38

Chapter 2

Interpretations and Soundness

39

In this chapter, we define the transition between the formal and the probabilistic views, called

interpretation. Then we prove soundness theorems for the interpretations. The proves of the

sondness theores are motivated by the soundness proof of Abadi and Rogaway in [3] where they

used a hybrid argument as in [8, 21, 53]

2.1 Computational Interpretation of Formal Expressions

We would now like to relate the formal and the computational formalisms. For this purpose,

we first consider a computational encryption scheme with only one key-generation algorithm:

Π = (K, E, D,≈). Naturally, what we want is to give a computational realization to the method

of building messages via encryption and pairing. In order to make this work, we assume that

keys ⊆ plaintext, ciphers ⊆ plaintext, Blocks ⊆ plaintext and [plaintext,plaintext] ⊆

plaintext so that we can keep encrypting keys and ciphers.

The formal logic ∆ = (ExpV ,≡K,≡C) suitable to be interpreted in computational encryption

schemes is such that ExpV = Exp (since there is no particular reason for restriction), and, since

there is only one key generation algorithm, we will not distinguish formal keys either, so they

are taken to be all equivalent. Hence, in this section we assume these from now on. We will talk

about equivalence on formal ciphers later when we come to security assumptions. We assume

that 0 ∈ B.

Definition 2.1 (Interpretation for Computational Encryption Schemes). Let Π =

(K, E, D,≈) be a computational symmetric encryption scheme with some index set I, with

(ΩK,η,PrK,η) denoting the probability fields for key generation, and with (ΩE ,PrE) denoting the

probability field for the randomness of encryption. For each valid expression M ∈ ExpV = Exp,

let the probability space (ΩM,η,PrM,η) be defined inductively as

(ΩK,η,PrK,η) := ({ω0},1{ω0}) for K ∈ Keys;

(ΩB,η,PrB,η) := ({ω0},1{ω0}) for B ∈ Blocks;

(Ω(M,N),η,Pr(M,N),η) := (ΩM,η × ΩN,η,PrM,η ⊗ PrN,η);

(Ω{M}K ,η,Pr{M}K ,η) := (ΩE × ΩM,η,PrE ⊗ PrM,η).

40

Where ({ω0},1{ω0}) is just the trivial probability-space with one elementary event, ω0 only; the

tensor product stands for the product probability. Let

(
ΩKeys(M),η,PrKeys(M),η

)
:=
(
×|Keys(M)|

i=1 ΩK,η,⊗|Keys(M)|
i=1 PrK,η

)
.

Let ι : Keys(M)→ {1, .., |Keys(M)|} a bijection enumerating the keys in Keys(M). The function

(M,M ′) 7→
(
ΦM,η(M ′) : ΩM ′,η × ΩKeys(M),η → strings

)

defined whenever M ′ vM , is an interpreting function for computational encryption, if it satisfies

the following properties:

For B ∈ Blocks, B vM , B v N ,

ΦM,η(B)(ω0, ω) = ΦN,η(B)(ω0, ω
′) = B

for all M , N valid expressions and arbitrary ω ∈ ΩKeys(M),η, ω′ ∈ ΩKeys(N),η.

For K ∈ Keys(M),

ΦM,η(K)(ω0, (ω1, ..., ω|Keys(M)|)) = Kη(ωι(K)).

with ωj ∈ ΩK,η.

If (M ′,M ′′) vM , then

ΦM,η((M ′,M ′′))((ω′, ω′′), ω) =
[
ΦM,η(M ′)(ω′, ω),ΦM,η(M ′′)(ω′′, ω)

]
.

for all ω′ ∈ ΩM ′,η, ω′′ ∈ ΩM ′′,η, and ω ∈ ΩKeys(M),η.

Finally, if {M ′}K vM , then

ΦM,η({M ′}K)((ωE , ω′), ω) = EΦM,η(K)(ω0,ω)

(
ΦM,η(M ′)(ω′, ω)

)
(ωE) (2.1)

for all ωE ∈ ΩE , ω′ ∈ ΩM ′,η, ω ∈ ΩKeys(M),η. Let Φη(M) := ΦM,η(M). Let [[M]]Φη
denote the

distribution of Φη(M), and let [[M]]Φ denote the ensemble {[[M]]Φη
}η∈N.

Clearly, equation 2.1 is not necessarily well-defined depending on what DomE is. We simply

41

assume, that DomE is such that this does not cause a problem, (another possibility is to restrict

the set of valid expressions to those elements for which the interpretation is well-defined).

Intuitively, the random variable Φη(M) is the following. First, run key-generation for each key

in Keys(M). Then, using the outputs of these key-generations, translate the formal expressions

according to the following rules: Each time you see a key, use the output of the corresponding

key-generation. For blocks, just use the block itself. When you see a pairing, pair with [·, ·] the

translations of the expressions inside the formal pair. When you see a formal encryption, run

the encryption algorithm using the key string that was output by the key generation, encrypting

the translation of the formal expression inside the formal encryption. The randomness of Φη(M)

comes from the initial key-generation, and from running the encryption algorithm independently

every time you encounter a formal encryption.

We also present a conversion algorithm, which was defined by Abadi and Rogaway in [3], and

which results the same random variable as Φη(M) above:

Conversion Algorithm of Abadi and Rogaway. Let Π = (K, E, D,≈) be a computa-

tional encryption scheme. The interpretation of an expression M using the encryption scheme Π

can also be defined as follows:

algorithm INTERPRETATION(η, Q)

for K ∈ Keys(Q) do τ(K) R←− Kη

y
R←− CONVERT(Q)

return y

algorithm CONVERT(Q)

if Q = K where K ∈ Keys then

return τ(K)

if Q = B where B ∈ Blocks then

return B

if Q = (Q1, Q2) then

x
R←− CONVERT(Q1)

y
R←− CONVERT(Q2)

return [x, y]

42

if Q = {Q1}K then

x
R←− CONVERT(Q1)

y
R←− Eτ(K)(x)

return y

Then, the distribution of the sampling y
R←− INTERPRETATION(η, M) is identical with the

distribution of Φη(M).

43

2.2 Soundness for Type-2 Encryption Scheme

We remind the reader to the definition of a type-2 security defined in section 1.2.2:

Definition 2.2 (Type-2 Security). We say that an encryption scheme Π is type-2 secure if

for any polynomial-time adversary A the following function is negligible as a function of η:

Adv2
Π[η](A) := Pr

[
k

R←− Kη : AEk(·)
η = 1

]
− Pr

[
k

R←− Kη : AEk(0)
η = 1

]

In a type-2 secure cryptosystem, an adversary may distinguish ciphers that were encrypted

with different keys. Therefore, as we already mentioned in example 1.24, we should distinguish

formal undecryptable ciphers as well, by assigning different boxes to them. Hence, the set of

formal patterns should look like this:

Definition 2.3 (Pattern). We define the set of patterns, Pat2, by the grammar:

P,Q ::= patterns

K key (for K ∈ Keys)

B block (for B ∈ blocks)

(P,Q) pair

{P}K encryption (for K ∈ Keys)

�K undecryptable (for K ∈ Keys)

Then, the process of assigning a pattern to an expression is the following:

Definition 2.4. Let S ⊆ Keys. We define the function patt2 : Exp×2Keys → Pat2 inductively

as follows:

44

patt2(K, S) = K, for K ∈ Keys

patt2(B,S) = B, for B ∈ blocks

patt2((M,N), S) = (patt2(M,S), patt2(N,S))

patt2({M}K , S) =

 {patt2(M,S)}K (for K ∈ S)

�K (for K /∈ S)

Definition 2.5. We define the pattern of an expression M , pattern2(M), as

pattern2(M) = patt2(M,R-Keys(M))

We are now ready to state a lemma, and then the soundness theorem for this system:

Proposition 2.6. Consider an expression M , and a key K0 ∈ Keys(M). Suppose that for some

expressions M1,M2, ...,Ml ∈ Exp, {M1}K0 , {M2}K0 , ..., {Ml}K0 are subexpressions of M , and

assume also that K0 does not occur anywhere else in M . Then, denoting by M ′ the expression

that we get from M by replacing each of {Mi}K0 that are not contained in any of Mj (j 6= i) by

{0}K0 , then following is true when Φ is an interpretation for a type-2 encryption scheme:

[[M]]Φ ≈ [[M ′]]Φ. (2.2)

Proof. We can assume, without loss of generality, that {Mi}K0 is a subexpression of {Mj}K0

only if i < j. Assume that (2.2) is not true. That is, suppose that [[M]]Φ 6≈ [[M ′]]Φ, which means

that there is an adversary A that distinguishes the two distributions, that is

Pr(x R←− [[M]]Φη
: Aη(x) = 1)− Pr(x R←− [[M ′]]Φη

: Aη(x) = 1)

is a non-negligible function of η. We will show that this contradicts type-2 security. To this

end, we construct an adversary that can distinguish between the oracles Ek0(·) and Ek0(0). This

adversary is the following probabilistic algorithm with f an oracle:

45

algorithm Af
η(M)

for K ∈ Keys(M) \ {K0} do τ(K) R←− Kη

y
R←− CONVERT2(M)

b
R←− Aη(y)

return b

algorithm CONVERT2(N)

if N = K where K ∈ Keys then

return τ(K)

if N = B where B ∈ Blocks then

return B

if N = (N1, N2) then

x
R←− CONVERT2(N1)

y
R←− CONVERT2(N2)

return [x, y]

if N = {N1}K0 then

x
R←− CONVERT2(N1)

y
R←− f(x)

return y

if N = {N1}K (K 6= K0) then

x
R←− CONVERT2(N1)

y
R←− Eτ(K)(x)

return y

Note that the algorithm CONVERT2 does almost the same as the algorithm CONVERT, except

that while CONVERT carries out all necessary encryptions, CONVERT2 makes the oracles

carry out the encryptions for K0. Therefore, in the case, when the oracle f is Ek0(·), then

CONVERT2(Q) will be a random sample from [[M]]Φη
, whereas if the oracle used is Ek0(0), then

46

CONVERT2(Q) will be a random sample from [[M ′]]Φη
. Thus,

Pr
[
k

R←− Kη : AEk(·)
η (M) = 1

]
= Pr(x R←− [[M]]Φη

: Aη(x) = 1)

and

Pr
[
k

R←− Kη : AEk(0)
η (M) = 1

]
= Pr(x R←− [[M ′]]Φη

: Aη(x) = 1)

But, according to our assumption, [[M]]Φ and [[M ′]]Φ can be distinguished, that is,

Pr(x R←− [[M]]Φη : Aη(x) = 1)− Pr(x R←− [[M ′]]Φη : Aη(x) = 1)

is a non-negligible function of η and so, Adv2
Π[η](A) is also a non-negligible function of η. This

implies that our scheme cannot be type-2 secure, which contradicts the assumption. Hence, we

cannot have [[M]]Φ 6≈ [[M ′]]Φ.

Theorem 2.7 (Soundness of Type-2 Schemes). Let M and N be expressions such that

B-Keys(M) and B-Keys(N) are not cyclic in M and N respectively. Let Π be a type-2 secure

encryption scheme, Φ the interpretation of Exp for type-2 systems. Then,

M ∼=2 N implies [[M]]Φ ≈ [[N]]Φ.

Proof. Since M ∼=2 N then, by definition, there exists a key-renaming bijection σ on Keys such

that pattern2(M) = pattern2(Nσ). This means that the “boxes” occurring in pattern2(M) must

occur in pattern2(Nσ) and vice-versa. That is,

B-Keys(M) = B-Keys(Nσ) = B-Keys(N)σ

On the other hand, the subexpressions of pattern2(M) and of pattern2(Nσ) outside the boxes

must agree as well. Hence,

R-Keys(M) = R-Keys(Nσ) = R-Keys(N)σ.

Let L1, L2, . . . , Lb denote the keys in B-Keys(M) = B-Keys(N)σ. B-Keys(M) and B-Keys(N)

47

(and therefore B-Keys(Nσ) as well) are not cyclic by hypothesis, so without loss of generality,

we can assume that the Li’s are numbered in such a way that Li encrypts Lj only if i < j (for a

more detailed argument, see [3]; this means that those keys in B-Keys(M) that are deeper in M

have a higher number).

Let M0 = M . Let M1 be the expression obtained from M0 by replacing all subexpressions in

M0 of the form {·}L1 by {0}L1 . Let then Mi, i ≥ 2, be the expression obtained from Mi−1 by

replacing all subexpressions in Mi−1 of the form {·}Li
by {0}Li

. We do this for all i ≤ b and it

is easy to see that in Mb, replacing the subexpressions of the form {0}Li
by �Li

, we arrive at

pattern2(M).

Note that in Mi−1, Li can only occur as an encrypting key. The reason for this is that if Li

is a subexpression of M , then it has to be encrypted with some non-recoverable key, otherwise

Li would be recoverable; moreover, it has to be encrypted with some key in B-Keys(M) because

a subexpression of M is either recoverable or ends up in a box when we construct pattern2(M).

Now, the element in B-Keys(M) that encrypts Li has to be an Lj with j < i. But, all subex-

pressions in M of the form {·}Lj
were already replaced by {0}Lj

when we constructed Mj , so Li

cannot appear in Mi−1 in any other place than an encrypting key.

From Lemma 2.6, it follows that [[Mi−1]]Φ ≈ [[Mi]]Φ, for all i, 1 ≤ i ≤ b. Hence,

[[M]]Φ = [[M0]]Φ ≈ [[Mb]]Φ. (2.3)

Carrying out the same process for Nσ through (Nσ)0, (Nσ)1, ..., (Nσ)b we arrive at

[[(Nσ)]]Φ = [[(Nσ)0]]Φ ≈ [[(Nσ)b]]Φ. (2.4)

Since we supposed that M ∼=2 N , that is, pattern2(M) = pattern2(Nσ), and therefore Mb =

pattern2(M) and (Nσ)b = pattern2(Nσ), we have

[[Mb]]Φ = [[(Nσ)b]]Φ. (2.5)

Then, it is clearly true that

[[N]]Φ = [[Nσ]]Φ (2.6)

48

because permuting the keys in N does not have any effect in the distributions. Putting Equa-

tions (2.3), (2.4), (2.5) and (2.6) together the soundness result follows:

[[M]]Φ ≈ [[N]]Φ.

