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ABSTRACT

Some simple solutions (mostly analytic) are presented for the large-scale baroclinic response to thermal
forcing on a mid-latitude beta-plane. Surface heat flux is parameterized as (T, — T7)/r, with atmospheric
temperature T, prescribed as a function of latitude, varying ocean surface temperature 77, and equilibration
time 7. For long times (decades) benthic forcing is included, using a similar representation. The model allows
horizontal density variations at each level.

When there are no meridional boundaries there is only a local response to the forcing. A geostrophic
baroclinic zonal flow is driven by the north-south temperature gradient, but it has no associated advection

or divergence effects. This picture is greatly changed when east and/or west coasts are added. Kelvin waves:

pass information rapidly (about 200 km day™') along coasts, and Rossby waves travel slowly offshore, most
effectively from the east with speed ¢ =~ 1 km day™'. For spin-up problems (e.g., the response to a change
in forcing) the long Rossby waves decay away from the eastern boundary on a scale ¢r. With 7, decreasing
poleward this creates a broad, relatively warm eastern region with weak downwelling. A steady state requires
weaker vertical motion to balance benthic forcing and a corresponding larger decay scale. The narrow western
boundary layer is relatively cold on average, with upwelling. (This two-level model does not adequately

169

describe western boundary dynamics, however.)

1. Introduction

The oceans are driven by both surface wind stress
and density changes. Many large-scale features of the
observed currents have been explained using simple
wind-driven models with one or more layers of con-
stant density—see for example Stommel’s (1948) ex-
planation of western intensification, or the world
ocean model constructed by Veronis (1973). To ex-
plain density distributions, however, some thermo-
dynamics must be included.

A thermohaline circulation can be simulated in
multi-layer models by adding a source-sink flow, with
mass flux from one layer to another. [Veronis (1976)
used this technique, with uniform upwelling through
the thermocline balancing sinking at high latitudes,
in extensions to his wind-driven theory.] However,
this approach does not allow density variations within
each layer. :

More detailed density distributions can be simu-
lated using the steady thermocline equations, driven
by surface temperature (or heat flux) and vertical ve-
locity (Ekman pumping). These nonlinear equations
have interesting exact similarity solutions (see We-
lander, 1971, for example). Unfortunately such so-
lutions are limited in application by their special na-
ture. Barcilon (1971) presents a simpler linear theory
that allows western as well as eastern boundaries, but
geostrophic restrictions still require constant long-
shore densities.
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Another approach is to numerically solve more
general equations. Bryan and Cox (1967) investigated
the response to thermal forcing by this method, com-
paring several cases with and without wind stress,
using a six level model. [They also used a similarity
solution by Robinson and Welander (1963) as a test
case.] A wide range of physics can be incorporated,
and many such models of increasing resolution and
complexity have been developed in recent years, rang-
ing from process models to detailed ocean/atmo-
sphere simulations.

There seems to be a need for further simple large-
scale models that have varying density. This paper
describes a model that has independent density vari-
ations at each of two levels. It is driven by a surface
heat flux, proportional to the difference between a
prescribed effective atmospheric temperature 7, and
the sea surface temperature 7. To avoid difficulties
associated with different mixing for heating and cool-
ing, only cooling (T, < T7) is considered. For large
time scales (several years) benthic forcing is needed.
Rather than prescribe a vertical velocity, the deep
water is forced toward some equilibrium density on
a long time scale.

Linear longshore geostrophic momentum and
nonlinear heat equations for a mid-latitude S-plane
are used. For simplicity only thermally driven density
changes are considered. [With regard to benthic pro-
cesses, temperature should be regarded as an apparent
temperature, as defined by Fofonoff (1962).] In the
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absence of surface or bottom stress the flow is purely
baroclinic. Further details of the basic equations and
associated assumptions are given in the next section.

In Section 3 the short-term response to switching
on a heat flux is described in terms of linear f-plane
coastal Kelvin waves. These waves rapidly pass in-

formation from one latitude to another. For longer

times, Rossby waves transmit information away from
the coasts. This effect is investigated in Section 4 for
forcing, independent of time. Feedback effects due
to the dependence of heat flux on ocean temperature
become important, and in Section 5 we find that the
long Rossby waves that control the eastern region
thén decay westward. The decay scale is the product
of the longwave speed and the time scale for local
adjustment to the forcing.

Steady linear and nonlinear models, with west as
well as east coasts, are investigated in Section 6 with
various forms of longshore velocity damping. The
limited vertical resolution causes difficuities in the
narrow western boundary layer, where unreasonably
large static stability is generated.

The mathematical strategy used is to reduce the
problem to ordinary differential equations at each
latitude. In most -cases these can be solved analyti-
cally, and where numerical methods are needed (Sec-
tion 6), high-resolution solutions can be readily ob-
tained.

2. Basic equations, forces, and scales

The two-level geometry is shown in Fig. la. The
vertical finite-difference approximation that is used
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FiG. 1. (a) Two two-level geometry: vertical section showing
depths and main variables. (b) Horizontal plan of the basin with
east and west coasts. )
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allows independent horizontal density variations at
each level, as outlined in Appendix A. It is analogous
to the two-level atmospheric model introduced by
Lorenz (1960). [See also Bryan (1969) for a descrip-
tion of a multi-level ocean model, and Killworth
(1974) for a two-layer Antarctic shelf sea model with
varying density.]

