

1

An Outline of Initial Design of the Structured

Hypertext Transfer Protocol (STTP)*

Bing Swen (bswen@pku.edu.cn)
Computer Science Dept., Peking University, Beijing 100971, CHINA

Abstract This paper presents an introduction to the initial design of the Structured Hypertext Transfer Protocol
(STTP), a compatible extension to the HTTP. It includes a new message set for the control of resource transmission, and
the Structured Hypertext Markup Language (STML) for describing the structural information of Web pages.
Experimental tests show that STTP can be significantly faster than HTTP, with the improvement of transmission time
being around 70% to 400% and the same magnitude of packet savings, which is among the best performance
improvement ever reported. The paper discusses the basic idea and major design considerations of these components, as
well as a few important issues in developing STTP servers and clients.
Keywords: World-Wide Web, HTTP, Performance, Hypertext, Resource transmission

1 Introduction
The Word-Wide Web (hereafter the Web for short) is hitherto the most important application form of resource

access on the Internet, with its load being dominant on most all TCP/IP networks. The future development of the Web is
full of technical challenges since its existing architecture appears to have come close to its limits in many aspects and
new technologies must be compatible with this architecture of tremendous use and investment.

The Hypertext Transfer Protocol (HTTP) is the core protocol used to access resources on the Web. While
sufficiently simple for implementation, use and rapid popularization, it is well known that HTTP/0.x and HTTP/1.0 [1]
interact with TCP/IP in a low-efficiency manner, due to the initial protocol design of connection establishment per URL
when retrieving resources. Retrieval of a complete Web page requires separate requests for formatted text and each
linked object, thus making network traffic bursty. In the past years much work has been done to address this issue [2-11],
eventually leading to the new HTTP version [12]. HTTP/1.1 [13] significantly improves the efficiency of TCP use by
introducing the mechanisms of persistent connection, request pipelining and fine control of caching.

Though a few other minor improvements and tune-ups are still possible to experiment and test [14, 15, 4, 6, 16,
17], it seems that there is little room left to further greatly improve Web performance under the existing HTTP
infrastructure. The activity of HTTP Next Generation (HTTP-NG) [18, 19, 20] tries to make a stride further on the
performance enhancement and functionality extension of the Web by radical architecture redesigns, even at the cost of
compatibility with the current Web technologies. There were also attempts to treat Web resources as distributed objects
and migrate the whole Web toward a distributed object system [21, 22, 23]. But there are strong reasons argued against
such changes. In the real world of computer communication, and especially in the Web world where a vast amount of
investment has been and is still being made, compatibility can be an essential issue for the success of any new
technology. It is obvious that the future Web will grow out of (and be compatible with) the existing one, rather than be
based on a completely new infrastructure.

Actually, the structural characteristics of “hypertexted Web pages” still provide a great potential for performance
improvement. A Web page is composed of multiple files, and they can be efficiently retrieved within a single

* This research is supported by Chinese 863 Hi-Tech Plans under the project no. 2001 AA 112081.

2

transaction when sufficient information is available for the client to construct appropriate requests. The key point is to
design a simple yet sophisticated mechanism to describe the detailed meta-information of each object in a compact form.
Based on these considerations, this paper presents a novel mechanism to improve the Web and at the same time retain
the simplicity and full compatibility. We call it STTP [24,25], with emphasis on its compatibility with the existing Web.

The rest of this paper is organized as follows. In section 2, we discuss the previous work related to our research.
We then describe the major two components of the STTP framework in section 3 (STML and STTP messages). Section
4 discusses the compatibility with the Web. An experimental implementation of STTP and the test results are described
in section 5. The last section is the summary and future work.

2 Previous Work

We are not aware of any other work that uses a special transfer encoding together with a transfer control
mechanism to speed up HTTP transactions, though the performance problem of HTTP has been widely studied in the
last decade, and several methods have been proposed to improve Web latency.

To improve Web services on existing networks without any hardware update is to improve the transfer protocols
used by the Web. The lower-level TCP is a firm foundation of today’s Internet, so the source of possible improvement is
HTTP①. The major aspects are: (1) connection reuse, to avoid or alleviate TCP slow-start, which is represented by the
work on Persistent HTTP (P/HTTP) [3, 5, 8]; (2) pipelining of client’s requests, to reduce multiple request processing
time [7]; (3) caching of server’s responses, which is the topic of much previous work [6, 7, 14-17, 28]. Most of the
suggested improvement methods of significance have been integrated into HTTP/1.1 [12, 13].

STTP aims at new mechanisms to further reduce message transfer time and provide more efficient caching support
using transfer models of encoded Web pages. There are several previous works that are close to this aim.

First, HTTP/1.1 206 (Partial Content) response supports a multipart media type, which enables a single response
message to transfer multiple non-overlapping parts of a resource. This provides a flexible method for requests using
ranges. But it cannot be used to transfer multiple resources in a single message.

The “collection resource” of WebDAV [29] uses a multipart/related MIME entity to represent a WebDAV
resource as a single document, based on an XML syntax for describing resources. The collection is essentially an XML
document with properties and href’s to other Web pages, images, etc. Though it is useful to encapsulate all aspects of
such an enhanced resource, a collection is not a compact and efficient description of Web pages. For example, there are
no provisions for efficiently locating and updating objects in a collection. Collection is not intended to be an ideal
format of transfer encoding to enhance the performance of the Web.

The most relevant work related to STML is MHTML by Palme and Hopmann [30]. It defines the use of a MIME
multipart/related structure to aggregate a text/html root resource and the subsidiary resources it references, and specifies
a MIME content-header to reference each resource within the composite e-mail message. Though claimed to be able to
be employed by other transfer protocols (e.g., HTTP or FTP) to retrieve a complete Web page in a single transfer,
MHTML has several obviously insufficiencies to be seriously considered for that purpose. First, it does not provide
sufficient and/or efficient meta-information to completely describe the document elements of a Web page, such as the
information of number, size, offset, time of creation and modification, entity tag (ETag), etc of each subsidiary resource
(or linked object called by this paper). And thus second, it does not provide support for caching the aggregated resources
that have been retrieved, which is essential for the scalability of the Web. Finally, as a media encoding specification, it
dose not necessarily provide any transfer control methods for the access of MHTML files.