We illustrate via an example how the theorem works:

Example 2.8. Consider the expressions M and N as follows:

{0}K6 {{K7}K1}K4 K2 {{0}K3}K5 {K6}K4 {111}K5 0 {K1}K6 {K5}K2

{K ′
8}K′

5
{K ′

1}K′
4

K ′
3 {{1}K′

6
}K′

2
{K ′

7}K′
4
{111}K′

2
0 {K ′

1}K′
5
{K ′

2}K′
3

We left out the parentheses for convenience, because they have no significance in the proof, they

can be anywhere, but, of course, they must be in the same positions in M and N .

The respective 2-patterns are

�K6 �K4 K2 {�K3}K5 �K4 {111}K5 0 �K6 {K5}K2

�K′
5

�K′
4

K ′
3 {�K′

6
}K′

2
�K′

4
{111}K′

2
0 �K′

5
{K ′

2}K′
3

We see that pattern2(M) = pattern2(Nσ), i.e., M ∼=2 N , using the following substitution:

σ(K2) = K ′
3 σ(K3) = K ′

6

σ(K5) = K ′
2 σ(K4) = K ′

4

σ(K6) = K ′
5

Keys(M) = {K1,K2, . . . ,K7};

R-Keys(M) = {K2,K5};

B-Keys(M) = {K3,K4,K6}.

Keys(N) = {K ′
1,K

′
2, . . . ,K

′
8};

R-Keys(N) = {K ′
2,K

′
3};

B-Keys(N) = {K ′
4,K

′
5,K

′
6}.

49

In the soundness theorem we mentioned that it is possible to assume without loss of generality

that the keys in B-Keys(M) can be renamed L1, . . . , Lb in such a way that Li encrypts Lj only

if i < j (this means that those keys in B-Keys(M) that are deeper have a higher number). So,

we rename in the following way:

L1 = K3 = σ(K3) = K ′
6

L2 = K4 = σ(K4) = K ′
4

L3 = K6 = σ(K6) = K ′
5

We obtain the renamed expressions, M ′ and N ′:

{0}L3 {{K7}K1}L2 K2 {{0}L1}K5 {L3}L2 {111}K5 0 {K1}L3 {K5}K2

{K ′
8}L3 {K ′

1}L2 K ′
3 {{1}L1}K′

2
{K ′

7}L2 {111}K′
2

0 {K ′
1}L3 {K ′

2}K′
3

Continuing with the argument we define M0 as M ′ and Mi as the result of replacing all the

expressions of the form {·}Li in Mi−1 by {0}Li , 1 ≤ i ≤ b.

M ′ = M0: {0}L3 {{K7}K1}L2 K2 {{0}L1}K5 {L3}L2 {111}K5 0 {K1}L3 {K5}K2

M1 : {0}L3 {{K7}K1}L2 K2 {{0}L1}K5 {L3}L2 {111}K5 0 {K1}L3 {K5}K2

M2 : {0}L3 {0}L2 K2 {{0}L1}K5 {0}L2 {111}K5 0 {K1}L3 {K5}K2

M3 : {0}L3 {0}L2 K2 {{0}L1}K5 {0}L2 {111}K5 0 {0}L3 {K5}K2

N3 : {0}L3 {0}L2 K ′
3 {{0}L1}K′

2
{0}L2 {111}K′

2
0 {0}L3 {K ′

2}K′
3

N2 :{K ′
8}L3 {0}L2 K ′

3 {{0}L1}K′
2
{0}L2 {111}K′

2
0 {K ′

1}L3 {K ′
2}K′

3

N1 :{K ′
8}L3 {K ′

1}L2 K ′
3 {{0}L1}K′

2
{K ′

7}L2 {111}K′
2

0 {K ′
1}L3 {K ′

2}K′
3

N ′ = N0 :{K ′
8}L3 {K ′

1}L2 K ′
3 {{1}L1}K′

2
{K ′

7}L2 {111}K′
2

0 {K ′
1}L3 {K ′

2}K′
3

Then, clearly,

[[M3]]Φ = [[N3]]Φ,

because M3 and N3 are the same up to key-renaming. From lemma 2.6, it follows that

[[M0]]Φ ≈ [[M1]]Φ ≈ [[M2]]Φ ≈ [[M3]]Φ,

50

and that

[[N0]]Φ ≈ [[N1]]Φ ≈ [[N2]]Φ ≈ [[N3]]Φ.

Therefore,

[[M ′]]Φ ≈ [[N ′]]Φ,

and hence

[[M]]Φ ≈ [[N]]Φ.

51

2.3 Interpretation of Expressions for One-Time Pad

Let Π = ({Kn}∞n=4, E, D,≈) be the realization of OTP that we discussed in section 1.3.1. In case

of the OTP, lengths of the messages, and of the keys have vital importance. This notion though

is not reflected in the formal view as we defined it in section 1.1.1. Therefore, we have to expand

the logic so that we can talk about the length of an expression.

Definition 2.9 (Formal Length-Function for OTP). We assume that some length function

l : Keys → {4, 5, ...} is given of the keys symbols. The lengths of an expression is defined as

l(B) := |B|+ 3. We added 3 (to match the length of the tag). We define the length function on

any expression in Exp by induction:

l((M,N)) := l(M) + 2l(N) + 1,

l({M}K) :=

 l(M) + 3 if l(M) = l(K)− 3

0 otherwise

The valid expressions than are defined as those expressions in which the length of the en-

crypted subexpressions match the length of the encrypting key, and, in which no key used twice

to encrypt. This latter condition is necessary to prevent leaking information because of the

properties of the OTP.

Definition 2.10 (Valid Formal Expressions For OTP).

ExpOTP :=

M ∈ Exp

∣∣∣∣∣∣∣
M ′ vM implies l(M ′) > 0,

and each key encrypts at most once in M

 .

An equivalence relation ≡l is defined on the keys by Ki ≡l Kj iff l(Ki) = l(Kj). The

equivalence classes contain keys of the same length, and they correspond to the different key-

generation algorithms.

52

Definition 2.11 (Interpretation of an expression). Given an expression M ∈ ExpOTP, we

create the interpretation in the following way. Suppose Keys(M) = {Ki1 ,Ki2 , ...,Kin
). We first

take

ΩKeys(M) := ×|Keys(M)|
j=1 ΩK,l(Kij

),

the probability measure on this space is taken to be the product of the probabilities on the

ΩK,l(Kij
). Let πj

ΩKeys(M)
denote the projection onto the j’th component. We define

ΦM (Kij) : ΩKeys(M) → keys,

ΦM (Kij) := Kl(Kij
) ◦ πj

ΩKeys(M)
.

Then, for each subexpression M ′ of M , we inductively define ΦM (M ′) as a random variable

ΩKeys(M) → strings:

For a block B ∈ Blocks,

ΦM (B) : ΩKeys(M) → blocks,

ΦM (B)(ω) := 〈B, 100〉.

For keys in Keys(M), we already defined ΦM .

For pairs of subexpressions of M ,

ΦM ((M ′,M ′′))(ω) :=
[
ΦM (M ′)(ω),ΦM (M ′′)(ω)

]
.

Finally, for encryptions:

ΦM ({M ′}K)(ω) := EKl(K)(ω)(ΦM (M ′)(ω)).

Let Φ(M) = ΦM (M), and let [[M]]Φ denote the the distribution of Φ(M).

We formulate this interpretation with the help of an algorithm as well:

algorithm INTERPRETATIONOTP(M)

for K ∈ Keys(M) do τ(K) R←− Kl(K)

y
R←− CONVERTOTP(M)

53

return y

algorithm CONVERTOTP(N)

if N = K where K ∈ Keys then

return τ(K)

if N = B where B ∈ Blocks then

return 〈B, 100〉

if N = (N1, N2) then

return [CONVERTOTP(N1),CONVERTOTP(N2)]

if N = {N1}K then

return 〈Eτ(K)(CONVERTOTP(N1)), 110〉

Then, the sampling y
R←− INTERPRETATIONOTP(M) has the distribution [[M]]Φ.

54

2.4 Soundness for One-Time Pad

As in the case of type-2 cryptosystems, we have to define equivalence of formal expressions

suitable for OTP. This will mean differentiating boxes assigning different boxes two ciphers with

different length. (That is, ≡C on ciphers is defined so that to ciphers are equivalent under ≡C

iff they have the same length, just as in example 1.19.)

Definition 2.12 (Pattern). We define the set of patterns, PatOPT, by the grammar:

P,Q ::= patterns

K key (for K ∈ Keys)

B block (for B ∈ blocks)

(P,Q) pair

{P}K encryption (for K ∈ Keys)

�n undecryptable (for K ∈ N)

Then, the process of assigning a pattern to an expression is the following:

Definition 2.13. We define the function pattOTP : ExpOTP × 2Keys → PatOPT inductively as

follows:

pattOTP(K, S) = K, for K ∈ Keys

pattOTP(B,S) = B, for B ∈ blocks

pattOTP((M,N), S) = (pattOTP(M,S), pattOTP(N,S))

pattOTP({M}K , S) =

 {pattOTP(M,S)}K (for K ∈ S)

�l(K) (for K /∈ S)

Definition 2.14. We define the pattern of an expression M , patternOTP(M), as

patternOTP(M) = pattOTP(M,R-Keys(M))

55

Let then ∼=OPT denote the equivalence of expressions: Two expressions are equivalent if their

patterns are the same up to a length-preserving key-renaming.

Again, we prove the soundness theorem via a lemma:

Proposition 2.15. Consider a valid expression M ∈ ExpOTP, and a key K0 ∈ Keys(M).

Suppose that for some expression M0, {M0}K0 is a subexpression of M , and assume also that K0

does not occur anywhere else in M . Then, denoting by M ′ the expression that we get from M

by replacing {M0}K0 with {0l(K0)−3}K0 (where 0l(K0)−3 denotes as string consisting of l(K0)− 3

many 0’s), then following is true when Φ is the interpretation for OTP defined in section 2.3:

[[M]]Φ = [[M ′]]Φ. (2.7)

Proof. The basic properties of the OTP ensure that Φ({M0}K0) is evenly distributed over

ciphersl(K0), no matter what M0 is. So the distribution of Φ({M0}K0 agrees with the dis-

tribution of Φ({0l(K0)−3}K0). Also, since K0 is assumed not to occur anywhere else, ΦM (K0)) is

independent of the interpretation of the rest of the expression M , and therefore, Φ({M0}K0) and

Φ({0l(K0)−3}K0) are both independent of the interpretation of the rest of the expression. Hence,

replacing Φ({M0}K0) with Φ({0l(K0)−3}K0) will not effect the distribution.

Theorem 2.16. Let M and N be two valid expressions in ExpOTP such that B-Keys(M) and

B-Keys(N) are not cyclic in M and N respectively. Then M ∼=OTP N implies that Φ(M) and

Φ(N) have the same probability distributions if Φ is the OTP interpretation.

Proof. Since M ∼=OTP N then, by definition, there exists a length-preserving bijection σ on

Keys such that patternOTP(M) = patternOTP(Nσ). This means that the subexpressions of

patternOTP(M) and of patternOTP(Nσ) outside the boxes must agree. Hence,

R-Keys(M) = R-Keys(Nσ)

Let L1, L2, . . . , Lb denote the keys in B-Keys(M). Since B-Keys(M) is not cyclic by hypothesis,

we can assume that the Li’s are numbered in such a way that Li encrypts Lj only if i < j.

56

Let M0 = M . Let M1 be the expression obtained from M0 by replacing the subexpression

in M0 of the form {·}L1 (there is only one such since encrypting twice with the same key is not

permitted) by {0l(L1)−3}L1 . Let then Mi, i ≥ 2, be the pattern obtained from Mi−1 by replacing

that subexpression in Mi−1 which has the form {·}Li
with {0l(Li)−3}Li

. We do this for all i ≤ b.

It is easy to see that in Mb, replacing the subexpressions of the form {0l(Li)−3}Li
by �l(Li), we

arrive at pattern2(M).

Note that in Mi−1, Li can only occur as an encrypting key. The reason for this is that if Li

is a subexpression of M , then it has to be encrypted with some non-recoverable key, otherwise

Li would be recoverable (i.e., it would be visible); moreover, it has to be encrypted with some

key in B-Keys(M) because a subexpression of M is either visible or ends up in a box when we

construct patternOTP(M). Now, the element in B-Keys(M) that encrypts Li has to be an Lj

with j < i. But, all subexpressions in M of the form {·}Lj were already replaced by {0l(Lj)−3}Lj

when we constructed Mj , so Li cannot appear in Mi−1 in any other place than an encrypting

key.

From the previous proposition, it follows that [[Mi−1]]Φ = [[Mi]]Φ, for all i, 1 ≤ i ≤ b. Hence,

[[M]]Φ = [[M0]]Φ = [[Mb]]Φ. (2.8)

Carrying out the same process for Nσ through (Nσ)0, (Nσ)1, ..., (Nσ)b′ , we arrive at

[[(Nσ)]]Φ = [[(Nσ)0]]Φ = [[(Nσ)b′]]Φ. (2.9)

Now, since we supposed that M ∼=OTP N , that is, patternOTP(M) = patternOTP(Nσ), and

therefore Mb equals (Nσ)b′ up to a further key-renaming; we have

[[Mb]]Φ = [[(Nσ)b′]]Φ. (2.10)

Then, it is clearly true that

[[N]]Φ = [[Nσ]]Φ (2.11)

because permuting the keys (with keeping the length) in N does not have any effect in the

distributions. Putting Equations (2.8), (2.9), (2.10) and (2.11) together the soundness result

57

follows:

[[M]]Φ ≈ [[N]]Φ.