Density p may change as temperature or salinity
varies. For simplicity only variations in temperature
T will be considered, so

p=pll —aT — T))),

where p, and T, are reference scales, and o = 1074
°C™! is the thermal expansion coefficient. The basic
dynamic variables are the temperatures 7;(x, f) and
velocities u,(x, ) at levels j = 1, 2, where

x = (x, ),
are horizontal vectors. The levels are at depths
zy=—H\/2, z;=—H,— Hy2,

the sea surface being at z; = 0 and flat bottom at zg
= —(H, + H,) = —H. To make the best use of the
limited vertical resolution the variables at level j
should be representative of averages over depth H,.
(This also reflects the close relation of level and depth-
averaged models.) We will use

H =400m, H,=3600m

to represent the basic baroclinic structure of the
ocean.

With no surface wind stress or bottom friction to
drive Ekman pumping the flow in this model gen-
erally has no barotropic component, so

Hllll + quz = (.

2.1

u = (u, v)

(2.2a)
In terms of the difference U = u, — u,, we have
u = (1 - U, (2.2b)
w, = —oU, (2.2¢)

where 8 = H,/(H, + H,). For the depths given above,
6 =0.1. .

a. Equations

In flux form the temperature equation at the two
levels gives

Tlt +V-(uT) - wTy/H = F, (2.3a)
Tz, + V '(llsz) + W]T;/Hz = Fz, (23b)

where F; represents thermal forcing. (Subscripts ¢, x,
y indicate partial derivatives.) The temperature T at
the intermediate depth z; = —H, is related to 7 and
T2 by :

T] = l/2(7-'1 + Tz).

(Other choices are possible—see Appendix A for de-
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tails.) The vertical velocity w; at the depth z, is related
to the divergence V- U by

wr= (1 — 8)8HV-U.
From (2.3) we obtain, for future reference,
(H,T, — H,T,), + 26(1 — )HU-VT;

=H1F1 _Hze. (24)

Linear momentum equations will be used because
currents generated by large-scale thermal forcing are
generally weak. Only east and west coasts will be con-
sidered, as indicated in Fig. 1b. Away from these
boundaries geostrophic balance is anticipated. As-
suming longshore geostrophy gives

V=1t (2.52)

where f = fo + By is the Coriolis parameter for a
midlatitude S-plane, and

¢ = oHag(T; — T) (2.6)

is a potential function. Ageostrophic effects are re-
tained in the longshore velocity equation

V,+ fU=~¢, - D. (2.5b)

The term V, allows propagation of coastal Kelvin
waves, and some function D is included to simulate
damping of these waves by effects such as nonlinear-
ity, shelf interaction and dissipation. Various forms
for D can be postulated, and we choose the simplest
(as used by Stommel 1948):

D =KV, 2.7)

where K is a constant damping rate. (Other possibil-
ities are mentioned in Section 6.) For a steady state
D breaks the geostrophy that would otherwise require
T; constant along the coast, where U = 0. (An im-
portant aspect of this model is that the geostrophic
assumption of constant longshore 7; can be tested.)

For later reference we note that advection and di-
vergence can b¢ written in terms of V as

YHagU-VT;=U-V¢
=—VD - VV,, (2.8a)
fV-U=-6V—-2D,—V,. (2.8b)

Because currents are driven by gradients of 7 it
is mathematically convenient to rewrite the temper-
ature equations (2.3) in terms of 7;, and the differ-
ence '

‘ S=WT,—T)

which is a measure of static stability. Reduced gra?ity
g’ is related to S by

g' = Yaags.

It is also convenient to write
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T,=T=WWT, + Tz)}
F=WF + F))’
T+ S, T,=T-S, and (2.3) becomes

Then T, =

T,+(1 =20)U-VT +1LV-(US)=F, (2.9a)
S; +%U-VT + (1 — 28)V - (US)
=(F, — F;). (2.9b)

In the following sections equations linearized about
the initial values 7, = 7°C and Sy = 5°C will often
be used:

T,+'%AS,V-U = F, (2.10a)

S;+ (1 — 20)S,V - U = Yao(Fy — F5).  (2.10b)

Eliminating V - U from (2.10) gives the simpler equa-
tion
(H\T, — H,T)), = H\F, — H)F,,

which is the linearized version of (2.4).

In special cases, as described in following sections
and Appendix A, the equations can be further sim-
plified.

(2.11)

b. Thermal forcing

To introduce the thermal forcing, first consider an
upward surface heat flux Q spread uniformly by con-
vection over a mixing depth H,,. Temperature changes
over this depth are driven by

Fy = —Q/Hyp.Cw, (2.12)

where specific heat ¢,y = 4.2 J ¢! °C™!. For example,
Q=100 W m™? and H) =400 m gives Fyy,=6
X 1078 °C s™! = 2°C year™\.

In practice Q depends on the ocean-atmosphere
temperature difference. From a data analysis, Haney
(1971) obtained the zonally-averaged climatological

relation
Q= Qc(Tr— T, (2.13)

where T is the ocean surface temperature, T4 is an
apparent atmospheric temperature, and the annual
mean gradient is approximately

Qc=30Wm'°C

Where T4 < Trand the upper ocean is cooling and
overturning it seems reasonable to simply associate
T, with T directly, and to write the upper level forc-
ing due to the atmosphere as

F,=(T,— T)/. (2.14)
In the absence of other effects, 7; adjusts to 74 on
a time scale

T= HMPL'CW/QG-
Using the figures above, this equilibration time is ap-

proximately 600 days.
In regions where T, > T, however, we expect tem-



172

perature changes to be confined to shallow surface
layers, with diffusion to lower levels. This diffusion
is relatively slow. For example, White and Bernstein
(1981) deduced a vertical propagation rate of 50 m
year™' for temperature anomalies in the central Pa-
cific. Effectively there is small warming on a long time
scale for level 1 and over depth H, in the two level
model. Such forcing could be roughly simulated using
(2.14) with reduced effective T, and large 7.