① T/TCP [38, 39] can help reduce connection establishment costs in HTTP, but the effect is approximated by other
higher-level methods such as Persistent HTTP [28, 13].

3

Franks [31] proposed an MGET method using multiple If-Modified-Since header for the various objects requested.
Before sending an MGET request the client must first get the base HTML file using a normal GET request.
Padmanabhan and Mogul [8] proposed GETALL and GETLIST methods to make pipeline requests along with a simple
scheme of Web page preprocessing. GETALL method specifies that the server should return an HTML page and all of
its inlined (local) images in a single response. The client uses the Content-Length fields to split the response into its
components. The server can either parse HTML files dynamically or keep a precomputed database of parsed files. The
GETALL method can be easily added to HTTP as an ordinary GET with an additional header filed to indicate a batch
processing. GETLIST is used to get a subset of components of an HTML document, avoiding the server returning all the
images (caused by GETALL) when some of them are already in the client’s cache. The typical operation would be that
for the first time retrieval, a client uses GETALL; then when revisiting the same page, it uses a GET to retrieve the
HTML file, after which it uses GETLIST to retrieve in one exchange all the images not in its cache, which is equivalent
to a series of GETs sent without waiting for the previous one to complete. Both MGET and GETALL/LIST seem
promisingly efficient, but there are also fundamental inefficiencies in these models as in the case of MHTML: no
sufficient meta-information is provided for each linked object; the component extraction is primitive at best; and so that
no effective support for object caching, partial revalidate and update, content encoding, etc.

The most recent relevant work to the idea of "batch-fetching" a web page and all of its related objects is the
proposal to use bundles to transfer Web pages, presented by Wills et al [32], where 2 passes of request and response are
used to retrieve a Web page and its contents separately. Though performance improvement can be gained in some cases,
it suffers from the same kind of difficulties as the above methods, which are particularly significant for the transmission
of partially updated Web pages (e.g., script-based dynamic pages). Since a bundle is a simple form of resource
aggregation, it dose not provide a mechanism for the description of the detailed meta-information of the embedded
objects. The major insufficiency of bundles and the similar proposals is in the difficulty to handle various partial
modifications of related objects. It would be exceedingly difficult to design a uniform and consistent scheme of
aggregate resource updating without the help of a structural information description. The three caching approaches of
bundles, especially the delta encoding of aggregate resources, come close to this end, but again they didn't handle the
"batch-selective updating" problem (updating all frequently modified objects along with their root page in one
transaction) well either. Bundle reconstruction, delta generation and updating would also bring significant load and
contribute to user perceived latency, for these have to be done at retrieval time. In this regard, delta encoding of
individual object would be preferable when only a few objects are constantly modified, as opposed to the intended use
of bundles.

3 STTP Overview

The framework of STTP includes two components:
- A Structured Hypertext Markup Language (STML) for describing the structural information of Web pages,

including information of the root page file, number and types of the linked objects, entity attributes of each object, file
offsets and sizes of partial update, etc. With the meta-information description in STML, STTP can transfer resources in
an efficient way.

- A extended message set of requests and responses for the transmission control of resources on the STTP (in
addition to those defined by HTTP);

The basic idea behind the STTP is very simple. Namely, before sending a page file to the client, the server first
processes the page into a more compact format (structured hypertext) with sufficient meta-information of each element
related to the page, so that the client can handle them directly, without any repeated network transmission. We will refer
to this process as STML compilation (or encoding) in this paper. On the other hand, the client also presents sufficient

4

meta-information about its desired objects to the server for the optimization of the compilation. Such processing of Web
page allows the server and client to have a good knowledge of the contents that are transmitted. This helps make a more
efficient use of TCP connection, and introduce new possible functionality to the Web as well.

Introducing a new URL scheme here is necessary for the client to differentiate between new request methods and
those of HTTP (though using HTTP/1.1’s Upgrade header helps switch protocols from HTTP to STTP, that would be
an inefficient choice. See discussion below).

3.1 Typical STTP Transactions

By default, a request for an STTP URL will specify the server to send back an STML description of the URL
rather than a single Web page file. Major STTP transactions are performed within two messages, that is, one submission
and one reply. The typical 2-message process of a client to retrieve a Web page (sttp://host/xdoc) is as the following.

First, the client checks the local cache to see if the Web page has been visited, and if not, it tries to get the page
together with all the related objects by sending a single (possible selective) S-GET request, expecting a single response
from the server with the message body being a full STML document generated for the page;

If the page is already cached, then the client generates a partial STML document (head-part) listing the
meta-information of all the interesting objects related to the page (including the page itself) obtained since the last visit,
and send an S-COMPARE request, expecting a single response with an STML document containing all the necessary
information of update for modified objects.

In each case, there are only two messages needed to transmit: one request (S-GET or S-COMPARE) and one
response, which makes the most efficient page retrieval model. For a typical Web page with 10 linked objects (such as
images, scripts, applets, style sheets, etc.), there are at least 11 requests and 11 responses (totally 22 messages) needed
to transmit between an HTTP client and server (together with mutual acknowledgement for each packet). Though the
request pipelining method usually helps reduce the latency, this model is far from optimization in terms of number of
messages and usage of bandwidth. With STML and STTP, the number of messages is kept to the minimum: there are
only one request and one response for the transmission of the 11 objects (the Web page file and all the linked objects),
eliminating the other “stupid” 10 requests and responses. In section 3.3 we will see that the S-POST process can also be
performed within two messages. Thus STTP reduces the network traffic by greatly reducing the number of client
requests and keeping most of the packets in full size.

3.2 STML Summary

STTP servers and clients try to exchange sufficient information about a Web page and each object related to it. In
order to record the structural information of Web pages, we need to introduce a very simple markup language called
STML (the Structured Hypertext Markup Language). (For a summary of STML syntax see [24-27].)

Roughly speaking, an STML document is a "hypertext of hypertexts", that is, a set of hypertexts that related to the
same root hypertext. (The set may or may not be "closed" with respect to the closure of links.) Thus STTP may also be
called the protocol for the transmission of a set of hypertexts.