58

2.5 Interpretation and Soundness in General

2.5.1 Interpretation

The idea of the general interpretation is the same as what we had for the type-2 case and for the

One-Time Pad. We do not give one specific interpretation though, we will just say that a function

Φ is an interpretation if it satisfies certain properties. Here again, the interpretation Φ(M) of M

is a random variable. We will assume, that a function φ is fixed in advance, that assigns to each

formal key a key-generation algorithm. We will also assume that Φ(B) is given for blocks. Then,

the rest of Φ is determined the following way: First, run the key-generation algorithm assigned

by φ for each key in Keys(M). Then, using the outputs of these key-generations, translate the

formal expressions according to the following rules: Each time you see a key, use the output of the

corresponding key-generation. For blocks, just use Φ(B). When you see a pairing, pair with [·, ·]

the translations of the expressions inside the formal pair. When you see a formal encryption, run

the encryption algorithm using the key string that was output by the key generation, encrypting

the translation of the formal expression inside the formal encryption. The randomness of Φ(M)

comes from the initial key-generation, and from running the encryption algorithm independently

every time you encounter a formal encryption.

Definition 2.17 (Interpretation in the General Framework). Let

Π = ({Ki}∞i∈I , E, D,≈) be a general symmetric encryption scheme with some index set I, with

{(ΩKi
,PrKi

)}i∈I denoting the probability fields for key generation, and with (ΩE ,PrE) denoting

the probability field for the randomness of encryption. Let ExpV be a set of valid expressions.

For each valid expression M , let the probability space (ΩM ,PrM) be defined inductively as

(ΩK ,PrK) := ({ω0},1{ω0}) for K ∈ Keys;

(ΩB ,PrB) := ({ω0},1{ω0}) for B ∈ Blocks;

(Ω(M,N),Pr(M,N)) := (ΩM × ΩN ,PrM ⊗ PrN);

(Ω{M}K
,Pr{M}K

) := (ΩE × ΩM ,PrE ⊗ PrM).

Where ({ω0},1{ω0}) is just the trivial probability-space with one elementary event, ω0 only; the

tensor product stands for the product probability. Suppose that a function φ : Keys→ {Ki}∞i∈I

59

is given assigning key generations to abstract keys. Let ι : {1, .., |Keys(M)|} → Keys(M) be a

bijection enumerating the keys in Keys(M). Let

(
ΩKeys(M),PrKeys(M)

)
:=
(
Ωφ(ι(1)) × ...× Ωφ(ι(|Keys(M)|)),Prφ(ι(1)) ⊗ ...⊗ Prφ(ι(|Keys(M)|))

)
.

The function

(M,M ′) 7→
(
ΦM (M ′) : ΩM ′ × ΩKeys(M) → strings

)
defined whenever M ′ vM , is called an interpreting function, if it satisfies the following proper-

ties:

For B ∈ Blocks, B vM , B v N ,

ΦM (B)(ω0, ω) = ΦN (B)(ω0, ω
′)

for all M , N valid expressions and arbitrary ω ∈ ΩKeys(M), ω′ ∈ ΩKeys(N).

For K ∈ Keys(M),

ΦM (K)(ω0, (ω1, ..., ω|Keys(M)|)) = φ(K)(ωι−1(K)).

with ωj ∈ Ωφ(ι(j)).

If (M ′,M ′′) vM , then

ΦM ((M ′,M ′′))((ω′, ω′′), ω) =
[
ΦM (M ′)(ω′, ω),ΦM (M ′′)(ω′′, ω)

]
.

for all ω′ ∈ ΩM ′ , ω′′ ∈ ΩM ′′ , and ω ∈ ΩKeys(M).

Finally, if {M ′}K vM , then

ΦM ({M ′}K)((ωE , ω′), ω) = EΦM (K)(ω0,ω)

(
ΦM (M ′)(ω′, ω)

)
(ωE)

for all ωE ∈ ΩE , ω′ ∈ ΩM ′ , ω ∈ ΩKeys(M). Let Φ(M) := ΦM (M).

Clearly, the definition is not necessarily well-defined depending on what DomE is. We simply

assume, that DomE is such that this does not cause a problem, (another possibility is to restrict

the set of valid expressions to those elements for which the interpretation is well-defined).

60

2.5.2 Soundness

The key to a soundness theorem is to have enough boxes in the definition of formal equivalence,

i.e., there should be enough elements in QCiphers. It is clear that in the extreme case, when the

equivalence on ciphers, ≡C, is defined so that two ciphers are equivalent iff they are the same,

then soundness holds trivially for all interpretations; but this would be completely impractical,

it would assume a formal adversary that can see everything inside every encryption. It is also

immediate, that if soundness holds with a given ≡C (and a given interpretation), and ≡′C is such

that for any to formal ciphers M,N , M ≡′C N implies M ≡C N (ı.e. ≡′C results more boxes),

then, keeping the same interpretation, soundness holds with the new ≡′C as well. Hence, in a

concrete situation, the aim is to introduce enough boxes to achieve soundness, but not too many,

to sustain practicality. One way to avoid having too many boxes is to require completeness: we

will see later, that obtaining completeness requires not to have too many boxes.

The following theorem claims the equivalence of two conditions. It is almost trivial that

condition (i) implies condition (ii). The claim that (ii) implies (i) can be summarized the following

way: if soundness holds for pairs of valid expressions M,M ′ with a special relation between them

(described in (ii)), then soundness holds for all expressions (with certain acyclicity). In other

words, if M ∼=V M ′ implies [[M]]Φ ≈ [[M ′]]Φ for certain specified pairs M,M ′, then M ∼=V N

implies [[M]]Φ ≈ [[N]]Φ for any two pairs of valid expressions M,N .

For the definition of R(C, S), see section 1.1.4.

Theorem 2.18. Let ∆ = (ExpV ,≡K,≡C) be a formal logic for symmetric encryption. Assume

that ≡C is proper. Let Π = ({Ki}∞i∈I , E, D,≈) be a general encryption scheme, Φ an interpre-

tation of ExpV in Π. Assume also, that for two keys K, K ′ ∈ Keys K ≡K K ′ if and only if

φ(K) = φ(K ′) = Ki for some i ∈ I. Moreover, assume that replacing an undecryptable cipher

within a valid expression with another equivalent undecryptable valid cipher results a valid ex-

pression. Then the following conditions are equivalent:

(i) Soundness holds for Φ: for any M,N ∈ ExpV , if B-Keys(M) and B-Keys(N) are not cyclic

in M and N respectively, then M ∼=∆ N , implies Φ(M) ≈ Φ(N).

(ii) For any C = {{Ni}Li}ni=1 set of valid ciphers, and S finite set of keys with Li /∈ S

(i ∈ {1, ..., n}), there is an element {Cν}ν∈µ(C) of R(C, S) such that the following holds: if{
{Nij}K

}l

j=1
⊂ C and M ∈ ExpV are such that {Ni1}K , {Ni2}K , ..., {Nil

}K vM , R-Keys(M) ⊂

61

S, K does not occur anywhere else in M and B-Keys(M) is not cyclic in M , then if we denote

by M ′ the expression obtained by replacing in M each of those {Nij
}K that are not contained

in any of Nij′ (j 6= j′) with Cµ({Nij
}K), then

[[M]]Φ ≈ [[M ′]]Φ. (2.12)

Proof. Condition (ii) follows from (i) easily: For any set {Cµ({Nij
}K)}li=1 provided by proposition

1.32, the encrypting key of Cµ({Nij
}K) is not contained in S hence it is not recoverable key of M .

Therefore, while computing the pattern of M ′, Cµ({Nij
}K) will be replaced by the box �µ({Nij

}K),

which is the same box as the one that replaces {Nij
}K in M when the pattern of M is computed.

Hence M ∼=∆ M ′, and therefore, since soundness is assumed, and since B-Keys(M ′) is not cyclic

in M ′,

[[M]]Φ ≈ [[M ′]]Φ.

In order to prove that (i) follows from (ii), consider two equivalent valid expressions M and

N , M ∼=∆ N . Then, by definition, there exists a bijection σ on Keys (preserving ≡K such

that pattern∆(M) = pattern∆(Nσ). This means that the “boxes” occurring in pattern∆(M)

must occur in pattern∆(Nσ) and vice-versa. Also, the subexpressions of pattern∆(M) and of

pattern∆(Nσ) outside the boxes must agree as well. Hence,

R-Keys(M) = R-Keys(Nσ) = R-Keys(N)σ.

Let L1, L2, . . . , Lb (Li 6= Lj if i 6= j) denote the keys in B-Keys(M), and let L′1, L
′
2, . . . , L

′
b′

(L′i 6= L′j if i 6= j) denote the keys in B-Keys(N)σ. B-Keys(M) and B-Keys(N) (and therefore

B-Keys(Nσ) as well) are not cyclic by hypothesis, so without loss of generality, we can assume

that the Li’s and the L′i’s are numbered in such a way that Li encrypts Lj (and L′i encrypts

L′j) only if i < j (for a more detailed argument about this, see [3]; this means that those keys in

B-Keys(M) that are deeper in M have a higher number).

Consider now the set of expressions that are subexpressions of M or N and have the form

{M ′}Li
or {N ′}L′

i
, and also, the set S. Condition (ii) then provides the set with elements of the

form Cµ({M ′}Li
) and Cµ({N ′}L′

i
).

62

Let M0 = M . Let M1 be the expression obtained from M0 by replacing all subexpressions

in M0 of the form {M ′}L1 by Cµ({M ′}L1) given by the assumption. Let then Mi, i ≥ 2, be the

expression obtained from Mi−1 by replacing all subexpressions in Mi−1 of the form {M ′}Li by

Cµ({M ′}Li
). We do this for all i ≤ b and it is easy to see that in Mb replacing the subexpressions

of the form Cµ({M ′}Li
) by �µ({M ′}Li

) for all i, we arrive at pattern∆(M).

Note that in Mi−1, Li can only occur as an encrypting key. The reason for this is that if Li

is a subexpression of M , then it has to be encrypted with some non-recoverable key, otherwise

Li would be recoverable; moreover, it has to be encrypted with some key in B-Keys(M) because

a subexpression of M is either recoverable or ends up in a box when we construct pattern∆(M).

Now, the element in B-Keys(M) that encrypts Li has to be an Lj with j < i. But, all subex-

pressions in M of the form {M ′}Lj
were already replaced by Cµ({M ′}Lj

) when we constructed

Mj . According to the properties listed in proposition 1.32, Li may only appear in Cµ({M ′}Lj
)

as the encrypting key, and then Li = Lj , a contradiction. So Li cannot appear in Mi−1 in any

other place than an encrypting key. Observe as well, that R-Keys(Mi) = R-Keys(M).

From assumption (ii), it follows then that [[Mi−1]]Φ ≈ [[Mi]]Φ, for all i, 1 ≤ i ≤ b. Hence,

[[M]]Φ = [[M0]]Φ ≈ [[Mb]]Φ. (2.13)

Carrying out the same process for Nσ through (Nσ)0, (Nσ)1, ..., (Nσ)b we arrive at

[[(Nσ)]]Φ = [[(Nσ)0]]Φ ≈ [[(Nσ)b]]Φ. (2.14)

Since we supposed that M ∼=∆ N , that is, pattern∆(M) = pattern∆(Nσ), and therefore Mb =

pattern∆(M) and (Nσ)b = pattern∆(Nσ), we have

[[Mb]]Φ = [[(Nσ)b]]Φ. (2.15)

Then, it is clearly true that

[[N]]Φ = [[Nσ]]Φ (2.16)

because permuting the keys in N does not have any effect in the distributions. Putting Equa-

63

tions (2.13), (2.14), (2.15) and (2.16) together the soundness result follows:

[[M]]Φ ≈ [[N]]Φ.

Example 2.19 (Type-2 Cryptosystems). We can use this general theorem to give an al-

ternative proof for the soundness for type 2 cryptosystems that was earlier discussed in section

2.2. We have to see that condition (ii) of theorem 2.18 is satisfied for this case. The equivalence

relation ≡C in this case is proper as we mentioned in example 1.28. The equivalence relation

≡K is trivial here. The elements µ ∈ QCiphers are in one-to-one correspondence with the keys,

so we can say QCiphers ≡ Keys. Then for a set C = {{Ni}Li}ni=1 as in condition (ii), take

CLi
:= {0}Li

. According to proposition 2.6, condition (ii) is satisfied.

Example 2.20 (One-Time Pad). The soundness theorem that we proved for One-Time Pad

in section 2.4 is not an example for our general theorem. The reason is, that in condition (ii), we

need a single Cν for each ν ∈ µ(C) (i.e. for each length for OTP). On the other hand, in the case

of the OTP, we cannot use the same encrypting key twice, therefore, we cannot use the same

Cν to replace equivalent ciphers within an expression. However, it is possible to define a formal

equivalence and interpretation for One-Time Pad so that theorem 2.18 ensures soundness. The

trick is to define ≡C so that two formal ciphers are equivalent, iff (again) the ciphers have the

same encrypting key. The equivalence of keys, ≡K stays the same. Then, in this case too, the

boxes will be indexed by the encrypting keys. Then for a set C = {{Ni}Li
}ni=1 as in condition

(ii), take CLi
:= {0l(Li)−3}Li

. According to proposition 2.15, condition (ii) is satisfied.

Example 2.21 (Type-1, Type-3 Cryptosystems). For a discussion on type-1 systems, recall

now example 1.19, where we cited the length-function Micciancio and Warinschi used in [39].