More elaborate and more realistic relations be-
tween surface forcing and F; can be constructed [see
e.g., Adamec et al. (1981) for a combined mixed-
layer, multi-level model], but then numerical meth-
ods are needed to obtain results, and mechanisms are
often unclear. The purpose of this paper is to keep
the dynamics as simple as possible, and only surface
forcing of the form (2.14) will be considered.

i TS:

T,(») =
TN;

with 1 = 2000 km, Ts = 12°C, T = 8°C. (Subscripts
N, S, E, W will denote values at yn, Vs, Xg, and xw.)
This temperature distribution is plotted in Fig. 2. A
constant benthic equilibrium temperature Tp = 2°C
will be prescribed.

Only forcing of the form F, = F, and F, = Fp will
be considered in the sections to follow. Some calcu-
lations were also made with vertical temperature dif-
fusion proportional to T, — T included, but the effect
was minor and those results will not be further dis-
cussed. A

For initial value cases, the constant initial condi-
tions

Tio= Tuys) = lzoc}» @.17)

T20 = TB =2°C
will be applied at ¢ = 0.~

¢. Local response

With no east or west coasts and forcing a function
of latitude only the dynamics is purely local:

T][ = Fl ’
Ty = F (2.18)
giving
T, = Ty exp(—t/7) + T4[1 — CXD(“'Z/T)]} . (2.19)
Tz = TB

The ensuing north-south temperature gradient drives
a baroclinic geostrophic current U, through the ‘ther-
mal wind’ relation

fkX U, = —Vg.
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For very long time scales the model requires some
input to maintain the lower level temperature. This
is achieved in practice by dense water forming at high
latitudes and slowly advecting and diffusing to lower
latitudes. Again, specific simulation of this process is
complicated, involving mechanisms beyond the scope
of this study. When considering long time scales, we
shall simply prescribe a benthic forcing

Fp=—(T, - Ty)/T (2.15)
with some time scale 7 » 7. [This method of forcing
toward an equilibrium temperature is similar to that
used by Sarmiento and Bryan (1982) in their robust.
diagnostic model.]

For all examples in later sections we will use the
(idealized) effective atmospheric temperature

y<ys
ys<y<ys+1
yst+l<y

(2.16)

In the present no-coast case we have only zonal

flow:
fU = —Y2HagT,[1 — exp(—t/r)]}
V=0 )

For the scales given earlier, the maximum U is about
0.03 m s! at y = 900 km, attained on time scale
7. For later comparison maps of 77 and U at ¢ = 2000
days (effectively steady) are given in Fig. 3. Note that
U vanishes north of y = 2000 km, where constant 7,
is prescribed by (2.16).

For this simple no-coast example divergence and
advection effects do not appear. The addition of east
and/or west coasts changes the picture dramatically.
The constraint of no flow normal to the boundaries
generates coastal Kelvin waves, as described in the
next section, and the S-effect allows Rossby waves to
spread the coastal anomalies offshore.

3. Linear f-plane Kelvin waves

The dynamics of Kelvin waves is well known, so
this description is brief. On an f-plane (f = f,), with
longshore damping [(2.7)], the linear temperature
equation (2.10a) gives

Tl - Lz(Txxt + KTxx) = F’ (31)

where L = (g'H)'"?/f is the Rossby radius. (This scale
for geostrophic adjustment is approximately 30 km
for the figures given in the previous section.)
The coastal boundary condition U = 0 requires
JoIy + Ty + KT, =0 3.2)

at xz and xu. (The geostrophic zonal flow associated
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FI1G. 2. The effective atmospheric temperature 7 4(y) used
to force the upper level of the model.

with any longshore gradient of 7 must be balanced
by ageostrophic terms.)

a. Spin-up with constant F (no feedback)

We first consider the response to forcing without
feedback:
F,=(T,— Ty)/7

F,=(Tg— Ty)/T =0
gives
F=Fy= (TA - Tlo)/z'r

= (TA + TB - 2T0)/2T . (3.3)

Then (3.1) involves T alone, and can be readily solved
using Laplace transforms. The solution is particularly
simple when K = 0. Then at an east coast
!
Tg =Ty + f Fo(y — Ct')dt', 3.4)
0
where C = fL = (g'H)'? is the Kelvin wave speed,
typically about 200 km day™!. The coastal response
depends on information carried from distances up to

Ct “upstream” by the Kelvin waves. The effect of the
coast decays offshore with scale L, giving

T = T;[1 — exp(=X)] + Tpexp(—X), (3.5)

where
X=(xg—x)/L>0,
and
TL = T() + Fol

is the local (no coast) response.

With forcing by 7', that is decreasing poleward the
east coast is warmer than the interior. Then the me-
ridional flow

V =WHag(Tg — T;) exp(—X)/C (3.6)

is positive, poleward at the upper level and equator-
ward below. Further, with w; < 0 there is downwelling
in this region that tends to increase both the upper
and lower level temperatures. Similarly, the west
coast is relatively cold with upwelling and V > 0.