An STML document consists of a head-part and an optional body-part. The head-part is something like an index
table of the items contained under the [root] item, with comprehensive descriptions for each entry. A complete STML
document is actually a preprocessed HTML or XML document. Here is an example,

[stml] [head]
[root Name= "/index.html" Content-Type="text/html" Content-Encoding= "czip" ETag=
"0-54e-383712c4" Offset-Size= "2371/55720" Linked-Object="-text/html, +*/*"]
[object Name= "/../img/logo.jpg" Content-Type= "image/jpeg" Content-Encoding= "czip"
ETag= "0-b7f-39e37ad2" Offset-Size= "62083/27960" /]
[/root] [/head]
[body]
[object Name= "/index.html"]

5

 ...compressed content...
[/object]
…
[object Name= "/logo.bmp"]
 ...compressed content...
[/object]
[/body] [/html]

The head-part consists of items of object specifications. The central one, root-spec, specifies the root object of an
STML document and the objects that will be embedded (content inlined) in the document’s body-part. The root object
can be any sort of resource, but usually it is either a Web page file (HTML/XML) or a (sub)directory. A sequence of
dir-specs describes the directory structure of interesting resources, where the root-spec specifies the root directory of all
other directories and files. The meta-information of objects is described as attribute-fields of corresponding items. Most
HTTP message headers are reused as attribute descriptions. These well-defined headers provide a relatively complete
set for the description of various important meta-information of resources and can be well integrated into the STML
framework. Since the values of some HTTP header fields may have more than one token, we need a terminator symbol
to indicate the end of an attribute-field. All attribute-field’s have the uniform format Label="Value". That is, the value
of an attribute-field, including values of any HTTP header field, must be occur between "......", and we use ‘=’ rather
than ‘:’ as the delimiter between a header name and its value.

Besides HTTP headers, some new headers are necessary, including Linked-Object, Offset-Size, Name, etc. A [root]
object must have a Linked-Object attribute to indicate what kinds of media types will be included into the STML
document. An example is:

[root Name="/index.html"… Linked-Object="-text/html, +image/*, local-only"]

which specifies that the STML document includes all image objects at the server’s local file system linked to index.html,
but not any other HTML files (except for the root page). local-only is the default value. By default, if a linked object of
a root is not described in the root’s object-description-seq, the content of the object is not regarded to be present (though
it may be present). An attribute content-present may be used for explicit indication.

An STTP client also uses the Linked-Object attribute as a request header to specify the object types desired to be
included in the requested STML document. The requested STTP server is expected to send back the (dynamically or
pre-) generated STML document with the compilation directed by this Linked-Object head field, which will be copied to
the attribute-field-seq of the [root] tag.

If both the [root] attributes and an S-GET, S-POST or S-COMPARE request’s head have a Linked-Object field,
then the request header field takes precedence. This is intended to allow the client to adjust its retrieval options at any
time (e.g., when an STML head-part has been cached).

The offset-size-attribute description is used to indicate the start position and size (in byte) of the content (not
including the surrounding [object …] and [/object] tags) of an embedded object. With this information, a client can find
the content of an embedded object in an STML document very efficiently. Each embedded object (including the root
page) must have the Offset-Size attribute.

Using multiple offset/size pairs as the value of an Offset-Size attribute, STML makes the description of
inconsecutive objects possible, where each offset/size pair corresponding to an occurrence of the object's content in the
STML document. For example, the description for an object
 Offset-Size= "1008/512, 2025/512, 3742/384"

specifies that its content occurs at three different positions in the STML document. This facility provides good support
for STTP servers that constantly generate dynamic data as the content of objects linked to Web pages, where the content
can be divided to several parts, with static parts being pre-allocated in the body-part, and the generated parts being
appended to the end of the body-part each time when sending the pages.

6

Compiling an HTML “source file” to an STML document is usually a trivial and efficient process, and STML
generation is a typical domain to apply various “incremental compilation” techniques. Frequent and usually small
rebuildings can be done incrementally. Usually, full STML documents are not necessarily maintained, especially for the
client, since with information from the head-part of an STML, the body-part can be (re)generated very efficiently on
both the server side and the client side. Incremental compilation may also help pregenerate “partial STML documents”
(with only the head-parts).

3.3 STTP Messages

STTP uses the same message format as that of HTTP (the generic message format of [33]). The client uses request
messages to retrieve resources, and the server answers the requests using response messages.

- Requests

For the access of resources described in STML, STTP Currently introduces three requests: “STML GET”, “STML
COMPARE” and “STML POST”, corresponding to three new methods for STML document retrieval, namely S-GET,
S-COMPARE and S-POST.

The method S-GET is used to retrieve an STML description of a resource, usually for the first time retrieval. The
following is a "selective" S-GET:

S-GET /xpage STTP/1.0
Host: w++.w++.org.cn
Linked-Object: head-only, -image/*, +image/gif, -audio/*

The Linked-Object header indicates what media types are to be taken into account. The above request specifies that the
client wants only the head-part of the STML description of xpage, without necessarily the information of any image
(except GIF files) or audio objects related to xpage. Other STML-Part options include body-only, head-body and
local-only (including only objects at the requested host). +*/* means to get all linked objects; -text/html means not to
inline any other HTML pages pointed to in the root page. The first appearing and most concrete media type in the list
takes precedence. When a non-HTML file is requested using an S-GET method, the server will ignore the Linked-Object
header, considering only entity headers (Accept, ETag, etc).

When a client has cached a Web page and is revisiting the page, it may choose to send a selective S-GET request to
get the STML head-part of the Web page, as described above. If the STML document has been modified (and so any
linked objects), the head-part will have the changes. With the new version of head-part, the client knows well what
objects related to the current Web page need to be updated, and then may request each one using ordinary HTTP GET
method. For Web pages that are not constantly modified, this way can considerably reduce the number of requests and
improve the performance. The number of messages needed is (2 + 2 * (the number of updated objects)), rather than (2 +
2 * (the number of all related objects)).