They assumed that the encryption scheme views the plaintext as a sequence of basic message

blocks, and that a ciphertext is one block longer then the corresponding plaintext. (Practical

encryption schemes such as CBC or CTR satisfy this property.) For the interpretation, they

assumed that block symbols as well as key symbols are mapped to bit strings of size equal to one

64

basic message block. Therefore, the length-function is defined as

l(K) := 1 for K ∈ Keys

l(B) := 1 for B ∈ Blocks

l((M,N)) := l(M) + l(N)

l({M}K) := l(M) + 1

The equivalence of ciphers, ≡C, for type-1 case is defined so that equivalence holds iff the formal

length of the ciphers are the same. This gives a proper equivalence. A proof, analogous to that

of proposition 2.6 shows that condition (ii) of our general theorem is satisfied.

It is clear that in order to be able to define equivalence on ciphers according to length, some

length-function is needed to track the change in length via pairing and encrypting. This was

easy in the previous example. However, in general, it is not necessarily true that a formal length-

function can be defined. The problem is, that a length-function assigns a specific length to each

expression, whereas an interpretation of an expression, which is a random variable, may have

varying length. For example, in case of the One-Time Pad, the keys may be generated uniformly

such that the length of the outcome of a key-generation varies (but, we have to require that the

encrypting key is at least as long as the plaintext); the length of a cipher will also vary then.

For type-3 cryptosystems, equivalence on ciphers are defined so that equivalence holds iff

the encrypting keys and the lengths agree. Then, again, a proposition similar to 2.6 shows that

condition (ii) of the general theorem holds.

65

Chapter 3

Completeness

66

Proving completeness of an interpretation of formal expressions means proving that when-

ever the interpretations of two expressions are indistinguishable, then the expressions themselves

are equivalent. Clearly, this task can only be completed, if, having received a sample from an

interpretation, we have a method to reveal all information contained in this sample string by re-

vealing keys and decrypting ciphers. Hence, in section 3.1, we present a method of systematically

revealing all possible information from a sample from the interpretation of a given expression.

3.1 Parsing Process

The technique that we present in this chapter will be very useful in the course of proving our

completeness results. The idea can be summarized as follows: Given a sample element x
R←−

[[M]]Φ, x is built from blocks and randomly generated keys which are paired and encrypted. Some

of the keys that were used for encryption when x was built might be explicitly contained in x,

and in this case, using these keys, we can decrypt those ciphers that were encrypted with these

revealed keys. The problem is though, that looking at x, it might not be possible to tell where

blocks, keys, ciphers and pairs are in the string of bits, since we did not assume in general that

we tag strings as we did for OTP. However, and we will exploit this fact repeatedly in our proofs,

if we know that x was sampled from [[M]]Φ for a fixed, known M expression, then by looking at

M , we can find in x the locations of blocks, keys, ciphers and pairs, and we can also tell from

M , where the key decrypting a certain cipher is located. On the following couple of pages, we

present a machinery that, using the form of an expression M , extracts from an x
R←− [[M]]Φ

everything that is possible via decryption and depairing, and distributes the extracted elements

over a special Cartesian product of copies of strings.

Throughout this section, we assume that ∆ = (ExpV ,≡K,≡C) and an interpretation Φ in a

general symmetric encryption scheme Π = ({Ki}i∈I , E, D,≈) is given.

In this chapter we will often use the notion of subexpression occurrence of/in M . This means

a subexpression together with its position in M . The reason for this distinction is that a subex-

pression can occur several times in M , and we want to distinguish these occurrences. But, to

avoid cumbersome notation, we will denote the subexpression occurrence just as the subexpres-

sion itself. We start by defining the notion of 0-level subexpression occurrences of an expression

M :

67

Definition 3.1 (Level 0 Subexpression Occurrences). For an expression M , let us call level

0 subexpression occurrences all those subexpression occurrences in M that are not encrypted.

Let sub0(M) denote the set of all level 0 subexpression occurrences in M . We write N v0 M if

N is a level 0 subexpression occurrence of N .

Receiving an element x
R←− [[M]]Φ, the first thing to do is to extract everything that is

not encrypted, which means that we have to break up all pairs in x, and replace them with

mathematical pairs. This process reveals the unencrypted blocks, keys and ciphers in x (i.e., the

computational or statistical realizations of the 0-level subexpression occurrences).

Definition 3.2 (Blowup Function). For each valid expression M , we define the blowup func-

tion B(M), on strings inductively as follows:

B(K)x := x for K key

B(B)x := x for B block

B((M1,M2))x := (B(M1)⊕ B(M2)) ◦ [·, ·]−1(x)

B({N}K)x := x.

Where B(M1)⊕ B(M2) denotes the function (x, y) 7→ (B(M1)x,B(M2)y).

The element B(M)x is an element of T0(M), which we define inductively the following way:

Definition 3.3 (Associated 0-Tree). The 0-tree associated to a pair of expressions N and M

whenever N v0 M , will be denoted by T0(N,M), and we define it as:

T0(K, M) := strings

T0(B,M) := strings

T0((M1,M2),M) := T0(M1,M)× T0(M2,M)

T0({M ′}K ,M) := strings

Let T0(M) := T0(MM).

68

We remind the reader that we do not identify (strings× strings)× strings with strings×

(strings× strings)

Note also that for expressions N v0 M ′ and N v0 M , we have that T0(N,M ′) = T0(N,M).

Nevertheless, we included M in the definition of T0 since for higher order trees, which we shall

define later, the M in the second argument will make a difference.

Example 3.4. For the expression

M =

((
{0}K6 , {{K7}K1}K4

)
,

((
K2,

{
({001}K3 , {K6}K5)

}
K5

)
, {K5}K2

))
,

sub0(M) =

=


{0}K6 , {{K7}K1}K4 ,K2,

{
{001}K3 , {K6}K5)

}
K5

, {K5}K2 ,
(
{0}K6 , {{K7}K1}K4

)
,(

K2,
{
({001}K3 , {K6}K5)

}
K5

)
,

((
K2,

{
({001}K3 , {K6}K5)

}
K5

)
, {K5}K2

)
,M

 ,

and

T0(M) =
(
strings× strings

)
×
((

strings× strings
)
× strings

)
.

Blocks, keys and ciphers are replaced by strings, pairs are replaced by ×. An element x sampled

from [[M]]Φ looks like [[
c1 , c2

]
,
[[

k , c3

]
, c4

]]
where c1 is a sample from [[{0}K6]]Φ, c2 is a sample from [[{{K7}K1}K4]]Φ, k is a sample from

[[K2]]Φ, c3 is a sample from [[
{
({001}K3 , {K6}K5)

}
K5

]]Φ, and c4 is a sample from [[{K5}K2]]Φ.

When we apply the blow-up function to this element x, we receive

((
c1 , c2

)
,
((

k , c3

)
, c4

))

which is an element of T0(M).

Proposition 3.5. For an expression M , if x
R←− [[M]]Φ, then B(M)(x) ∈ T0(M).

Proof. Immediate from the definitions of B and T0.

69

Perhaps it is even clearer if we label the copies of strings in T0(M) with the formal expressions

that they belong to:

T ′0 (K, M) := stringsK

T ′0 (B,M) := stringsB

T ′0 ((M1,M2),M) := T ′0 (M1,M)× T ′0 (M2,M)

T ′0 ({M ′}K ,M) := strings{M ′}K
.

In our example,

T ′0 (M,M) =
(
s{0}K6

× s{{K7}K1}K4

)
×
((

sK2 × s{({001}K3 ,{K6}K5)}K5

)
× s{K5}K2

)
,

where we used s as a shorthand for strings.

In the previous example, c4 is a random sample from [[{K5}K2]]Φ, and the function that

projects onto the last copy of strings in T0(M), namely, onto strings{K5}K2
, extracts c4 from

the blow-up. Similarly, projecting onto the other copies of strings, we extract samples form

[[{0}K6]]Φ, [[{{K7}K1}K4]]Φ etc. To implement this idea in the general situation, we define what

we can call the “0-Get Function” G0(N,M) for an expression M and a subexpression occurrence

N , whenever N is not encrypted in M . For x
R←− [[M]]Φ, G0(N,M) is to extract from B(M)x

the sample of [[N]]Φ that was used for computing x. The precise definition goes by induction as

usual:

Definition 3.6 (0-Get Function). For subexpression occurrences N v0 N ′ v0 M , we define

the 0-get function associated to the triple (N,N ′,M), G0(N,N ′,M) : T0(N ′,M) → T0(N,M)

inductively (the induction is for N ′) by

G0(N,N, M) := idT0(N,M)

G0(N, (M1,M2),M) :=

 G0(N,M1,M) ◦ π1
T0(M1,M)×T0(M2,M) if N occurs in M1,

G0(N,M2,M) ◦ π2
T0(M1,M)×T0(M2,M) otherwise

70

What we are really interested in is only G0(N,M) := G0(N,M,M).

Example 3.7. In the previous example,

G0

(
{0}K6 ,M

)
, G0

(
{{K7}K1}K4 ,M

)
: T0(M)→ strings

G0

(
{0}K6 ,M

)(
(x1, x2), ((x3, x4), x5)

)
= x1,

G0

(
{{K7}K1}K4 ,M

)(
(x1, x2), ((x3, x4), x5)

)
= x2,

etc; that is, G0

(
{0}K6 ,M

)
projects onto strings{0}K6

, and G0

(
{{K7}K1}K4 ,M

)
projects onto

strings{{K7}K1}K4
etc.

Observe, that for two expressions M and N , if T0(M) = T0(N), then for any M ′ ∈ sub0(M),

there is a unique N ′ ∈ sub0(N) such that G0(M ′,M) = G0(N ′, N). This motivates the following

definition:

Definition 3.8 (Same Position of Subexpression Occurrences). For two expressions M

and N , if T0(M) = T0(N), we say that M ′ ∈ sub0(M) and N ′ ∈ sub0(M) are in the same position

at level 0, if

G0(M ′,M) = G0(N ′, N).

Let

Γ0(N,M) : sub0(M)→ sub0(N)

denote the unique bijection such that

G0(M ′,M) = G0(Γ0(N,M)M ′, N)

for all M ′ ∈ sub0(M).

Example 3.9. Let N = ((0, 0), ((0, 0), 0). Then, if M denotes the expression from the previous

examples, then T0(N) = T0(M). Enumerating the 0’s in N , we get the subexpression occurrences

71

01 = 0, 02 = 0, 03 = 0, 04 = 0 and 05 = 0, with N = ((01, 02), ((03, 04), 05). Then

Γ0(N,M){0}K6 = 01

Γ0(N,M){{K7}K1}K4 = 02

Γ0(N,M)K2 = 03

Γ0(N,M)
{
({001}K3 , {K6}K5)

}
K5

= 04

Γ0(N,M){K5}K2 = 05

Γ0(N,M)
(
{0}K6 , ({{K7}K1}K4

)
= (01, 02)

etc.

For an expression M , let CM denote the set of all those subexpression occurrences in M which

are ciphers encrypted by recoverable keys. I.e.,

CM = {C vM | C = {M ′}K for some M ′ vM and K ∈ R-Keys(M)}.

We emphasize that we mean subexpression occurrences, that is, if an encryption encrypted with

a recoverable key occurs twice in M , then it will be listed twice in CM . Since we assume that the

elements of this set are encrypted by recoverable keys, it is possible to decrypt these elements one

after the other, using only information containing M . Therefore, it is possible to enumerate the

elements of this set in an order in which we can decrypt them by taking keys from M , decrypting

what is possible with these keys and hence revealing more keys and then decrypting again with

those keys etc. Let the total number of this set be denoted by c(M). Then

CN = {C1, C2, ..., Cc(M)}.

Note that this enumeration is not unique. Also, note that the numbering does not mean that you

can decrypt the ciphers only in this order. Let Ci
key denote the key that is used in the encryption

Ci and let Ci
text denote the encrypted expression.

72

Example 3.10. In our example, the only possible way to enumerate is

C1 = {K5}K2

C2 =
{
({001}K3 , {K6}K5)

}
K5

C3 = {K6}K5

C4 = {0}K6 .

Now, to each expression M , we associate the “1-Decrypting Function” D1(M). It acts on

T0(M). For an x ∈ T0(M), D1(M) takes G0(C1,M)x from stringsC1 , takes G0(C1
key,M)x from

stringsC1
key

, and with the latter it decrypts the former if that is possible (namely, if they are of the

right form: the former a cipher and the latter a key), and the result is broken into mathematical

pairs, and what we get this way is put in the last component of the set strings×{0}×T0(C1
text),

and G0(C1
key,M)x goes into the first component. That is, the following element is created:

(
G0(C1

key,M)x , 0 , B(Ci
text)

(
DG0(C1

key,M)x

(
G0(C1,M)x

)))
.

If
(
G0(C1

key,M)x,G0(C1,M)x
)

/∈ DomD, then D1(M) outputs (0, 0, 0). The rest of T0(M) is left

untouched.

Let us introduce the notation

T C1

0 (M) =
{
x ∈ T0(M)

∣∣ (G0(C1
key,M)x,G0(C1,M)x

)
∈ DomD

}
.

Then,

Definition 3.11 (1-Decrypting Function). For expressions N v M , we define the map

73

D1(N,M) on T0(M) inductively as follows: Let x ∈ T0(M). Then

D1(K, M)x := G0(K, M)x

D1(B,M)x := G0(B,M)x

D1({M ′}K ,M)x := G0({M ′}K ,M)x if K /∈ R-Keys(M)

D1((M1,M2),M)x :=
(
D1(M1,M)x , D1(M2,M)x

)
D1(Cj ,M)x :=

:=



(
G0(C1

key,M)x, 0,B(C1
text)

(
DG0(C1

key,M)x(G0(C1,M)x)
))

if x ∈ T C1

0 (M) and j = 1

(0, 0, 0) if x 6∈ T C1

0 (M) and j = 1

G0(Cj ,M)x if j > 1

We introduce the notation D1(M) := D1(M,M), this is what we will be interested in.