The solution with damping included is qualita-
tively similar. At the east coast

1
Te =Ty + G@) + Kf G(tHdt', (3.7)
0
where
t
G = f Fy(y — Ct"YWAL, t', K)dt'
0

L . L . 3008
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FIG. 3. The zonally uniform (no coast) response after 2000 days,
Contour interval = (maximum — minimum)/7. (a) Upper level
temperature 7 (equal to surface temperature T for cooling); min-
imum = 8.2°C, maximum = 12°C. (b) Zonal velocity U =
— u; minimum = 0.0, maximum = 0.03 m 5",
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FIG. 4. Meridional sections of intermediate temperature T; after 100 days with:

=(T4—

Ti)/7, F2 =0 (no feedback): (a) at east coast with no damping (K

= 0) (b) at east coast with K = 1.2 X 107*s™' = 0.1 day™!, and (c) the local (interior,

no-coast) response 7, = Ty + Fyt.

with weight function
WA, 1 K) = exp(—Kt/2)I[K(t? — 7)),
0<t <yt

(I, is a modified Bessel function, and W < 1, decreas-
ing as ¢ or ¢’ increases.) Information carried by Kelvin
waves is now altered by the damping: it is effectively

lost on a length scale C/K. For a damping time of.

K~! = 10 days this scale is about 2000 km.
Longshore profiles of T" are shown in Fig. 4. Ini-
tially 7, = T 4(ys) so there is cooling north of ys, and
T, = Tg. Changes along the coast are smallest for K
= 0 (Fig. 4a), increasing as damping is increased to
K = 0.1 day™! (Fig. 4b). As K — oo, Tg approaches
T, (Fig. 4c), which increases linearly in time. Cor-
responding time profiles at y = 2000 km can be seen
in Figs. 5b, 5c. With no damping or feedback T
reaches a steady value at time ¢ = y/C, but with K
> (0 the magnitude of 7 continues to increase.
When forcing does not vary upstream from some
point there are no longshore gradients to drive Kelvin
waves and the response is local right up to the coast.

l_). Spin-up with feedback in F

For ¢t = v we should allow the surface heat flux to
vary as 7| changes. (The slower forcing F, is still
neglected for 1 < T.) The solution with

F= (TA - Tl)/2T

is complicated. However we can simplify by using the
approximation

T,=2T—T, ~ 2T — Tpg,
giving
F~(T4+ Tg—2T)/2r. (3.8)

(This is reasonable while changes in 7’ are small.)
With this assumption (3.1) is again an equation for
T alone, and can be easily solved. On the east coast
(1
Te=T,+ f Fo(y — CtOYWe, t'; v~ Nde'.  (3.9)
(1]

The weight W is the same as that for the damped case

(3.7), but with ™! replacing K. Information is now
altered by the ocean—atmosphere heat flux feedback.
The long time scale (r > K™') implies a very large
longshore decay distance Cr. The time-dependent
response with feedback can be seen in Fig. 5a. After
a rapid initial increase the magnitude of Ty at y
= 2000 km slowly decreases, in contrast to the
damped no-feedback result in Fig. 5c.

We also find that the offshore decay scale decreases
with time in this case, whereas it tends to increase in
the model with damping and no feedback.

c. Steady state with damping and feedback

The time-dependent case with damping and feed-
back does not have such simple solutions. The steady
state can be easily found, however, and is worth in-
vestigating. With benthic forcing included we use

F,=(T,—- T)/r }

F,=(Ts— T)/T ’
The steady form of (2.11) requires
H\F, = H,F,. (3.10)
Then (3.1) leads to
—KDT o+ yT = ~Ty, (3.11)

where .
v = 1/[6T + (1 — &)7],

T, ="%(T,4 + Tp).

Near the east coast the solution to (3.11) takes the
form .
T = T;[1 — exp(—X)] + Tg exp(—X)
with
- X =(xg — x)/D.

The compromise between damping and feedback
gives an offshore decay scale

D = L(K/v)'",

which is generally much larger than L. The reason
for this increase in offshore scale is that the lower
level balance between downwelling and benthic forc-
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FiG. 5. Time dependence of T at east coast, at y = 2000 km: (a) feedback, no
damping [F = (T, + T — 2T)/27, K = 0], (b) no feedback, no damping [F = (T,
+ Ty — 2T,)/27, K = 0], and (c) no damping, no feedback [F = (T4 + T — 2Ty)/

27, K = 0.1 day™'].

ing requires weak w;, which in turn demands small
Vand T,.
At the east coast,

Ty = Te(ys) expl—(y — ys)/A]
y
+ 7 f exp[—(v — V)/NT(Y)dy', (3.12)
Vs
where the large longshore scale is
A= Dfo/K

Another condition is needed. With forcing constant
south of ys we have

Te(ys) = T(ys)

to complete the picture.
From (3.10), S can be found once T is known. It
is useful to rearrange (3.10) as

S=S8.— AT - Ty),

(3.13)

(3.14)
where

SL = l/2(]‘,4 - TB):
Ay =[BT — (1 — &)r)/[6T + (1 — 8)r].

At the east coast Tz > T;, so for A, > 0 we have Sg
< Sy and the static stability decreases poleward faster
than for the open ocean. [Note that when 4, = O(H,T
= H,7) the static stability does not depend on T.]
One limitation of this linear model becomes ap-
parent. The effective atmospheric temperature 7, can
decrease poleward sufficiently to drive T, < T5. At
this point deep convection should occur—an event
not accounted for in this model. (We expect nonlinear

effects to increase the static stability, however. For
example, small g’ implies small Rossby radius and
decreased longshore decay scale, allowing T to vary
more rapidly along the coast.)