STTP further introduces another request method, S-COMPARE, to realize the most efficient cache-based Web page
revisiting model. It constructs a partial STML document for update comparison of all objects related to the revisiting
page. For example, when user specify an URL sttp:// wpp.org/ index.html that has been visited, the client issues the
following message:

S-COMPARE /index.html STTP/1.0
Host: wpp.org
Linked-Object: -text/html -text/xml +image/* local-only
ETag: 0-85f-724334c4 // ETag of the original STML document

[head]
[root Name= "/index.html" Content-Type="text/html" Offset-Size="502/27371" ETag=
"0-54e-383712c4" Linked-Object="-text/html, +*/*"]
[object Name="/logo.jpg" Content-Type="image/*" Offset-Size="27960/66808" ETag=
"0-23f-626854c4" /]
[object Name= "/menu.js" Content-Type="text/*" Offset-Size="94920/8033"
ETag="0-31d-652413c4" /]

7

[/root] [/head]

Usually with this method the client sends back the STML head-part of the cached Web page to server for update
comparison, indicating that it only needs to know whether anything of the specified media types related to the current
page has been modified since the last visit, and send only the contents of all modified objects if so. The head-part is
usually a partial one, containing only descriptions of interesting objects. For example, if the client has turned off the
request for images, video or audio files, Java applets, etc., then it may not list any of these objects in the head-part, even
if the original STML document contains them. Upon receiving the request, the server checks modifications for all
objects listed in the head-part, generates and sends in a single response message a (partial) STML document for all
modified objects. The server may also add some new objects of the specified media types, which are not listed in the
S-COMPARE’s head-part but recently added to the updated Web page. With this response message the client then
successfully updates its local cache and displays the page. There are totally two (one request and one response)
messages in the process.

The items listed in an S-COMPARE’s head-part need not to be complete. Any related objects not listed are
regarded as newly added ones by the server. But the server will actually construct update information only when the
ETag of the STML document has been modified. For Web pages that are infrequently modified (such as electronic
library or historical archives, etc), it is worth sending a “bare” S-COMPARE request (listing only the root page) for
update query of all the linked objects. For example,

S-COMPARE /ourpast.html STTP/1.0
Host: w++.w++.org.cn
Linked-Object: -text/mls +image/*
ETag: 0-961-31da10a6 // ETag of the original STML document

[head][root Name= "/ourpast.html" Content-Type="text/html" ETag= "0-425-756a4e7c"
Linked-Object="-text/html, +*/*"]
[/root][/head]

The message is small enough to be sent within one packet, and would be the most efficient update query method for
such a kind of Web resources. We make use of this method in our experimental tests (described in section 5).

On the other hand, if an S-COMPARE request lists any “redundant” objects that are actually not related to the
requested Web page, the server may simply ignore them.

The S-POST method is used when the client needs to send some data to the server for processing, similarly to
HTTP POST method. After posting the data to the server, the client may receive a redirection response (302 or 303
Object Moved/Found) that indicates the client should go to another URL (usually predefined) to refer to the results or
some new information. In HTTP, this is a multi-step process, leading to considerable latency. STTP supports a caching
based post method so that the client may get rid of extra interactions, keeping the total messages to the minimum (that is,
two messages). This is achieved using the S-POST method together with a new header, Followed-By. For example,

S-POST url-1 STTP/1.0
Host: wpp.org.cn
Linked-Object: …
Followed-By: url-2 // next stop after posting

[head] …… [*head-part for url-2*] [/head]

……post-body……

This request indicates that the client expects to retrieve resource at url-2 using the STTP protocol, and the server needs
to send back an STML document compiled for url-2 for update. The combination of the Followed-By header and the
head-part is equivalent to an S-COMPARE request. The Followed-By header requires that an STML head-part must be
at the first of the message body (just following the empty line after request headers).

When using the Follow-By header, the client should have cached a head-part. The URL of Follow-By and its
STML document are obtained from previous responses of S-POST. For the first time posting to url-1, the client does not
know the ULR that will follow, so it uses a default value ‘*’:

S-POST url-1 STTP/1.0

8

Host: wpp.org.cn
Linked-Object: …
Followed-By: *

……post-body……

Then the usual interaction happens and the server indicates the client to go to url-2 to get an STML document. The
client may cache this URL as well as the head-part when S-GETing the document.

An S-GET request may also post some information as parameter of the request URL, and use the Followed-By
header to realize an efficient S-COMPARE effect. For example,

S-GET url-1?parameter-string STTP/1.1
Followed-By: url-2 // next stop after posting

[head] …… [*head-part for url-2*] [/head]

Thus there is a approximate equation that
 S-COMPARE url ~ S-GET url
 Followed-By: url
 [* head-part must be cached *]

- Responses

An STTP client should understand all HTTP responses in addition to the new ones, which begin from status code
600. STTP status code has the following categories:

100 ~ 599: HTTP status code
600 ~ 999: STTP status code
 6xx: successful 7xx: redirection 8xx: client error 9xx: server error

For example, 600 – STML transfer OK; 704 – STML not modified (ETag’s the same); 71x – STML partial update,
where 710 – only root page modified; 711 – only linked object(s) modified; 712 – linked objects added; 713 – linked
objects removed. Here is an example:

STTP/1.0 710 Only root object modified
ETag: 0-57e-765712c4 // ETag of the new STML document

[head][root …] … [/root][/head]
[body] [*send only the partial update (“delta”) of the root object*]
 ……
[/body]

Some HTTP headers are reused as STTP response headers, and a few new ones are introduced, which currently
include Linked-Object and Followed-By, as explained above. When the requested STML documents are regarded as
ordinary Web resources, most HTTP headers remain to be meaningful, though usually they are more appropriately used
to be attributes of individual objects.