We remark, that it is not important how we define D1(C1,M)x when x 6∈ T C1

0 (M), we will

not need that. We chose (0, 0, 0) just for convenience.

Example 3.12. In the example that we have been using, that is, when

M =

((
{0}K6 , {{K7}K1}K4

)
,

((
K2,

{
({001}K3 , {K6}K5)

}
K5

)
, {K5}K2

))
,

with the choice C1 = {K5}K2 ,

D1(M)
(
(x1, x2), ((x3, x4), x5)

)
=



((
x1, x2

)
,
(
(x3, x4),

(
x3, 0,B({K5}K2)(Dx3(x5))

)))
if

(x3, x5) ∈ DomD(
(x1, x2), ((x3, x4), (0, 0, 0)

)
otherwise

The target set of D0(M) is naturally not T0(M), because instead of the copy of strings

corresponding to C1 we now have a set of the form strings× 0×T0(C1
text). We will call this new

set T1(M), and we right now extend the definition of T0 to higher order, up to Tc(M)(M). First

we need the following following:

74

Definition 3.13 (Level i Subexpression Occurrences). We will say that a subexpression

occurrence N v M is level i with respect to CM , and denote this relation by N vi M , if the

occurrence N is not in the occurrence Cj whenever i < j. Let subi(M) denote the set of level i

subexpression occurrences.

Notice, that the level i subexpression occurrences are all those which are revealed once C1,

C2, ... ,Ci are decrypted.

Definition 3.14 (Associated i-Tree). We first inductively define the i-tree associated to a

pair of expressions N vi M , and denote it by Ti(N,M):

Ti(K, M) ::= strings

Ti(B,M) := strings

Ti((M1,M2),M) := Ti(M1,M)× Ti(M2,M)

Ti(Cj ,M) :=

 strings× {0} × Ti(C
j
text,M) if j ≤ i

strings otherwise

Ti−1({M ′}K ,M) := strings for K 6∈ R-Keys(M)

Let Ti(M) := Ti(M,M).

Note that we only “open” the encryptions that are made with the R-Keys(M) and at each

step i we open only the Cj such that j ≤ i.

Fact 3.15. For any expressions M and N , we have that Ti(M) ∩ Ti(N) = ∅ or Ti(M) = Ti(N).

Similarly, we need to define Gi(N,M) and Di(M) for 0 < i ≤ c(M). The first one projects

onto the copy of strings in Ti(M) that corresponds to N , and the second one maps an element

in Ti−1(M) into Ti(M) decrypting the string corresponding to Ci with the appropriate key.

Definition 3.16 (i-Get Function). For subexpression occurrences N vi M , N ′ vi M (0 ≤

i ≤ c(M)) such that N occurs in N ′, we define the map i-get-function associated to the triple

75

(N,N ′,M), Gi(N,N ′,M) : Ti(N ′,M)→ Ti(N,M) inductively by:

Gi(N,N, M) := idTi(N,M)

Gi(N, (M1,M2),M) :=

 Gi(N,M1,M) ◦ π1
Ti(M1,M)×Ti(M2,M) if N vM1

Gi(N,M2,M) ◦ π2
Ti(M1,M)×Ti(M2,M) otherwise

Gi(N,Cj ,M) := Gi(N,Cj
text,M) ◦ π3

Ti(C
j
key,M)×{0}×Ti(C

j
text,M)

, for j ≤ i, N 6= Cj

Define

Gi(N,M) := Gi(N,M,M).

Definition 3.17 (Same Position of Subexpression Occurrences). For two expressions M

and N , if Ti(M) = Ti(N), we say that M ′ ∈ subi(M) and N ′ ∈ subi(M) are in the same position

at level i, if

Gi(M ′,M) = Gi(N ′, N).

Let

Γi(N,M) : subi(M)→ subi(N)

denote the unique bijection such that

Gi(M ′,M) = Gi(Γi(N,M)M ′, N)

for all M ′ ∈ subi(N).

Let

T Ci

i−1(M) =
{
x ∈ Ti−1(M)

∣∣ (Gi−1(Ci
key,M)x,Gi−1(Ci,M)x

)
∈ DomD

}
.

Definition 3.18 (i-Decrypting Function). For expressions N vi−1 M and 1 ≤ i ≤ c(M), we

76

define the map Di(N,M) : Ti−1(M)→ Ti(N,M) inductively as follows: Let x ∈ Ti−1(M)

Di(K, M)x := Gi−1(K, M)x

Di(B,M)x := Gi−1(B,M)x

Di({M ′}K ,M)x := Gi−1({M ′}K ,M)x if K /∈ R-Keys(M)

Di((M1,M2),M)x := (Di(M1,M)x,Di(M2,M)x)

Di(Cj ,M)x :=

=



(
Gi−1(C

j
key,M)x, 0,Di(C

j
text,M)) if j < i(

Gi−1(Ci
key,M)x, 0,B(Ci

text)
(
DGi−1(Ci

key,M)x(Gi−1(Ci,M)x)
))

ifx∈T Ci

i−1(M) and j = i

(0, 0, 0) if x 6∈ T Ci

i−1(M) and j = i

Gi−1(Cj ,M)x if j > i

Let

D(M) := Dc(M)(M) ◦ ... ◦ D1(M) ◦ B(M)

The functions Di(M) one after the other decrypt all the ciphers that are encrypted with

recoverable keys. Finally, D(M) decrypts all ciphers encrypted with recoverable keys upon an

input from sampling [[M]]Φ.

Example 3.19. In our on-going example,

M =

((
{0}K6 , {{K7}K1}K4

)
,

((
K2,

{
({001}K3 , {K6}K5)

}
K5

)
, {K5}K2

))
,

If y is a sample from [[M]]Φ, then D(M)y has the form

((
(y6, 0, 0), y1

)
,

((
y2,
(
y5, 0, (y3, (y5, 0, y6))

))
,
(
y2, 0, y5

)))
,

Where y2, y5, y6 are outcomes of the key-generation algorithms φ(K2), φ(K5), φ(K6) respectively,

y1 is an undecryptable sample element from [[{{K7}K1}K4]]Φ, and y3 is an undecryptable sample

from [[{001}K3]]Φ. Moreover, (y6, 0, 0) indicates that the key y6 encrypts the plaintext 0, (y2, 0, y5)

indicates that the key y2 encrypts the plaintext y5 (which is also a key), and so on.

77

The following lemma essentially claims that if the interpretation is such that conditions (i)

and (ii) bellow hold, then for any two valid expressions, M and N , the distribution of D(M)x,

where x is sampled from [[M]]Φ (let D(M)([[M]]Φ denote this distribution), is indistinguishable

from the distribution of D(N)y, where y is sampled from [[N]]Φ whenever [[M]]Φ ≈ [[N]]Φ.

For a function f on strings, let f([[M]]Φ) denote the probability ditribution of f(x) as x is

sampled from [[M]]Φ.

Lemma 3.20. Let ∆ = (ExpV ,≡K,≡C) be a formal logic for symmetric encryption, and let Φ

be an interpretation of ExpV in Π = ({Ki}i∈I , E, D,≈). Suppose that this realization satisfies

the following properties for any K, K ′,K ′′ ∈ Keys, B ∈ Blocks, M,M ′, N ∈ ExpV :

(i) No pair of [[K]]Φ, [[B]]Φ, [[(M,N)]]Φ, [[{M ′}K′]]Φ are equivalent with respect to ≈; that is, keys,

blocks, pairs, ciphers are distinguishable.

(ii) If [[(K, {M}K)]]Φ ≈ [[(K ′′, {M ′}K′)]]Φ, then K ′ = K ′′.

Let M and N be valid formal expressions. Let CM = {C1
M , ...C

c(M)
M } be an enumeration of all

ciphers encrypted by recoverable keys in M such that they can be decrypted in this order. Then,

[[M]]Φ ≈ [[N]]Φ implies that c(M) = c(N), and CN = {C1
N , ..., C

c(N)
N } can be enumerated in the

order of decryption such that Γc(M)(N,M)Ci
M = Ci

N . Moreover, with this enumeration of CN ,

Di(M) = Di(N), and

D(M)([[M]]Φ) ≈ D(N)([[N]]Φ)

Proof. Let M and N be expressions such that [[M]]Φ ≈ [[N]]Φ. Since we assumed condition (i)

and since the equivalence ≈ is assumed to be invariant under depairing, the pairs that are not

encrypted in M and in N must be in the same positions, and so B(M) = B(N) must hold. Since

the blow-up function is received by repeated application of the inverse of the pairing function,

projecting and coupling,

B(M)([[M]]Φ) ≈ B(N)([[N]]Φ). (3.1)

As mentioned in Proposition 3.5, if x is sampled from [[M]]Φ, then B(M)x ∈ T0(M). Therefore,

T0(M) = T0(N).

78

Since T0(M) = T0(N), there is a unique bijection

Γ0(N,M) : sub0(M)→ sub0(N)

that satisfies

G0(M ′,M) = G0(Γ0(N,M)M ′, N).

Let C1
M = {C1

M,text}C1
M,key

. Consider L1 := Γ0(N,M)C1
M,key. L1 must be a key for the following

reason:

(G0(C1
M,key,M) ◦ B(M))([[M]]Φ) ≈ (G0(C1

M,key,M) ◦ B(M))([[N]]Φ),

since we again apply the same function, G0(C1
M,key,M) ◦ B(M) on [[M]]Φ and [[N]]Φ, and this

function is made up of depairing, projecting and coupling. But, for the left hand side we clearly

have

(G0(C1
M,key,M) ◦ B(M))([[M]]Φ) = [[C1

M,key]]Φ,

and for the right hand side,

(G0(C1
M,key,M) ◦ B(M))([[N]]Φ) = (G0(L1, N) ◦ B(N))([[N]]Φ) = [[L1]]Φ.

Therefore, by assumption (i) L1 must be a key. Similarly,

(G0(C1
M ,M) ◦ B(M))([[M]]Φ) ≈ (G0(C1

M ,M) ◦ B(M))([[N]]Φ).

The left-hand side equals [[C1
M]]Φ, hence we need to have an interpretation of a cipher on the

right too, implying that for some N ′ expression and L key,

Γ0(N,M)C1
M = {N ′}L

and hence

G0(C1
M ,M) = G0({N ′}L, N). (3.2)

79

Then, according to the foregoing,

(
G0(C1

M,key,M),G0(C1
M ,M)

)
◦ B(M)) =

(
G0(L1, N),G0({N ′}L, N)

)
◦ B(N),

and therefore,

((
G0(C1

M,key,M),G0(C1
M ,M)

)
◦ B(M)

)(
[[M]]Φ

)
≈
((
G0(L1, N),G0({N ′}L, N)

)
◦ B(N)

)(
[[N]]Φ

)
.

But, the left-hand side equals [[(C1
M,key, C

1)]]Φ, whereas the right-hand side is [[(L1, {N ′}L)]]Φ, so

we have

[[(C1
M,key, C

1
M)]]Φ ≈ [[(L1, {N ′}L)]]Φ.

By assumption (ii) then, L = L1 follows, because C1
M = {C1

M,text}C1
M,key

. But then we can choose

the first element of CN to be the occurrence {N ′}L1 , and with this choice,

D1(M) = D1(N).

Therefore

D1(M)(B(M)([[M]]Φ)) ≈ D1(N)(B(N)([[N]]Φ)),

and therefore,

T1(M) = T1(N),

because D1(M)(B(M)([[M]]Φ)) gives a distribution on T1(M), and D1(N)(B(N)([[N]]Φ)) gives a

distribution on T1(N).

An argument similar to the one above shows that

D2(M) = D2(N).

Namely, there is a unique bijection

Γ1(N,M) : sub1(M)→ sub1(N)

80

satisfying

G1(M ′,M) = G1(Γ1(N,M)M ′, N).

Then, just as we proved for L1, L2 := Γ1(N,M)C2
key must be a key, and

Γ1(N.M)C2 = {N ′′}L2

for some N ′′ expression, implying that

D2(M) = D2(N).

And so on. So

Dc(M)(M) ◦ ... ◦ D1(M)(B(M)([[M]]Φ)) ≈ Dc(M)(N) ◦ ... ◦ D1(N)(B(N)([[N]]Φ)),

since the functions applied on [[M]]Φ and [[N]]Φ are the same, and they are made up only of

depairing, projecting, coupling and decrypting. Then, c(M) ≤ c(N). Reversing the role of M

and N in the argument, we get that c(N) ≤ c(M), and so c(M) = c(N). Hence,

D(M) = D(N),

and

D(M)([[M]]Φ) = D(N)([[N]]Φ).

We would like to indicate how the proof goes via an example as well.

Example 3.21. Suppose again, that

M =

((
{0}K6 , {{K7}K1}K4

)
,

((
K2,

{
({001}K3 , {K6}K5)

}
K5

)
, {K5}K2

))
,

and assume that conditions (i) and (ii) of the lemma are satisfied. Suppose that N is also a valid

81

expression such that [[M]]Φ ≈ [[N]]Φ. Let

C1
M = {K5}K2

C2
M =

{
({001}K3 , {K6}K5)

}
K5

C3
M = {K6}K5

C4
M = {0}K6 .

M is a pair of two expressions: M = (M1,M2). Then, since [[(M1,M2)]]Φ = [[N]]Φ, condition (i)

of the lemma ensures that N must be a pair too: N = (N1, N2). Then, since

[[M1]]Φ = π1
strings×strings

◦ [·, ·]−1([[M]]Φ),

and

[[N1]]Φ = π1
strings×strings

◦ [·, ·]−1([[N]]Φ)

(where π1
strings×strings

denotes projection onto the first component of strings × strings), and

since ≈ is assumed to be preserved by depairing and projecting, it follows that

[[M1]]Φ ≈ [[N1]]Φ.