The main points to note from this section are the
tendency for Kelvin waves to warm the east coast and
cool the west, and the large longshore scale for 7. In
the next sections this latter property is used to sim-
plify the boundary conditions when considering
Rossby waves. ‘

4. Linear Rossby waves with no feedback

On a B-plane, with D = 0 and no feedback, the
linearized temperature equation (2.10a) becomes

T, — LATx + BT) = Fo. 4.1

This case is similar to the wind-driven spin-up ana-
lyzed by Anderson and Gill (1975), henceforth re-
ferred to as AG. [See also McCreary (1976) for an
analytic solution of a wind-driven two-layer equa-
torial B-plane model with Rossby and Kelvin waves.]
The local response is modified by Rossby waves prop-
agating away from the coasts. As described by AG,
the eastern region is dominated by the longest and
fastest Rossby waves, which have westward group and
phase speed

¢ = BL?

typically 1 km day™', decreasing poleward. Waves
travelling from the west coast with eastward group
velocity are much shorter and slower, the maximum
group velocity being ¢/8. Consequently most of the
ocean is modified by information from the eastern
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boundary only. The boundary condition U = 0 re-
quires

f1,+7T,=0, on Xxg xw,

which provides some differences from AG, and some
difficulties. Given T at the coasts, (4.1) can be easily
solved at any particular latitude—but at xz and xy,
T is controlled by Kelvin waves that couple different
latitudes. This complication was overcome by AG by
freezing f(f = fo, f, = B) to obtain

foPU = —(Bo* + fod} + o¥),

fo* = YaHagf(T — To)
= foo.

By decomposition into sinusoidal meridional modes
they then construct an equation for U of the form
(4.1), which can be solved with U = 0 at the coasts.
[On an equatorial 8-plane McCreary (1976) uses
Hermite function meridional modes.]

Unfortunately (4.3) is not appropriate to the ther-
mally forced problem because U should only be
driven by temperature gradients. For example, spa-
tially constant F should change 7" uniformly with no
associated currents. [Note that (4.3) is suitable for
purely wind-driven models because such forcing does
not generate uniform 7 changes.] Moreover, as
shown in Appendix C, the corresponding equation
for ¢* has an unstable free mode associated with
Kelvin waves with U = 0.

With boundary conditions (4.2) this model cannot
be reduced to a two-dimensional (x, ¢) problem. How-
ever, because coastal Kelvin waves are much faster
than Rossby waves, we can expect T to be almost
uniform along the coasts and determined by up-
stream conditions. Approximate boundary condi-
tions are

4.2)

(4.3)
where

TE = T(yS’ t)}
TW= wN9 t) '

Then Kelvin waves effectively travel instantly, and
(4.1) represents a slow-time model for the develop-
ment of Rossby waves.

For forcing, which is constant south of ysand north
of yn, we have

4.4)

Tg = Ty + Fy(ys)e,
Ty = Ty + Fo(ymt.

(4.5a)
(4.5b)

In the interior, where waves have not yet arrived,
the local response is

TL = To + Fot. (450)

For the western region, the Lighthill (1969) ap-
proximate solution used by AG leads to

T =T, + (Tw— TOIBx — xi)t] ' 2I(Z), (4.6)

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 13

where
Z = 2[(x — xw)et — (x = xu)]'2L7,

and J, is a Bessel function. This region slowly broad-
ens, but it contains a thinning boundary layer next
to the coast set up by the dispersion of short Rossby
waves. The zonal gradient at x; is

Ty = =%l + (ct/LYWTw — Tp)/ct.

(For small ¢, Ty, — T, is proportional to ¢.) In the
absence of damping, T, grows rapidly and unrealis-
tically large longshore velocities soon appear, so the
analytic western solution (4.6) is actually of limited
use. Note that V is positive at the coast when Ty
< TL. :

On the east side non-dispersive long Rossby waves
dominate, giving

T=T,+(Tg— Tl — (xg — x)/ct]

4.7

(4.8)

for xg — ¢t < x < xg. The zonal gradient in this region
is ‘

T, =(Tg — Tp)/ct (4.9a)

which is independent of x, and the meridional gra-
dient is

Ty = [Toy — (T — T1)2B/fYxg — x)/ct.  (4.9b)

The Ty — T, term in (4.9b) is due to latitude dis-
persion of the Rossby waves. At the wavefront x
= xg — ct the discontinuity in VT (and hence in U,
which is geostrophic for these long waves) is smoothed
out by short waves in practice. When T¢ > T; we
find V' > 0, and there is downwelling accompanying
the divergence V- U.

Our standard atmospheric temperature distribu-
tion (2.16) leads to a broad relatively warm eastern
region and a cold narrow western boundary layer.
The eastern region after 2000 days is illustrated in
Fig. 6. The upper level temperature in Fig. 6a is neg-
ative in the north, with 7, < T, because the ampli-
tude of the response to the surface cooling is too large
when there is no feedback. However the pattern is of
interest, and can be rescaled (see below). Compared
to the no-coast result in Fig. 3a the water near the
east coast is much warmer, principally due to the
“instant” Kelvin wave. The lower level temperature
T, is driven only by downwelling, and slight warming
in the wave region can be seen in Fig. 6b. (The vari-
ation of Rossby wave speed with latitude shows
clearly in this diagram.) Note that 7, and 73 are not
constant along the coast, in contrast to 7. Geo-
strophic velocities are mapped in Figs. 6¢, 6d. In the
interior U is purely zonal, corresponding to Fig. 2b.
There is a jump in U and V at the wavefront, behind
which V' is zonally constant and increases poleward.
U decreases linearly to vanish at the coast.