3.4 STTP Servers and Clients

There are a few interesting issues in designing and implementing STTP servers and clients.
The ubiquitous use of server-side scripts (e.g., as database access interfaces) provides a large amount of dynamic

contents in Web pages. Typically only a small part of a Web page is marked as dynamic content [34, 35, 36]. Therefore,
partial update can be greatly helpful. With the combination of the Offset-Size attribute and the HTTP Content-Range
header, partial update of a single object can be efficiently realized in STTP. For example, in a Web page (or non-root
object) there are two parts (marked between specific tokens) corresponding to dynamic contents,

……… <%!?# … #?!%> ………<%!?# … #?!%> ………

0 r1 r2 r3 r4 r5

When constructing a response for this page, the server may indicate that the page has two parts that are dynamic using a
‘+’ indicator at the corresponding offset/size values,

9

[object …… ETag = "0-54e-383712c4" Content-Range="0-r1/*, r1-r2/*, r2-r3/*, r3-r4/*,

r4-r5/*" Offset-Size="o1/s1,+o2/s2, o3/s3, +o4/s4, o5/s5" … /]

Then when revisiting the page, the client issues an S-COMPARE request with the information
[object …… ETag = "0-54e-383712c4" Range="r1-r2/*, r3-r4/*" …]

The server may then send only the dynamic contents for update (if the root page is not modified). In partial update
messages, the server should treat the entity tags of dynamic pages as weak validators [13], which are not affected by
dynamic contents.

If two Web pages share some related objects, then the requests for these pages are related by cache information.
Some techniques are necessary to handle related requests efficiently. As the first choice, the client may use an
S-COMPARE request with an “up-to-date” head-part to request the page. If the page has been visited and cached, it then
simply updates the cached head-part extracted from the STML document using the newly cached objects, and
everything goes the usual way. The other choice is to first get the root page description using a head-only S-GET and
then retrieve all the other objects via an ordinary S-COMPARE, as discussed in section 3.3. This is usually the most
reliable way for such a purpose, but needs two requests.

The server should treat the STML document ETags provided by client requests in a special way, that is, as a
“necessary condition” of update (or a sufficient condition of no update): if the client’s ETag is the same as that of the
STML document on the server side, then no update is necessary; if the two are not the same, then the server needs to
further make a thorough update check for each item listed in the head-part, possibly adding new linked objects (712
response).

Since STML documents may be related (when an object is related to multiple pages), both the server and client do
not have to maintain full STML documents. The server should maintain only the head-parts of its Web pages, and
construct the corresponding body-part based on information of requests (though the body-part may be cached after the
first request). If the server detects that a local object related to a Web page has been modified, it simply adjusts the
Offset-Size values of the modified object and all the others that occur after the object. For a single Web page, the server
may choose to maintain a “complete head-part” that includes the descriptions of all the linked objects, and then
construct a version for each request by removing uninteresting objects according to the Linked-Object information. For
frequently visited and/or infrequently modified pages, the sever may pre-make several versions of head-part
corresponding to some most possible Linked-Object options to optimize performance.

The client should maintain a local cache for only the Etags, head-parts, and various information and contents of
linked objects extracted from STML documents, but not the documents themselves. Maintaining a cache for STML
documents on client side is not necessary and can be a big burden. The client would have to do “incremental STML
compilation” (rebuild the documents) for related pages when linked objects are updated, which is not a trivial work –
the offset-size values (offsets) of the linked objects are usually not maintainable, since the STML documents may be
stale, so are the ETag’s of STML documents. Since the ETag of an STML document on the client side may be an old
one, the server should not infer update and resend a whole STML document based only on the (weak) ETag provided by
the client’s request, as discussed above.

4 Web Compatibility

STTP is fully compatible with HTTP/1.x. STTP retains all HTTP requests and responses while supporting new
messages, so that STTP clients and servers can recognize all HTTP messages. This means HTTP is a strict subset of
STTP. The advantage of STTP's compatibility with HTTP is that HTTP and STTP clients/servers can coexist and
communicate with each other. An existing HTTP client can talk to an STTP server as if talking to an HTTP server, and
an STTP client can also talk to an existing HTTP server after getting the very first response (which requires HTTP/1.x

10

rather than STTP/1.x). This aim is very significant for saving the investment on both the server and client sides of the
Web, and crucial for the successful transition.

An STTP client may first “venture” to use the extended requests (S-GET, etc) to retrieve resources on a server. If
the server returns status code indicating an HTTP Client Error, then the server should be an HTTP server and the client
may then try the HTTP’s requests (GET, etc). On the other hand, an STTP server can easily differentiate between HTTP
and STTP clients from the version field of the request line, in addition to the methods used.

5 Experimental Implementation and Tests

To validate the effect of our mechanism, we made an experimental implementation to compare the elapsed time in
transmission of an identical set of Web pages using HTTP/1.1 and STTP/STML. The server is a modified version of
Apache-1.3.14 [37], running on an HP NetServer LH3 and Windows 2000 Server. Client software used to retrieve the
Web pages is Microsoft Internet Explorer 5.5 and a customized HTTP program that can parse STML descriptions. Both
HTTP and STTP use persistent connections. The elapsed time recorded on the client side is normalized to the interval
between the client sending the first request and the arrival of the last response. The server parses the requests and
decides to send back STML or HTML files based on the request lines. The STML documents of Web pages are
pre-generated and cached on the server side. We also estimated the overhead of STML generation and parsing and
found it to be the order of magnitude of on-the-fly text compression, which relies heavily on the system being used.

The test set consists of 10 different HTML files, containing 4, 8, …, 40 linked images respectively. The files also
include a paragraph of the same text, amounting to 1876 characters. The images are saved using different file names
from the same JPEG file, which has 2471 bytes. The page with 40 images is also used to test the caching based retrieval
with 0, 4, …, 40 images locally cached.

The network environments tested include two typical connection conditions: a fast intranet and a slow dialup line.
The intranet is a 100Mbps Ethernet LAN, with RTT < 1ms and MSS = 1460. The dialup line is a 48Kpbs PPP modem
line using a major public commercial dialup service, with RTT ≈ 220ms and MSS = 1460. On the intranet, there is one
router hop between the server and the client, while on the modem line there are 8. In order to make up for network
fluctuations, the tests were made after midnight at several weekends and most runs were repeated more than 10 times.

The performance tests of elapsed time and packet number and the results are listed in The following. Table 1 and 2
are the results of three different tests, that is, the packet number and elapsed time for first-time retrieval, 50% update
(half of the linked images cached) and reload. Reload or revalidate is revisiting a Web page where the contents are
already available in a local cache. In our cases, revalidate of a cached page results in no actual resource transfer. We use
the S-COMAPRE technique discussed in section 4 to achieve a constant (and minimum) overhead for page revalidate.