Therefore, since M1 is a pair, N1 must be a pair too. And so on. This way we conclude, that

the unencrypted pairs in M are in the same position as the unencrypted pairs in N , and hence

B(M) = B(N).

It also follows then, that

T0(M) =
(
strings× strings

)
×
((

strings× strings
)
× strings

)
= T0(N).

At this point, we know that N has the form

N =
((

N3, N4

)
,
(
(N5, N6), N7

))

82

Now, we took C1
M to be {K5}K2 , the corresponding string, which is a cipher, is located in the last

component of T0(M). The key string that decrypts this cipher is located in the third component

of T0(M). Hence

G0(C1
M ,M) = π5

T0(M)

and

G0(C1
M,key,M) = π3

T0(M).

But then, since πi
T0(M) preserves ≈, it follows that

π3
T0(M)(B(M)([[M]]Φ)) ≈ π3

T0(M)(B(N)([[N]]Φ)).

It is also true that

π3
T0(N) = G0(N5, N).

But

G0(C1
M,key,M)(B(M)([[M]]Φ)) = [[K2]]Φ,

and

G0(N5, N)(B(N)([[N]]Φ)) = [[N5]]Φ,

so

[[N5]]Φ ≈ [[K2]]Φ,

and hence, by the assumption (i) of the lemma, it follows that N5 must also be a key, let us

denote it with L1. Similarly,

π5
T0(N) = G0(N7, N),

but then

[[N7]]Φ ≈ [[{K5}K2]]Φ,

and therefore N7 must be a cipher: N7 = {N ′}L for some expression N ′ and key L. To get that

L = L1, consider

(π3
T0(M), π

5
T0(M)) ◦ B(M)([[M]]Φ) = [[(K2, {K5}K2)]]Φ

83

and

(π3
T0(N), π

5
T0(N)) ◦ B(N)([[N]]Φ) = [[(L1, {N ′}L)]]Φ.

From this, since the left-hand sides are equivalent, we conclude that

[[(K2, {K5}K2)]]Φ ≈ [[(L1, {N ′}L)]]Φ,

which means by condition (ii) of the lemma that

L = L1.

Therefore, if we define C1
N as {N ′}L, then they and the keys that decrypt them are also in the

same position, so

D1(M) = D1(N).

Remember from example 3.12, that D1(M) = D1(N) does the following:

D1(M)
(
(x1, x2), ((x3, x4), x5)

)
=



((
x1, x2

)
,
(
(x3, x4),

(
x3, 0,B({K5}K2)(Dx3(x5))

)))
if

(x3, x5) ∈ DomD(
(x1, x2), ((x3, x4), (0, 0, 0)

)
otherwise,

so if x is sampled from [[M]]Φ or [[N]]Φ, then D1(M)(B(M)x) = D1(N)(B(N)x) has the form

((
x1, x2

)
,
(
(x3, x4),

(
x3, 0, x6

)))
,

and

T1(M) = T1(N) =
(
strings× strings

)
×
((

strings× strings
)
×
(
strings× {0} × strings

))

Then, continue this process until you show that D4(M) = D4(N).

84

3.2 Completeness

In this section, we prove some completeness results with the help of lemma 3.20. Just as in

the case of soundness, we start with completeness for the type-2 case and the One-Time Pad in

section 3.2.1 and section 3.2.2 respectively. Then, in section 3.2.3 we prove a general completeness

theorem.

3.2.1 Completeness of Type-2 Encryption Schemes

We remind the reader, that a type-2 encryption scheme has the characteristic that

Pr
[
k

R←− Kη : AEk(·)
η = 1

]
− Pr

[
k

R←− Kη : AEk(0)
η = 1

]

is a negligible function of η. This does not require that key-repetition is concealed. On the other

hand, it may be concealed, the definition does not forbid that. We proved the soundness result

for the logic expanded with boxes indexed by keys. By introducing these boxes, we ensured that

formal ciphers were equivalent only if they were encrypted with the same key, and that was enough

to prove computational indistinguishability after interpretation. Now we want to show that

computational equivalence implies the formal, that is, formal inequivalence implies computational

inequivalence. But since in our logic, ciphers with different encrypting keys are inequivalent, we

have to make it sure that they have inequivalent interpretations. For completeness, we will

therefore need the following property of the encryption scheme:

Definition 3.22 (Strictly Which-Key Revealing Scheme). We say that an encryption

scheme Π is strictly which-key revealing if it is type-2 secure and there exists a polynomial-time

adversary A such that the following function is not negligible as a function of η:

AdvΠ[η](A) := Pr
[
k, k′ ← Kη : AEk(·),Ek′ (·)

η = 1
]
− Pr

[
k ← Kη : AEk(·),Ek(·)

η = 1
]

Proposition 3.23. Suppose the cryptosystem is strictly which-key revealing. Then, for any

85

expressions M1, M2, N1, N2 and keys L1, L2, L

[[({M1}L1 , {M2}L2)]]Φ ≈ [[({N1}L, {N2}L)]]Φ

implies

L1 = L2.

Proof. Assume the contrary. Since we assumed that the system is which-key revealing, there is

an adversary A such that

Pr
[
k, k′ ← Kη : AEk(·),Ek′ (·)

η = 1
]
− Pr

[
k ← Kη : AEk(·),Ek(·)

η = 1
]

is not negligible. But, by adding and subtracting a few terms, we can arrive at

Pr
[
k, k′

R←− Kη : AEk(·),Ek′ (·)
η = 1

]
− Pr

[
k

R←− Kη : AEk(·),Ek(·)
η = 1

]
=

Pr
[
k, k′

R←− Kη : AEk(·),Ek′ (·)
η = 1

]
−

−Pr
[
k, k′

R←− Kη, x1
R←− [[M1]]Φη : AEk(x1),Ek′ (·)

η = 1
]

+

+Pr
[
k, k′

R←− Kη, x1
R←− [[M1]]Φη

: AEk(x1),Ek′ (·)
η = 1

]
−

−Pr
[
k, k′

R←− Kη, x1
R←− [[M1]]Φη

, x2
R←− [[M2]]Φη

: AEk(x1),Ek′ (x2)
η = 1

]
+

+Pr
[
k, k′

R←− Kη, x1
R←− [[M1]]Φη

, x2
R←− [[M2]]Φη

: AEk(x1),Ek′ (x2)
η = 1

]
−

−Pr
[
k

R←− Kη, y1
R←− [[N1]]Φη

, y2
R←− [[N2]]Φη

: AEk(y1),Ek(y2)
η = 1

]
+

+Pr
[
k

R←− Kη, y1
R←− [[N1]]Φη , y2

R←− [[N2]]Φη : AEk(y1),Ek(y2)
η = 1

]
−

−Pr
[
k

R←− Kη : AEk(0),Ek(0)
η = 1

]
+

+Pr
[
k

R←− Kη : AEk(0),Ek(0)
η = 1

]
−

−Pr
[
(k R←− Kη : AEk(·),Ek(·)

η = 1
]

Since the left hand side of this equation is supposed to be non-negligible, the right-hand side must

also be non-negligible. But, on the right-hand side, the first, second, fourth and fifth differences

86

are negligible, because of type-2 security, therefore, the third difference, namely,

Pr
[
k, k′

R←− Kη, x1
R←− [[M1]]Φη

, x2
R←− [[M2]]Φη

: AEk(x1),Ek′ (x2)
η = 1

]
−

−Pr
[
k

R←− Kη, y1
R←− [[N1]]Φη

, y2
R←− [[N2]]Φη

: AEk(y1),Ek(y2)
η = 1

]

must not be negligible, which proves the lemma.

The following theorem characterizes the necessary requirements for a type-2 encryption scheme

for the formal language that we introduced for the type-2 case and its interpretation to be com-

plete. Condition (ii) in the theorem was used by Horvitz and Gligor in [26] when they were

proving completeness for the type-0 case and they called it weak confusion freeness. Observe,

that if the cryptosystem is strictly which-key revealing, then condition (iii) is satisfied according

to the previous proposition.

Theorem 3.24. Let Π = (K, E, D,≈) be a type-2 encryption scheme, Φ the interpretation in Π

of ∆ = (Exp,≡K,≡C), where ≡K makes all keys equivalent, and ≡C means equivalence iff the

encrypting keys are identical. Then, completeness of Φ holds if and only if

for any K, K ′,K ′′ ∈ Keys, B ∈ Blocks, M,M ′, N ∈ ExpV ,

(i) no pair of [[K]]Φ, [[B]]Φ, [[(M,N)]]Φ, [[{M ′}K′]]Φ are equivalent with respect to ≈; that is, keys,

blocks, pairs, ciphers are distinguishable,

(ii) if [[(K, {M}K)]]Φ ≈ [[(K ′′, {M ′}K′)]]Φ, then K ′ = K ′′, and

(iii) for any expressions M1, M2, N1, N2 and keys L1, L2, L

[[({M1}L1 , {M2}L2)]]Φ ≈ [[({N1}L, {N2}L)]]Φ

implies

L1 = L2.

Proof. The only if direction is trivial. In order to prove the if part, consider two expressions

M and N such that [[M]]Φ ≈ [[N]]Φ. By condition (i) and (ii), Lemma 3.20 is applicable, so,

c(M) = c(N),

D(M)([[M]]Φ) ≈ D(N)([[N]]Φ),

87

and

Tc(M)(M) = Tc(N)(N).

In each entry of Tc(M)(M) and Tc(N)(N), the distribution corresponds either to the interpretation

of a key, or of a block, or of an undecryptable cipher (i.e. one that corresponds to a box).

Naturally, the same blocks must be in the same positions of Tc(M)(M) and Tc(N)(N), because the

distributions D(M)([[M]]Φ) and D(N)([[N]]Φ) are indistinguishable, and because of condition (i).

Hence, the patterns of M and N contain the same blocks in the same positions. Moreover, since

D(M)([[M]]Φ) and D(N)([[N]]Φ) are indistinguishable, the entries in Tc(M)(M) and in Tc(N)(N)

containing strings sampled from key generation must be in the same places because of (i) again.

Furthermore, the indistinguishability of in Tc(M)(M) and in Tc(N)(N) also implies that repetitions

of a key generation outcome must occur in the same positions of Tc(M)(M) and Tc(N)(N) as well.

(This is a consequence of the properties of key-generation in definition 1.36.) Therefore the key

symbols in the patterns of M and N change together, so it is possible to rename the recoverable

keys of N so that the keys in the pattern of Nσ are the same as the keys in the pattern of

M . Finally, since the distributions of D(M)([[M]]Φ) and D(N)([[N]]Φ) are indistinguishable,

condition (i) implies that pairs of indistinguishable undecryptable ciphers occur in exactly the

same entries in Tc(M)(M) and Tc(N)(N). But, that means, according to condition (iii), that if

there are undecryptable ciphers encrypted with identical (or different) keys in M , then in the

same position in N , there are undecryptable ciphers encrypted with identical (or different) keys.

Hence, the identical boxes in the pattern of M , located in exactly the same places as the identical

boxes in the pattern of N and hence of Nσ (because renaming the recoverable keys does not

effect the boxes; they are indexed with non-recoverable keys). But then it is possible to rename

those keys that appear as box-indexes (keys in B-Keys(Nσ)), so that the box-indexes in the two

patterns agree as well. Therefore, the two patterns must agree up to key-renaming.

In order to see it more clearly how the proof works, we introduce an example:

Example 3.25. Consider, as we did earlier in this chapter, the expression

M =

((
{0}K6 , {{K7}K1}K4

)
,

((
K2,

{
({001}K3 , {K6}K5)

}
K5

)
, {K5}K2

))
,

88

with pattern

pattern2(M) =

((
{0}K6 ,�K4

)
,

((
K2,

{
(�K3 , {K6}K5)

}
K5

)
, {K5}K2

))
,

and assume, that N is another expression such that

[[M]]Φ ≈ [[N]]Φ.

We have to show, that N ∼=2 M . According to lemma 3.20, D(M) = D(N), and, as we saw it in

the examples of section 3.1, if y is a sample from [[M]]Φ or of [[N]]Φ, then D(M)y = D(N)y has

the form ((
(y6, 0, 0), y1

)
,

((
y2,
(
y5, 0, (y3, (y5, 0, y6))

))
,
(
y2, 0, y5

)))
, (3.3)

where, if y is sampled from [[M]]Φ, then y2, y5, y6 are outcomes of the key-generation algorithms

φ(K2), φ(K5), φ(K6) respectively, y1 is an undecryptable sample element from [[{{K7}K1}K4]]Φ,

and y3 is an undecryptable sample from [[{001}K3]]Φ.

For the case when y is sampled from [[N]]Φ the form of expression 3.3 shows that counting

from the left, the first occurrence of y6, the first and second occurrence of y5, and the second

occurrence of y2 must be samples from interpretations of keys. The different occurrences of these

elements vary together as we sample other elements, so, since we assumed that the distribution of

separate key generations can be distinguished from the same key generation twice (in definition

1.36), we get that the different occurrences of y2, y5 and y6 must stand for the same subexpression

keys of N . Let us call them L1, L2 and L3 respectively. L1, L2 and L3 must be all different keys,

because y2, y5 and y6 vary separately. Formula 3.3 shows then that N has the following form:

N =

((
{N1}L3 , N2

)
,

((
L1,
{
(N3, {L3}L2)

}
L2

)
, {L2}L1

))
.

Comparing this with 3.3, we also have that 0 is a sample element of [[N1]]Φ, y1 is a sample element

from [[N2]]Φ, and y3 is a sample from [[N3]]Φ. Therefore, since

D(M)([[M]]Φ) = D(N)([[N]]Φ), (3.4)

89

it follows that

[[N1]]Φ ≈ [[0]]Φ,

[[N2]]Φ ≈ [[{{K7}K1}K4]]Φ,

[[N3]]Φ ≈ [[{001}K3]]Φ.