Zonal sections of 7, with the west coast included,
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Ty = Ti(ys) = 7°C (instant undamped Kelvin waves): (a) upper level temperature 7, min =

level temperature T,
min 0.0, max 0.12 m s™".

are plotted in Fig. 7a, at y = 0, 1000 and 2000 km.
Though the western wave region 1s over 100 km wide
after 2000 days, the western boundary layer has ef-
fectively thinned to about 5 km width. The enlarge-
ment in Fig. 7b shows the very abrupt transition from
the interior value of T to the relatively cold coastal
value T’y . Steady results in Section 6 show how in-
clusion of damping limits this thmnmg

The temperature changes described in this sectlon
are unreasonably large because feedback has been
neglected. A simple but crude way of improving the
magnitude of the response is to replace Tx, Ty and
T, by, for example,

T, = Ty + Fyr[l — exp(—t/7)].

This gives a no-coast interior dagreeing with Fig. 3,
and also gives 7, > T, everywhere.
The pattern as well as the magnitude should be
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Tyw)/7, F> = 0 (o feedback) and
—0.3, max = 12°C; (b) lower

min = 2.0, max 3.3°C; (c) zonal velocity U, min = 0.0, max = 0.10 m 57'; (d) meridional velocity V,

changed because the Rossby waves travel slowly and
are themselves modified while moving away from the
coast, and in the next section the large eastern region
is examined in more detail. (Note though that the net
meridional transport in the eastern and western re-
gions depends only on Ty~ T, and Ty — T, re-
spectively.)

5. The eastern region and long Rossby waves

In this section we investigate the effects of nonlin-
earity and feedback on the long Rossby waves that
control the eastern region. For these waves with wave-
length much larger than the Rossby radius the ve-
locity is geostrophic:

i, vy=
Then the divergence is simply

Y2Hag(~T,, T,).
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V.U = -8V/f, (5.1a)
and advection of T vanishes,
U.-VT =0, (5.1b)

because fU follows contours of 7.
Using (5.1) the temperature equation (2.9a) can be

written
T, — ol +S/S)T,+1LU-VS' =F, (5.2)

where §' is the stratification change from the constant
initial value Sy, and the initial longwave speed is

¢ = YaBagSoH/f* = BL2.

The nonlinear terms in (5.2) represent modification
of the long-wave speed by changing static stability
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and horizontal advection of S. With no T advection
we also have
[S— (1 —=28T),=06F -1 —8F, (53

which is equivalent to (2.11). As in the previous sec-
tion, instant Kelvin waves give T constant along the
east coast.

a. Linear spinup with surface feedback

We first examine the effect of feedback by using

F, = ’
and the linear version of (5.2):
T,—cT,=F
=(Ty—S— T)/2r. (5.49)
Eliminating S from (5.3) and (5.4) leads to
(T, —cT),+T,— T, =0 (5.5)

to be solved subject to the initial conditions
T,— T, =(T,— Tlo)/z"'}
T= To

at 7= 0. When T, = Ty south of ys, the coastal con-
dition is simply
TE = To.

West of the wavefront at xz — ¢t the response is
still local, with

T, = Toexp(—t/7) + Yo(T4 + Tp)[1 — exp(—1/7)]
= Ty + YA[l — exp(—t/7)], (5.6a)
T2 =.TB, (5.6b)

where
A=Ty—To=T4— T4ys).

(Note that A is negative for T4 decreasing northward.)
In the wave-modified region xz — ¢t < X < Xg,
(5.5) can be solved using Laplace transforms to obtain

T =T, — »A exp(—X)[1 — exp(— W)
+ fw[l —exp(W' — W)] exp(—6W")
0

X (X)W 2PLRYsXW AW, (5.7)
where '
X = (xE - x)/D;

D = cr/(1 —8),
W = (ct + x — Xg)/cr.

W varies linearly from O at the wavefront to t/r at
the coast. The lower level temperature is
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: w
T, = Tg — 6A exp(—X) f exp(—oW")
()]

X IV XW)dW'. (5.8)

(I, and I, are modified Bessel functions.) As 7 —
oo 1n these expressions the no-feedback result (4.8)
is regained.

The solution looks complicated but two important
features can be recognized. The main one is the term
exp(—X) which causes offshore decay of the infor-
mation carried by the Rossby waves. The physical
explanation of this behavior can be traced to the
more rapid cooling of places with larger upper-level
temperature. This tends to decrease T gradients and
counteracts the generation of zonal gradients by the
Rossby waves travelling from the coast. The timescale
7 and the wavespeed ¢ determine the decay scale D,
which is typically about 500 km.
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Near the coast the results simplify to reveal another
feature. At x = xg we find

T, = Ty — A[1 — exp(—dt/7)}, (5.93)
T, = Tyo exp(—ét/7) + T4[1 — exp(—ét/7)], (5.9b)
V = —(Af/SoB7) exp(—ét/T). (5.9¢)

A long time scale 7/6 appears. After the initial Rossby
wave spinup there is further slow adjustment as
downwelling changes the benthic temperature, which
in turn affects 7 and V. Offshore regions are similarly
affected, with weaker downwelling beginning after the
wavefront passes. With no benthic forcing to limit
the change in T3, (5.9)gives T, — Tg— A, T, — T,
and ¥ — 0 at the coast for ¢ > 7/6. (As in Section 3,
there is a problem with T, < T, if A is sufficiently
large.)