Table 3 and 4 are the comparison of transmission time and packet numbers of a page with 40 linked objects and
different numbers of objects being cached (the page is not cached). Again, STTP needs only one request for the
revalidate of all the cached images and the retrieval of other files. The packets transmitted were solely used for
resources transmission. All response packets (except for the last one) were in the full size.

Note: packet saving ratio PR = (packet-noHTTP – packet-noSTTP) / packet-noSTTP,
acceleration ratio AR = (timeHTTP – timeSTTP) / timeSTTP.

11

Table 1 Performance Comparison on a 100Mbps LAN

first-time retr. (packets/sec.) 50% update (packets/sec.) reload (packets/sec.) linked
objects HTTP STTP PR AR HTTP STTP PR AR HTTP STTP PR AR

 4
 8
12
16
20
24
28
32
36
40

20
36
53
69
85
101
117
133
151
167

0.162
0.235
0.541
0.846
1.160
1.472
1.753
2.143
2.414
2.639

14
25
35
45
56
65
76
86
94
104

0.124
0.187
0.260
0.441
0.641
0.818
0.974
1.167
1.392
1.667

0.43
0.44
0.51
0.53
0.52
0.55
0.54
0.55
0.61
0.61

0.31
0.26
1.08
0.92
0.81
0.80
0.80
0.84
0.73
0.58

16
28
41
53
65
77
89
101
115
127

0.087
0.143
0.292
0.535
0.751
0.968
1.207
1.422
1.652
1.873

9
16
21
25
30
36
42
46
51
58

0.070
0.121
0.176
0.208
0.232
0.274
0.389
0.521
0.561
0.661

0.78
0.75
0.95
1.12
1.17
1.14
1.12
1.20
1.25
1.19

0.24
0.18
0.66
1.57
2.24
2.53
2.10
1.73
1.94
1.83

12
20
28
36
44
52
60
68
76
84

0.059
0.089
0.125
0.173
0.305
0.481
0.621
0.761
0.809
0.876

3
3
3
3
3
3
3
3
3
3

0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035

3.00
5.67
8.33
11.00
13.67
16.33
19.00
21.67
24.33
27.00

0.69
1.54
2.57
3.94
7.71

12.74
16.74
20.74
22.11
24.03

Table 2 Performance Comparison on a 48Kbps Modem Line

first-time retr. (packets/sec.) 50% update (packets/sec.) reload (packets/sec.) linked
objects HTTP STTP PR AR HTTP STTP PR AR HTTP STTP PR AR

 4
 8
12
16
20
24
28
32
36
40

26
42
59
76
94
106
122
143
161
183

2.86
5.38
7.36

10.16
12.47
13.73
16.94
19.28
22.16
23.67

17
30
42
59
68
80
93
106
124
131

2.36
4.17
5.83
8.18

10.17
11.32
12.64
14.61
16.48
19.77

0.53
0.40
0.40
0.29
0.38
0.33
0.31
0.35
0.30
0.40

0.21
0.29
0.26
0.24
0.23
0.21
0.34
0.32
0.34
0.20

20
33
46
58
70
80
93
105
119
132

1.96
3.68
4.68
6.53
8.30
9.06

10.36
11.09
13.95
16.48

11
18
24
30
37
44
50
56
63
70

1.43
2.31
3.18
4.12
5.00
5.77
6.26
7.75
8.62
9.39

0.82
0.83
0.92
0.93
0.89
0.82
0.86
0.88
0.89
0.89

0.37
0.59
0.47
0.58
0.66
0.57
0.65
0.43
0.62
0.76

12
20
28
36
44
52
60
68
76
84

0.74
1.21
1.45
2.14
2.53
2.91
3.41
4.06
4.37
4.56

3
3
3
3
3
3
3
3
3
3

0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22

3.00
5.67
8.33
11.00
13.67
16.33
19.00
21.67
24.33
27.00

2.36
4.50
5.59
8.73

10.50
12.23
14.50
17.45
18.86
19.73

Table 3 100Mbps LAN
update reload (packets/sec.) cached

objects HTTP STTP PR AR
 0
 4
 8
12
16
20
24
28
32
36
40

167
159
151
143
135
127
119
111
103
95
87

2.078
2.013
1.913
1.783
1.662
1.528
1.392
1.272
1.167
1.042
0.921

112
102
91
82
69
61
49
39
28
18
7

1.702
1.367
1.251
1.031
0.911
0.711
0.471
0.330
0.231
0.170
0.055

0.49
0.56
0.64
0.74
0.96
1.08
1.43
1.85
2.68
4.28
11.43

0.22
0.47
0.53
0.73
0.82
1.10
1.96
2.85
4.05
5.13

15.75

Table 4 48Kbps Modem Line
update reload (packets/sec.) cached

objects HTTP STTP PR AR
 0
 4
 8
12
16
20
24
28
32
36
40

201
195
181
173
163
155
147
139
131
122
91

21.70
21.26
20.87
18.43
17.26
14.75
13.32
12.09
10.27
8.77
4.21

140
130
114
100
87
74
61
46
34
20
7

21.04
19.14
17.17
15.19
12.93
10.93
9.04
7.17
4.64
2.61
0.60

0.44
0.50
0.58
0.73
0.87
1.09
1.41
2.02
2.85
5.10

12.00

0.03
0.11
0.22
0.21
0.33
0.35
0.47
0.69
1.21
2.36
6.02

12

The results show that STTP outperformed HTTP under all circumstances tested. For the first time retrieval, the
improvement is around 70% on the LAN and 25% on modem line. For 50% update retrieval, the improvement are 170%
and 60% respectively. STTP is superior to HTTP for revalidate tests, even though HTTP/1.1 has been dramatically
improved over HTTP/1.0 at this aspect by exploiting request pipelining [7]. The later has a more significant impact
since most resources on Web servers remain to be stable [34, 35], and even on some highly dynamic web sites files tend
to change little when they are modified, and the variation ratio is often extremely small [36]. For update retrieval of
average pages with less than a quarter of related objects that are frequently modified, a 4 or 5 times improvement is
commonly expectable. The savings in terms of number of packets are of the same magnitude.