We assumed that the conditions of the theorem holds, so (i) implies that for some N4 and N5

subexpressions and L4, L5 keys,

N1 = 0,

N2 = {N4}L4 ,

N3 = {N5}L5 .

L4 and L5 cannot equal any of L1, L2 or L3, because otherwise we could have continued the

decryption process for N , and therefore for M as well. Equation 3.4 also implies that

[[({{K7}K1}K4 , {001}K3]]Φ ≈ [[({N4}L4 , {N5}L5)]]Φ,

and therefore, by condition (iii), we receive L4 6= L5. Hence, up to key-renaming, N looks like

N ′ =

((
{0}K3 , {N4}K4

)
,

((
K1,

{
({N5}K5 , {K3}K2)

}
K2

)
, {K2}K1

))
,

which has pattern

pattern(N ′) =

((
{0}K3 ,�K4

)
,

((
K1,

{
(�K5 , {K3}K2)

}
K2

)
, {K2}K1

))
,

which shows that

M ∼=2 N.

90

3.2.2 Completeness for One-Time Pad

In this section we show completeness for the One-Time Pad. The method of the proof is quite

similar to the proof method in the type-2 case. Observe though, that conditions like (i)-(iii) in

theorem 3.24 here are missing. The reason is, that we considered a specific implementation of

the One-Time Pad, whereas the fact that an encryption scheme is type-2, does not specify the

scheme completely; our specific OTP implementation does satisfy the corresponding conditions,

as we will see it in the course of the proof.

Theorem 3.26. Let Π = ({Kn}n≥4, E, D,≈) be the One-Time Pad encryption scheme that we

presented in Section 1.3.1, Φ the interpretation of ExpOTP for the OTP. Then, completeness of

Φ holds.

Proof. Consider two expressions M and N such that [[M]]Φ ≈ [[N]]Φ. In order to be able to apply

Lemma 3.20, we need to show that conditions (i) and (ii) of the lemma hold for One-Time Pad.

The reason for this is that the samples of the interpretations of expressions are tagged, that is,

[[M]]Φ has a tag, which is either 001, 010, 001, or ends with 1 in case of pairs. So, keys, blocks,

pairs, ciphers are clearly distinguishable, and hence condition (i) holds. To see that condition

(ii) is satisfied, consider Q = (K, {M}K) and Q′ = (K ′′, {M ′}K′). Since the last digit of

DΦQ(K)(ω)(ΦQ({M}K)(ω))

is constant for all ω, whereas the last digit of

DΦQ′ (K′′)(ω)(ΦQ′({M ′}K′)(ω))

changes (probability 0.5 for 1 and 0.5 for 0) if K ′ 6= K ′′, condition (ii) is satisfied. Hence, we can

apply the lemma.

By Lemma 3.20 then, c(M) = c(N),

D(M)([[M]]Φ) ≈ D(N)([[N]]Φ),

91

and

Tc(M)(M) = Tc(N)(N).

In each entry of Tc(M)(M) and Tc(N)(N), the distribution corresponds either to the interpretation

of a key, or of a block, or of an undecryptable cipher (i.e. one that corresponds to a box).

Naturally, the same blocks must be in the same positions of Tc(M)(M) and Tc(N)(N), because

the distributions of D(M)([[M]]Φ) and D(N)([[N]]Φ) are identical . Hence, the patterns of M and

N contain the same blocks in the same positions. Moreover, the entries with identical keys (those

which are the same outcomes of a key-generation) in Tc(M)(M) must occur exactly in the same

places as the identical keys occur Tc(N)(N), therefore the key symbols in the patterns of M and

N change together, so it is possible to rename the recoverable keys of N with length-preserving σ

so that the keys in the pattern of Nσ are the same as the keys in the pattern of M . Finally, since

the distributions of D(M)([[M]]Φ) and D(N)([[N]]Φ) are identical, ciphers with the same length

occur in the same entries of Tc(M)(M) as in Tc(N)(N). Therefore, boxes of the same length will

appear in the same position in the two patterns, and that is what we needed to prove.

3.2.3 General Case

Theorem 3.27. Let ∆ = (ExpV ,≡K,≡C) be a formal logic for symmetric encryption, assume

that ≡C is proper and that ≡K and ≡C are independent. Let Φ be an interpretation in Π =

({Ki}i∈I , E, D,≈). Then, completeness of Φ holds, if and only if the following conditions are

satisfied : For any K, K ′,K ′′ ∈ Keys, B ∈ Blocks, M,M ′, N ∈ ExpV ,

(i) no pair of [[K]]Φ, [[B]]Φ, [[(M,N)]]Φ, [[{M ′}K′]]Φ are equivalent with respect to ≈; that is, keys,

blocks, pairs, ciphers are distinguishable.

(ii) if [[(K, {M}K)]]Φ ≈ [[(K ′′, {M ′}K′)]]Φ, then K ′ = K ′′.

(iii) For any two pairs of valid ciphers, {{Mi}Li
}2i=1, {{Ni}L′

i
}2i=1

[[({M1}L1 , {M2}L2)]]Φ ≈ [[({N1}L′
1
, {N2}L′

2
)]]Φ

implies

({M1}L1 , {M2}L2) ∼=∆ ({N1}L′
1
, {N2}L′

2
).

92

Proof. The only if part is trivial. In order to prove the if part, consider two expressions M and N

such that [[M]]Φ ≈ [[N]]Φ. By condition (i) and (ii), Lemma 3.20 is applicable, so, c(M) = c(N),

D(M)([[M]]Φ) ≈ D(N)([[N]]Φ),

and

Tc(M)(M) = Tc(N)(N).

In each entry of Tc(M)(M) and Tc(N)(N), the distribution corresponds either to the interpretation

of a key, or of a block, or of an undecryptable cipher (i.e. one that corresponds to a box).

Naturally, the same blocks must be in the same positions of Tc(M)(M) and Tc(N)(N), because the

distributions of D(M)([[M]]Φ) and D(N)([[N]]Φ) are indistinguishable, and because of condition

(i). Hence, the patterns of M and N contain the same blocks in the same positionsMoreover, since

D(M)([[M]]Φ) and D(N)([[N]]Φ) are indistinguishable, the entries in Tc(M)(M) and in Tc(N)(N)

containing strings sampled from key generation must be in the same places because of (i) again.

Furthermore, the indistinguishability of in Tc(M)(M) and in Tc(N)(N) also implies that repetitions

of a key generation outcome must occur in the same positions of Tc(M)(M) and Tc(N)(N) as well.

(This is a consequence of the properties of key-generation in definition 1.41.) Therefore the key

symbols in the patterns of M and N change together, so it is possible to rename the recoverable

keys of N (with a ≡K preserving function σ so that the keys in the pattern of Nσ are the same

as the keys in the pattern of M .

Since the distributions of D(M)([[M]]Φ) and D(N)([[N]]Φ) are indistinguishable, condition

(i) implies that the undecryptable ciphers occur in exactly the same entries in Tc(M)(M) and

Tc(N)(N). This means, that in the pattern of M and N , the boxes appear in the same position.

This together with the conclusions of the previous paragraph means, that apart from the boxes,

everything else in the pattern of M and of Nσ must be the same. By replacing N with Nσ, we

can assume from now on that the recoverable keys of N and M are identical, and that the pattern

of M and N are the same outside the boxes. Therefore, we only have to show that there is a key

renaming σ′ that carries the boxes of N into the boxes of M without changing the recoverable

keys.

Say, there are l boxes altogether in the pattern of M (and hence in the pattern of N). Let

93

{M1}L1 , {M2}L2 , ..., {Ml}Ll
be the corresponding undecryptable ciphers in M that turn into

boxes in M and {N1}L′
1
, {N2}L′

2
, ..., {Nl}L′

l
the corresponding ciphers in N . Then, for i, j ≤ l,

i 6= j,

[[({Mi}Li
, {Mj}Lj

)]]Φ ≈ [[({Ni}L′
i
, {Nj}L′

j
)]]Φ

holds since D(M)([[M]]Φ) and D(N)([[N]]Φ) are indistinguishable. This means by condition (iii),

that

({Mi}Li , {Mj}Lj) ∼=∆ ({Ni}L′
i
, {Nj}L′

j
)

and hence there is a key-renaming σij such that

σij(µ({Ni}L′
i
)) = µ({Mi}Li

)

and

σij(µ({Nj}L′
j
)) = µ({Mj}Lj

),

implying

(�µ({Mi}Li
),�µ({Mj}Lj

)) = (�σij(µ({Ni}L′
i
)),�σij(µ({Nj}L′

j
))).

We assumed that ≡C is proper, therefore, by proposition 1.32, each µ box-index of N has a

representative Cµ such that Cµ does not contain any element of R-Keys(N) = R-Keys(M), and

for any two different µ1 and µ2, the only common element of Keys(Cµ1) and Keys(Cµ2) may be

the encrypting key, only if there is one possible encrypting key for all elements in µ1 and µ2.

We define σ′ inductively. Since we assumed that ≡C and ≡K are independent, it is possible to

modify σ12 such that the σ1 that we get leaves

(
l⋃

i=3

Keys(Cµ({Ni}L′
i
)) ∪ R-Keys(N)

)
\
(
{L′1, L′2} ∪Keys(Cµ({N1}L′1

)) ∪Keys(Cµ({N2}L′2
))
)

untouched but still

σ1(µ({N1}L′
1
)) = µ({M1}L1)

and

σ1(µ({N2}L′
2
)) = µ({M2}L2)

94

hold. Suppose now that we have defined σk such that for some h, h > k,

σk(K) = K,

whenever

K ∈

(
l⋃

i=h+1

Keys(Cµ({Ni}L′
i
)) ∪ R-Keys(N)

)
\

(
{L′1, ..., L′h} ∪

(
h⋃

i=1

Keys(Cµ({Ni}L′
i
))

))
,

but

σk(µ({Ni}L′
i
)) = µ({Mi}Li)

for i ≤ h. In order to define σk+1, find first the smallest a > h such

Cµ({Na}L′a
) 6= Cµ({Ni}L′

i
)

holds for all i < a. If there is no such a, then the process stops, and σ′ := σk. If there is such an

a, then consider σaj with any j 6= a. Since ≡C and ≡K are independent, it is possible to alter

σaj into σ′aj such that

σ′aj(µ({Na}L′
a
)) = µ({Ma}La

)

and

σ′aj(K) = K

whenever

K ∈
l⋃

i=1

Keys(Cµ({Ni}L′
i
)) ∪ σk

(
l⋃

i=1

Keys(Cµ({Ni}L′
i
))

)
∪ R-Keys(N)

and

K /∈ {L′a} ∪Keys(Cµ({Na}L′a
)).

Therefore, the only key K in
⋃l

i=1 Keys(Cµ({Ni}L′
i
)) that is changed by both σk and σ′aj may

only be L′a, and that happens by propositions 1.30 and 1.32 when for some i ≤ h,

µ({Na}L′
a
)key = µ({Ni}L′

i
)key = {L′a} = {L′i}.

95

Since

σ′aj(µ({Na}L′
a
)) = µ({Ma}La

),

it follows by proposition 1.31 that µ({Ma}La
)key = {La}, and

σ′aj(L
′
a) = La

must hold. Also, since

σia(µ({Ni}L′
i
)) = µ({Mi}Li

),

σia(L′i) = Li

follows, and

σia(µ({Na}L′
a
)) = µ({Ma}La

)

implies

σia(L′a) = La.

But, L′i = L′a, so

Li = La.

Then,

σk(L′a) = σk(L′i) = σia(L′i) = Li = La.

Hence, σ′ia and σk take the same value on L′a which is the only interesting element that they

both change. So we can define σk+1 to be the key-renaming that does the job of both σ′ia and

σk together. This way, for a > k + 1,

σk+1(K) = K,

whenever

K ∈

(
l⋃

i=a+1

Keys(Cµ({Ni}L′
i
)) ∪ R-Keys(N)

)
\

(
{L′1, ..., L′a} ∪

(
a⋃

i=1

Keys(Cµ({Ni}L′
i
))

))
,

96

but

σk+1(µ({Ni}L′
i
)) = µ({Mi}Li

)

for i ≤ a. The process stops, when there is no a ≥ k such that

Cµ({Na}L′a
) 6= Cµ({Ni}L′

i
)

holds for all i < a, and then σ′ = σk. This σ′ satisfies the required properties, that is, it leaves

the recoverable keys of M and N untouched, but it maps the boxes of the pattern of N into the

corresponding boxes in the pattern of M , and that is what we needed to complete the proof.

Remark 3.28. Observe, that condition (iii) of the theorem is is trivially satisfied, when there

is only one box, that is, when all ciphers are equivalent under ≡C. Also, if completeness holds

for a certain choice of ≡C, then, if ≡′C is such that M ≡C N implies M ≡′C N – i.e. when ≡′C

results fewer boxes –, then completeness holds for ≡′C as well. Therefore, we can say, that the

key to completeness is not to have too many boxes.

Example 3.29 (Type-2 Cryptosystems). Comparing this proof with the one for the type-

two cryptosystems, it is clear that the theorem for type-2 systems is a special case of our general

theorem. The formal language for the type-2 case is such that ≡C is proper and ≡K and ≡C are

independent as we mentioned in section 1.1.4. Moreover, conditions (i) and (ii) of the general

theorem also appear in the conditions for type-2 completeness, whereas conditions (iii) in the

two theorems are also identical for the type-2 case because of the following reason:

pattern2(({M1}L1 , {M2}L2)) = (�L1 ,�L2)

and

pattern2(({N1}L′
1
, {N2}L′

2
)) = (�L′

1
,�L′

2
),

hence ({M1}L1 , {M2}L2) and ({M1}L1 , {M2}L2) are formally equivalent if and only if L1 and

L2 are identical exactly when L′1 and L′2 are identical. Therefore, conditions (iii) in the two

theorems really mean the same thing.