The response to atmospheric forcing [(2.16)] after
2000 days is shown in Fig. 8, and can be compared
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FiG. 8. Eastern region spinup by long Rossby waves, after 2000 days with F, = (T, — T)/r, F> = 0 (as for Fig. 6, but with
feedback): (a) T, min = 8.2, max = 12°C; (b) T», min = 2.0, max = 3.1°C; (c) U, min = 0.0, max = 0.03 m s7'; (d) ¥V, min

= 0.0, max = 0.08 m s'.
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with the patterns without feedback in Fig. 6. The con-
trast is most striking in the V-field, which now decays
offshore instead of remaining constant between the
coast and the wavefront. Zonal sections of 7 in Fig.
10 show the same decay, and the relation between
wavespeed and offshore decay scale is clear (cf. Fig.
7 without feedback). Fig. 9 gives results after 10 0600
days. By this time the V-maximum has moved slightly
offshore as downwelling slowly increases 7,. Note
that the surface temperature 7, has almost relaxed
to T4. The zonal sections of T in Fig. 10 show also
that the decay scale is slowly increasing with time in
this case. After-a very long time 7 — T at any point
offshore.

b. Spinup with strong benthic forcing and nonlin-.

earity

The general nonlinear equation is difficult to solve
explicitly, but simple results can be obtained for

F, = (Tp — T/, (5.10)
giving

F=(T,+ Tg—2T)/21.
This represents strong damping of lower level tem-
perature. However, because changes in 7, are slow—
zero in the interior—this overestimate of benthic
forcing should have little effect until z > 7. The local

-3000 -2000
7 1
T
a
6
5 b

FiG. 10. Zonal sections of 7, corresponding to Figs. 8, 9 at (a)
y = 1000 km, (b) y = 2000 km after 2000 days (solid) and 10 000
days (dashed). Circles indicate position of Rossby wavefront.
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response is still (5.6). Further, this strong forcing case
complements the above example with F, = 0.

We can solve (5.3) immediately to obtain the di-
agnostic

S' = (1 = 20)T — Tp) + 6A[l — exp(—t/7)]
= (1 — 20T — T) + YLA[l — exp(—¢/7)]. (5.11)
The advection term consequently reduces to
U-VS' = VoT,[1 — exp(—t/7)]

= =26U, T, (5.12)

where U, is the zonal velocity driven by 7,. Then
(5.2) becomes

T,—c(1 + 8/Sp)T, — dU, T, =F. (5.13)

With T,, < O we have U, > 0 and advection is ef-
fectively increasing the westward wavespeed. 4 priori
one might expect a decrease in wavespeed due to
UT,, but this term is cancelled by V'T, because U-
VT = 0. A similar effect was described by Anderson
and Killworth (1979) in their analysis of nonlinear
wind-driven long Rossby waves,

As described in Appendix D, Eq. (5.13) together
with (5.11) can be solved using characteristics. Before
presenting some nonlinear results, however, we can
first solve the simpler equation

T,—cT,=F

to compare with the earlier F> = 0 case. In this linear
limit the wavefront is again at xz; — ¢z, and in the
wave region

T =T, ~ %A exp(—(xg — x)/cT)

X[l —exp(—W)], (5.14a)
Ty = Tg ~ 6A exp(—(xz — x)/cT)

X [1 —exp(—W)}, (5.14b)
V = (Af/SoB7) exp(—(xg — X)/cT), (5.14¢)

where W = (ct + x — xg)/cr as in (5.7). Compared
to the F, = 0 result, the offshore decay scale is reduced
by the factor 1 — 4 to ¢r and the long time scale 7/
4 is suppressed by the benthic forcing. For the usual
T, distribution the response after 2000 days is very
similar to that shown in Fig. 8 for F, = 0. Note that
V is steady behind the wavefront. If the benthic time-
scale were larger than 7 then there would be further
slow adjustment.

Results with nonlinear terms retained are given in
Fig. 11 for ¢ = 2000 days. The wavefront is at

x=xg— (1 + )t — ur[l — exp(=t/7)]), (5.15)

where
= (A = 28T4,f/8)/2S,.
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At the higher latitudes where T, is independent of y
the long waves are appreciably slowed by the reduced
static stability there, and the coastal influence decays
rapidly offshore. Further south, where T, <0, ad-
vection outweighs the decrease in S and the wave
speed is effectively increased. Despite changes of up
to 50% in S, however, the linear and nonlinear results
are not all that different. This is mainly because T is
fixed at the coast and there is offshore decay to the
same interior in each case. More contrast can be
expected when T, is time-dependent (seasonal vari-
ations, for example). Zonal sections of T at y = 1000
and 2000 km, and ¢ = 2000 and 10000 days, are
given in Fig. 12, and can be compared with those in
Fig. 10.

¢. Steady nonlinear long waves

The long-wave model has a simple steady state. For

forcing
F,=(T,— Tl)/‘f}
F,=(Ts - T,)/T ’
we have from (5.3)

S = SL - Az(T_ TL), (516)

where the local values T, and S; and the constant
A, are the same as for the steady f-plane model in
Section 3. With U+ VT vanishing, the steady form of
the temperature equation (2.9a) reduces to

WnV-(US)=F

=T~ Ty, (5.17)

where v is the inverse time scale defined in Sec-
tion 3.

Using the divergence (5.1a) and substituting for S
from (5.16), Eq. (5.17) becomes an equation for T
- TL, i.e.,

—crll — AT — T)/Sp + AT — Ty

+ (T —T)=0. (5.18)

Here
Ay = —(Sp + A, T1),f/BSL,

and ¢, = Bg H/f is the long-wave speed for the local
stratification S; . The terms involving 4, and A, rep-
resent modifications of this speed by advection and
varying static stability, similar to the special spinup
case above.