STTP also shows the desired scalability, that is, the faster the connection, the better it performed. Connection
conditions are constantly improved, from which STTP will benefit more than HTTP.

6 Summary and Future Work

In this paper we describe some initial design aspects of STTP, which is intended to be a simple and effective
mechanism to further improve Web performance. STTP and STML are designed to be a flexible transmission control
mechanism for access of hypermedia resources, and at the same time sufficiently simple and efficient, which helps
implementation and the compatibility with existing technologies. Adding STML handling to an HTTP server is usually
a simple task (though adding it to HTTP browsers is somewhat more complicated).

Experimental tests show that the STTP/STML mechanism can significantly improve Web performance without
any hardware upgrades. STTP retains full compatibility with the Web, and thus all existing Web resources are
accessible by STTP clients and servers, so are STTP resources by present Web clients and servers. This ensures that
existing systems still have their (equal) opportunities to access the same amount of resources as the new ones, and
provides a graduate transition approach (most likely starting from the server ends).

The major shortcoming is that STML encoding, decoding and cache synchronization bring additional load for both
the server and client. As discussed in the above sections, using a few specific caching methods, a significant part of the
load can be optimized away. The cost is low on both the server and the client sides comparing to the improvement. And
such load tends to be a smaller and smaller part as computer hardware technology is rapidly progressing, which is much
faster than the improvement of the limits of communication connections. The STTP framework provides a load balance
between the communication hosts and connections.

The work planned in the near future includes further improvement of the STTP design and implementation, and
larger scale and more extensive experiments and tests on both research network environments and a few possible
commercial sites. Another important work is to develop of a full STTP proxy server, which is planned to construct from
an STTP server using configuration options. Based on this experimental design and tests, currently we are making the
next version STTP (called “STTP/0.9”) integrate more nicely with HTTP as an extension of HTTP (rather than a whole
new protocol), with the intended flavor very much similar to the HTTP binding mechanism of SOAP/1.1 (but not of
SOAP/1.2).

References
[1] T. Berners-Lee, R. Fielding and H. Frystyk. "Hypertext Transfer Protocol - HTTP/1.0", RFC 1945, May 1996.
[2] Habib, Md. A., M. Abrams, "Analysis of Sources of Latency in Downloading Web Pages", Proceedings of WebNet 2000. URL

http://vtopus.cs.vt.edu/~nrg.
[3] Heidemann, J., "Performance Interactions Between P-HTTP and TCP Implementation," ACM Computer Communication

Review, 27 2, 65-73, April 1997. URL http://www.isi.edu/lsam/publications/phttp_tcp_interactions/.
[4] Heidemann, J., K. Obraczka, J. Touch, "Modeling the Performance of HTTP Over Several Transport Protocols", June 1997.

IEEE/ACM Transactions on Networking 1997. URL http://www.isi.edu/~johnh/PAPERS/Heidemann96a.html
[5] Mogul, J. "The Case for Persistent-Connection HTTP", Western Research Laboratory Research Report 95/4, Digital Equipment

Corporation, May 1995. Also in Proceedings of ACM SIGCOMM '95. URL http://www.research.digital.com/wrl/publications/
abstracts/95.4.html

13

[6] Mogul, Jeffery, Fred Douglis, Anja Feldmann, Balachander Krishnamurthy, "Potential benefits of delta-encoding and data
compression for HTTP," Proceedings of ACM SIGCOMM '97, Cannes France, September 1997.

[7] Nielsen, H.F., Gettys, J., Baird-Smith, A., Prud'hommeaux, E., Lie, H., and C. Lilley. "Network Performance Effects of
HTTP/1.1, CSS1, and PNG," Proceedings of ACM SIGCOMM '97, Cannes France, September 1997.

[8] Padmanabhan, Venkata N., and Jeffrey C. Mogul. "Improving HTTP Latency", Computer Networks and ISDN Systems, v. 28,
pp. 25-35, Dec. 1995. Slightly revised version of paper in Proc. 2nd International WWW Conference '94: Mosaic and the Web,
Oct. 1994, which is available at http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/mogul/HTTPLatency.html.

[9] Spero, Simon E., "Analysis of HTTP Performance Problems," July 1994. URL
http://sunsite.unc.edu/mdma-release/http-prob.html, http://elanor.oit.unc.edu/http-prob.html.

[10] Touch, J., J. Heidemann, K. Obraczka, "Analysis of HTTP Performance," USC/Information Sciences Institute, August, 1996.
URL http://www.isi.edu/lsam/publications/http-perf/.

[11] W3C, "HTTP Performance Overview", Oct. 1999. URL http://www.w3.org/Protocols/HTTP/Performance/overview.html.
[12] Gettys, Jim, "Hypertext Transport Protocol HTTP/1.1", W3C, Oct. 1996. URL

http://www.w3.org/Protocols/HTTP/Performance/.
[13] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-Lee. "Hypertext Transfer Protocol -

HTTP/1.1", RFC 2616. June 1999.
[14] Cohen, E., B. Krishnamurthy and J. Rexford, "Improving End-to-End Performance of the Web Using Server Volumes and

Proxy Filters", Proceedings of ACM SIGCOMM '98.
[15] Fan, L., P. Cao and J. Almeida, "Summary Cache: A Scalable Wide-Area Web Cache Sharing Protocol", Proceedings of ACM

SIGCOMM '98
[16] Williams, S., M. Abrams, C. Standridge, G. Abdulla, and E. Fox. Removal Policies in Network Caches for World-Wide Web

Documents. In Proc. SIGCOMM '96, pp. 293-305. Stan-ford, CA, August, 1996.
[17] Yu, H., and L. Breslau, "A Scalable Web Cache Consistency Architecture", Proceedings of ACM SIGCOMM '99.
[18] Frystyk, H., M. Spreitzer, B. Janssen, and J. Gettys, "HTTP-NG Overview" (draft-frystyk-httpng-overview-00.txt), Nov. 1998.