97

Example 3.30 (One-Time Pad). The conditions of the general completeness theorem are

satisfied by the formal language we use for the OTP, because, as we mentioned in section 1.1.4,

≡C is proper and ≡K and ≡C are independent. Furthermore, condition (i) and (ii) in the general

theorem are exactly conditions (i) and (ii) of the parsing theorem 3.20, and they are satisfied

in the OTP case, as we saw that in the course of proving completeness for OTP. Condition (iii)

is also satisfied, since the pairs of ciphers must be encrypted with different keys (in OTP, we

cannot use the keys twice), and the equivalence

[[({M1}L1 , {M2}L2)]]Φ ≈ [[({N1}L′
1
, {N2}L′

2
)]]Φ

implies that the corresponding lengths in the two ciphers must be the same:

l({M1}L1) = l({N1}L′
1
)

and

l({M2}L2) = l({N2}L′
2
)

implying (
�l({M1}L1),�l({M2}L2)

)
=
(
�l({N1}L′1

),�l({N2}L′2
)

)
.

Therefore,

({M1}L1 , {M2}L2) ∼=OTP ({N1}L′
1
, {N2}L′

2
).

Example 3.31 (Type-1 and Type-3 Cryptosystems). In case of Type-1 cryptosystems,

if we assume that the length is revealed, that is the distributions of Ek(x) and Ek(y) can be

distinguished when x and y have different length (we can call this condition strictly length

revealing), then the corresponding condition (iii) is satisfied for this case. Therefore, if the

cryptosystem is such that conditions (i) and (ii) are also satisfied, then completeness holds for

the formal logic and its interpretation if the boxes are indexed with the length of the cipher.

As for the type-3 system, completeness holds if we assume that the system satisfies conditions

(i) and (ii), and when it not just might reveal which-key and length, but it does really reveal

98

both them, that is, when it is strictly which-key revealing and strictly length revealing.

99

Conclusion

We showed that it is possible to give a general treatment of expansions of the equivalence notion

of the Abadi-Rogaway logic, and its interpretations in computational and also in information-

theoretic encryption schemes. Non-trivial general soundness and completess theorems were es-

tablished. These theorems derive soundness and completeness by assuming that they hold for

special subsets of formal expressions. The key to soundness is to have enough boxes in the

definition of formal equivalence, whereas completeness holds if there are not too many boxes.

The fact that the computational and the information-theoretic views give a more detailed

description of cryptographic schemes then the formal one results in an interesting skewness of

the conditions for soundness and for completeness. The conditions of completeness involves only

pairs of formal keys, blocks and ciphers, reflecting that equivalence of formal expressions paired

arbitrarily many times can be derived from equivalence of simple pairs. On the other hand, the

conditions of soundness requires expressions that are constructed from keys, blocks, and ciphers

via arbitrarily large number of pairing; the ultimate reason being that indistinguishability of the

joint distributions of two n-tuples of random variables does not follow from indistinguishability

of the joint distributions of each two corresponding pairs in the two n-tuples.

The Abadi-Rogaway logic, due to its simplicity, was very suitable to start analyzing the

relationship between formal and probabilistic views of cryptography, but it is too simple for the

description of realistic protocols. We therefore hope that this analysis will serve as a motivation

and guideline for treating more complex formal cryptographic systems and their interpretations.

100

Bibliography

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi-calculus. Infor-

mation and Computation, 143:1–70, 1999.

[2] M. Abadi and J. Jürjens. Formal eavesdropping and its computational interpretation.

In Proc. Fourth International Symposium on Theoretical Aspects of Computer Software

(TACS2001), Lecture Notes in Computer Science, Tohoku University, Sendai, Japan, 2001.

Springer.

[3] M. Abadi and P. Rogaway. Reconciling two views of cryptography (The computational

soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

[4] M. Backes, C. Jacobi, and B. Pfitzmann. Deriving cryptographically sound implementations

using composition and formally verified bisimulation. In Formal Methods Europe, volume

2931 of Lecture Notes in Computer Science, pages 310–329. Springer-Verlag, 2002.

[5] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested

operations. In Proceedings of the 10th ACM Conference on Computer and Communications

Security, pages 220–230, Washington D.C., USA, October, 27-30 2003. ACM Press. Long

version: IACR ePrint Archive, Report 2003/015, Jan. 2003.

[6] M. Backes, B. Pfitzmann, and M. Waidner. Universally composable cryptographic library.

Manuscript available on eprint.iacr.org as 2003/015, 2003.

[7] M. Bellare, J. Kilian, and P. Rogaway. The security of cipher block chaining. In Y. Desmedt,

editor, Advances in Cryptology – CRYPTO ’94, 14th Annual International Cryptology Con-

101

ference, volume 839 of Lecture Notes in Computer Science, pages 341–358, Santa Barbara,

California, USA, August 1994. Springer-Verlag.

[8] M. Blum and S. Micali. Proceedings of the fourteenth annual ieee symposium on logic in

computer science. In Proc. of the 23rd Annual Symp. on Foundations of Computer Science,

pages 112–117, 1982.

[9] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Proceedings of the

Royal Society, Series A, 426(1871):233–271, 1989. Also appeared as SRC Research Report

39 and, in a shortened form, in ACM Transactions on Computer Systems 8, 1 (February

1990), 18-36.

[10] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.

In 42-nd Annual Symposium on Foundations of Computer Science (FOCS), pages 136–145.

IEEE Press, 2001. Full paper available at eprint.iacr.org as 2000/067.

[11] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and

multi-party secure computation. In 34-th ACM Symposium on Theory of Computing, pages

484–503, 2002. Full paper available at eprint.iacr.org as 2002/140.

[12] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. A meta-notation for

protocol analysis. In 12th IEEE Computer Security Foundations Workshop. IEEE Computer

Society Press, 1999.

[13] R. A. DeMillo, N. A. Lynch, and M. Merritt. Cryptographic protocols. In Proc. of the 14th

Annual ACM Symp. on Theory of Computing. ACM Press, 1982.

[14] D. Dolev and A. Yao. On the security of public-key protocols. In Proc. 22-nd Annual IEEE

Symposium on Foundations of Computer Science (FOCS), pages 350–357, 1981.

[15] D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions on

Information Theory, 29(2):198–208, March 1983.

[16] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Multiset rewriting and the complexity

of bounded security protocols. Journal of Computer Security, 12:247–311, 2004.

102

[17] N. A. Durgin, J. C. Mitchell, and D. Pavlovic. A compositional logic for protocol correct-

ness. In 14th IEEE Computer Security Foundations Workshop, Cape Breton, Nova Scotia,

Canada, June 2001.

[18] F. J. Thayer Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security

protocols correct. Journal of Computer Security, 7(2/3):191–230, 1999.

[19] M. Fitzi, M. Hirt, and U. Maurer. General adversaries in unconditional multi-party computa-

tion. In Kwok Yan Lam, Eiji Okamoto, and Chaoping Xing, editors, Advances in Cryptology

— ASIACRYPT ’99, volume 1716 of Lecture Notes in Computer Science, pages 232–246.

Springer-Verlag, November 1999.

[20] O. Goldreich, S. Micali, and A. Widgerson. How to play any mental game. In Proc. 19th

ACM Symp. on the Theory of Computing, pages 218–229, 1987.

[21] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System

Sciences, 28(2):270–299, 1984. Previous version in STOC 1982.

[22] S. Goldwasser, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or

all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(1):691–729,

1991.

[23] J. Guttman, F. Thayer, and L. Zuck. The faithfulness of abstract protocol analysis: Message

authentication. In P. Samarati, editor, Proceedings of the 8th ACM conference on Computer

and Communications Security, pages 186–195, Philadelphia, Pennsylvania, USA, November,

5-8 2001. ACM Press.

[24] J. Herzog. Computational Soundness for Standard Assumptions of Formal Cryptography.

PhD thesis, Massachusetts Institute of Technology, 2004.

[25] J. Herzog, M. Liskov, and S. Micali. Plaintext awareness via key registration. In Advances

in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages

548–567. Springer-Verlag, August 2003.

[26] O. Horvitz and V. Gligor. Weak key authenticity and the computational completeness of

formal encryption. In D. Boneh, editor, Advances in Cryptology – CRYPTO 2003, 23rd

103

Annual International Cryptology Conference, volume 2729 of Lecture Notes in Computer

Science, pages 530–547, Santa Barbara, California, USA, August, 17-21 2003. Springer-

Verlag.

[27] R. A. Kemmerer. Analyzing encryption protocols using formal verification techniques. IEEE

Journal on Selected Areas in Comunications, 7(4):448–457, May 1989.

[28] R. A. Kemmerer, C. Meadows, and J. K. Millen. Three systems for cryptographic protocol

analysis. Journal of Cryptology, 7(2):79–130, 1994.

[29] P. Laud and R. Corin. Sound computational interpretation of formal encryption with com-

posed keys. In J. I. Lim and D. H. Lee, editors, Information Security and Cryptology -

ICISC 2003: 6th International Conference, volume 2971 of Lecture Notes in Computer Sci-

ence, pages 55–66, Seoul, Korea, November, 27-28 2003. Springer-Verlag.

[30] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. Probabilistic polynomial-time frame-

work for protocol analysis. In M. Reiter, editor, 5-th ACM Conferece on Computer and

Communication Security, pages 112–121. ACM Press, 1998.

[31] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using CSP and

FDR. In Tiziana Margaria and Bernhard Steffen, editors, 2nd International Workshop on

Tools and Algorithms for the Construction and Analysis of Systems, volume 1055 of Lecture

Notes in Computer Science, pages 147–166. Springer-Verlag, 1996.

[32] P. Mateus, J. C. Mitchell, and A. Scedrov. Composition of cryptographic protocols in a

probabilistic polynomial-time process calculus. In Roberto M. Amadio and Denis Lugiez,

editors, 14th International Conference on Concurrency Theory, volume 2761 of Lecture Notes

in Computer Science, pages 327–349, Marseille, France, September 2003. Springer-Verlag.

[33] U. Maurer. Information-theoretic cryptography. In M. Wiener, editor, Advances in Cryp-

tology — CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 47–64.

Springer-Verlag, 1999.

[34] U. Maurer. Indistinguishability of random systems. In Lars Knudsen, editor, Advances in

Cryptology — EUROCRYPT ’02, volume 2332 of Lecture Notes in Computer Science, pages

110–132. Springer-Verlag, 2002. the extended version is not yet available.

104

[35] U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on reduc-

tions, and applications to the random oracle methodology. In Moni Naor, editor, Theory

of Cryptography — TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages

21–39. Springer-Verlag, February 2004.

[36] U. Maurer and S. Wolf. Information-theoretic key agreement: From weak to strong secrecy

for free. In Bart Preneel, editor, Advances in Cryptology — EUROCRYPT ’00, volume 1807

of Lecture Notes in Computer Science, pages 351–368. Springer-Verlag, 2000.

[37] C. Meadows. A system for the specification and analysis of key management protocols.

In Proceedings of the 1991 IEEE Symposium on Research in Security and Privacy, pages

182–195. IEEE Computer Society Press, 1991.

[38] C. Meadows. Analyzing the Needham-Schroeder public-key protocol: A comparison of two

approaches. In Proc. European Symposium On Research In Computer Security, pages 351–

364. Springer Verlag, 1996.

[39] D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway logic of

encrypted expressions. Journal of Computer Security, 12(1):99–130, 2004. Preliminary

version presented at WITS’02.

[40] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active

adversaries. In M. Naor, editor, Theory of Cryptography: First Theory of Cryptography

Conference, TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages 133–151,

Cambridge, Massachusetts, USA, February, 19-21 2004. Springer-Verlag.

[41] J. K. Millen, S. C. Clark, and S. B. Freedman. The interrogator: Protocol security analysis.

IEEE Transactions on Software Engineering, SE-13(2):274–288, February 1987.

[42] J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic polynomial-time

calculus for analysis of cryptographic protocols. Electronic Notes in Theoretical Computer

Science, 45, 2001.

[43] J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic protocols

using Murϕ. In Proc. IEEE Symposium on Security and Privacy, pages 141–151, 1997.

105

[44] R. Needham and M. Schroeder. Using encryption for authentication in large networks of

computers. Communications of the ACM, 21(12):993–9, 1978.

[45] L. C. Paulson. Mechanized proofs for a recursive authentication protocol. In 10th IEEE

Computer Security Foundations Workshop, pages 84–95, 1997.

[46] L. C. Paulson. Proving properties of security protocols by induction. In 10th IEEE Computer

Security Foundations Workshop, pages 70–83, 1997.

[47] B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic security of reactive systems.

Electronic Notes in Theoretical Computer Science, 32, 2000.

[48] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive

systems. In 7-th ACM Conference on Computer and Communications Security, pages 245–

254. ACM Press, 2000.

[49] A. W. Roscoe. Modeling and verifying key-exchange protocols using CSP and FDR. In

CSFW 8, page 98. IEEE Computer Society Press, 1995.

[50] S. Schneider. Security properties and CSP. In IEEE Symposium on Security and Privacy,

Oakland, California, 1996.

[51] C. Shannon. A mathematical theory of communication. Bell System Technical Journal,

27:379–423, 623–656, July, October 1948.

[52] C. Shannon. Communication theory of secrecy systems. Bell System Technical Journal,

28:656–715, 1949.

[53] A. Yao. Theory and applications of trapdoor functions. In 23-rd IEEE Symposium on

Foundations of Computer Science (FOCS), pages 80–91. IEEE Press, 1982.

106