Internet Draft, IETF.
[19] Spero, Simon E., "Progress on HTTP-NG," URL http://www.w3.org/pub/WWW/Protocols/HTTP-NG/htto-ng-status.html
[20] W3C, W3C's work on HTTP Next Generation (HTTP-NG), URL http://www.w3.org/Protocols/HTTP-NG/.
[21] Connolly, Dan, WWW and OOP, http://www.w3.org/pub/WWW/OOP/Activity.html.
[22] Ingham, David, Mark Little, Steve Caughey, Santosh Shnvastava, "W3Objects: Bringing Object-Oriented Technology to the

Web", The World Wide Web Journal, Issue 1, Dec 95, O'Reilly,
http://www.w3.org/pub/WWW/Journal/1/ingham.141/paper/141.html

[23] Larner, Dan, "Migrating the Web toward Distributed Objects", 1996, Xerox PARC. URL ftp://ftp.parc.xerox.com/pub/
ilu/misc/webilu.html.

[24] Swen, Bing(孙斌). Improving Web Performance Using Structural Information of Web Pages, Tech. Rept., ICL, CS Dept.,
Peking University, Jan. 2001. (Available at http://icl.pku.edu.cn/bswen/web++/w++intro.html)

[25] Swen, Bing(孙斌). Speeding Up the Web Using the Web++ Framework. In Proceedings (CD-ROM) of WebNet 2001
Conference, WebTech Session. Orlando, Florida, October 23-27, 2001.

[26] Swen, Bing(孙斌). A Brief Introduction of the Web++ Framework. In WWW2002 Conference Proceedings, Posters Session.
Honolulu, Hawaii, USA. 7-11 May 2002.

[27] Swen, Bing(孙斌). An Overview of the Web++ Framework. In Proceedings of International Conferences on Info-tech &
Info-net (ICII2001), Conference E (Information Network), E-13 (Web Technology). (Included also in Conference CDROM.)
Beijing, Oct.29 - Nov.1, 2001.

[28] Wang, J., "A Survey of Web Caching Schemes for the Internet", ACM Computer Communication Review, Vol. 29 No. 5, Oct.
1997.

[29] Y.Goland et al. WebDAV. RFC2518, IETF, Feb 1999; Stracke, J., "Encoding a DAV resource in MIME"
(draft-stracke-webdav-mime-resource-00.txt), Feb. 1999. Internet Draft, IETF.

[30] Palme, J., and A. Hopmann, "MIME E-mail Encapsulation of Aggregate Documents, such as HTML (MHTML)," RFC 2557,
March 1999.

[31] Franks, John. MGET proposal, October 1994, http://www.ics.uci.edu/pub/ietf/http/hypermail/1994q4/0260.html
[32] Craig E. Wills, Mikhail Mikhailov, Hao Shang, "N for the Price of 1: Bundling Web Objects for More Efficient Content

Delivery". In Proceedings of WWW10 (10th International World Wide Web Conference), May 1-5, 2001, Hong Kong
(http://www10.org).

[33] Crocker, D. H., "Standard for the Format of ARPA Internet Text Messages", STD 11, RFC 822, August 1982.
[34] Arlitt, Martin F. and Carey L. Williamson. "Web Server Workload Characterization: The Search for Invariants (Extended

Version)". DISCUS Working Paper 96-3, Dept. of Computer Science, University of Saskatchewan, March, 1996.
ftp://ftp.cs.usask.ca/pub/discus/paper.96-3.ps.Z.

[35] Braun, H., and K. Claffy, "Web Traffic Characterization: An Assessment of the Impact of Caching Documents from NCSA's
Web Server," Proc. 2nd Int. WWW Conference, Chicago, Oct. 1994. URL http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/
DDay/claffy/main.html.

[36] Padmanabhan, Venkata N., and Lili Qiu, "The Content and Access Dynamics of a Busy Web Site: Findings and Implications",
Proceedings of ACM SIGCOMM 2000.

[37] Apache, The Group, URL http://www.apache.org/.
[38] Braden, R., "Extending TCP for Transactions -- Concepts," RFC-1379, USC/ISI, November 1992.
[39] Braden, R., "T/TCP -- TCP Extensions for Transactions: Functional Specification," RFC-1644, USC/ISI, July 1994.
[40] T. Berners-Lee, L. Masinter and M. McCahill. "Uniform Resource Locators (URL)", RFC 1738, Dec. 1994.

14

Author’s curriculum vitae:

MA (1993) and PhD (2000) from Peking University, and Associate Professor at the Computer Science

Department, Peking University. Research interests include: Networking and the Web, Computing Models

and Programming Languages, Language Processing and Information Theories. Currently he is responsible

for a joint research project of PKU and IBM China Research Center, aiming at providing a customizable

Chinese Web page Collection System. Before that, he had participated in multiple research projects

as group member, technical principal, and team leader, including a joint project Large-Scale People's

Daily Corpus Processing with Fujitsu China Research Center (1998-2000), a Chinese information

extraction system of an NSFC project and a joint research project between IBM China Research Center

and Peking University (2000-2001), a programming language C** as a Generic Programming extension of

C++ together with a type constraint library SCL (1996-2001, part of an NSFC Young Scientist Project),

and a new protocol called STTP for the transfer control of Web resources (currently supported by the

Chinese 863 Hi-Tech Plans with he being the principle investigator).

(中文摘要)

结构化超文本传输协议(STTP)设计概要
*

孙 斌
北京大学计算机系，北京 10871 (Email: bswen@pku.edu.cn)

摘要：本文介绍了 HTTP 的一种兼容扩充 STTP(结构化超文本传输协议)，它包括一个新增的资源传输控制
消息集和一个用于描述网页结构信息的结构化超文本标记语言 STML。由此实现一种简单、高效的超文本资

源的传输控制。初步测试表明其性能比 HTTP 可提高 70%～400%，并以相同量级减少网络包的数量，性能提

升属目前所报道的最好水平。本文介绍了其组件的设计思想、STTP 服务器和客户端涉及的某些重要问题等。
关键词：万维网，HTTP，性能，超文本，资源传输

* 本研究得到 863计划课题资助（课题编号 2001 AA 112081）。