With the boundary condition T = T at x = xg,
Eq. (5.18) can be solved at any particular latitude to

obtain

(T — Ty) exp[—~(T — Tg)Axc1/S1al

= (Tg — Ty) expl~(xg — x)v/al, (5.19)

where
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is the advection-modified wavespeed. This is the
speed of a wavefront advancing into stratification S,
when forcing varies with latitude. With 4, > 0 (e.g.,
T4, < 0) relatively warm water is advected northward,
effectively increasing the speed of warm information
propagating from the east coast.

At xg the westward decay scale is a/y which is
analagous to the scale cr encountered earlier. If the

3000 2000 * K™ _i000 0
7 1
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64— — ,
b
sFpT T == === -

FI1G. 12. Zonal sections of T; for conditions as in Fig. 11, at (a)
y = 1000 km, (b) y = 2000 km after 2000 d (solid) and 10 000
days (dashed). Circles indicate wavefronts.

benthic time scale T is increased then a/y also in-
creases because smaller T, (proportional to wj) is
needed to balance F.

In the next section more general steady models are
investigated. The long-wave restriction is dropped,
and damping/diffusion allows T to vary along the
coast. West coast effects are also included.

6. Steady model with feedback and damping

Time-dependent results with damping as well as
feedback are difficult to obtain analytically, so in this
section only steady models are considered.

Using the notation established in Section 5.c, the
steady nonlinear temperature equations (2.9) lead to

S = SL"Az(T_ TL)_A3U’VT,’ (61)
where .
As = 26(1 — §)r'T/[6T + (1 — &)r),

V- (US) — 24,U-VT + (T - T)=0. (6.2)
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Then substituting for S in (6.2) from (6.1) gives a
(rather cumbersome) equation involving 7" alone.
From (2.8) we have

Y%, HagU-VT = —VD,
fV-U = BV — D,.

(6.3a)
(6.3b)

At the east and west coasts, vanishing U requires

YaHagT, + D = 0. (6.4)
As before, we use the corner conditions
I = T b
T(xg, ys) L(J’s)} . 6.5)
T(xw, yn) = Tr(yn)

[There is an assumption here that the east (west) coast
does not influence T (ys)(T(y»)). In more complete
models with closed boundaries or an equatorial wave-
guide these boundary conditions are altered.]

a. Linear

When disturbances are small we omit U-VT and
set S = S;. [Effectively U- VS is replaced by U.S,
+ VSL, in (6.2).] The simplified equations reveal the
important zonal and longshore decay scales.

We first consider D = KV, for which (6.3) reduces
to

—KL*T,, — aT + vT = vTy, (6.6)

where a is the advection-modified long-wave speed
defined in Section 5.c. [With K = 0, (6.6) reduces to
the linear version of the long-wave equation (5.1),
and when a = 0 in (6.6) the linear f-plane equation
(3.11) is obtained.] The general solution of (6.6) can
be expressed as

T = T, + E(y) exp[—(xg — X)/Dg}

+ W(y) exp[—(x — xw)/Dw], (6.7)
where

Dg = raly, Dy = KL?* ar }
2r =1+ (1 + 4KL?y/a")'?) ~

The dependence of Dg on K is very weak. Dynam-
ically the eastern region is dominated by the long
waves, which are governed by (6.6) with K = 0. The
westerly decay scale Dy is bounded by K/8 and is
much smaller than Dg, being typically less than 100
km. This scale is important near the west coast and
is due to a balance of damping and the thinning
mentioned in Section 4. It depends only weakly on
y—Eq. (6.6) with ¥ = 0 is a reasonable approxima-
tion near the west coast. Note that

(DeDw)'? = LK/)'?

which is the offshore decay scale found in Section 3
for the f-plane.
From (6.4)

T, = ~(K/N)Tx (6.8)
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at the coasts. Together with (6.5) this condition can
be used to determine E(y) and W{(y) analytically.
More insight is gained by considering some approx-
imate answers, however. Away from,the western
boundary W(y) can be neglected and (6.7) and (6.8)
lead to

Tp=Tyys) + E=Ty(ys) — J‘y (K/fDg)Edy. (6.9)

ys

The longshore decay scale Dgf/K is usually very large,
so T is close to T1(ys) along the east coast and the
geostrophic approximation T = T,(ys) is a good first
guess. (This approximation breaks down if Dg be-
comes small, however, which happens when static
stability decreases markedly.)

If Dg < xg — xw then at the west coast we similarly
have

Tw=Tym+ W

= 10w - | &ifDwWdy. (6.10)

The western longshore decay scale Dyf/K is shorter
than its eastern counterpart and 7 can vary signif-
icantly. Note that

Duf/K < f/8 ~ 500 km

and this scale has only weak K dependence. [Eq.
(6.10) can be easily modified to include T effects
when DE 2 Xg — xW.]

Fig. 13 shows results for a model with K= 0.1
day 'and T = (1 — 8)7/5 (i.e., T ~ 6000 days). We
see eastern region development similar to that found
in the previous section, together with a narrow west-
ern boundary layer. The eastern zonal decay scale is
clearest in the 7, map. A strong T, effect is evident,
and this scale exceeds the basin scale in places. The
T, map shows a relatively warm east coast, particu-
larly at higher latitudes where Dy is smaller, and a
cold west coast. The meridional velocity V is pole-
ward everywhere, being strongest at the coasts, par-
ticularly on the western side. This can be inferred
from the zonal sections of T given in Fig. 14, since
V is proportional to 7,. The vertical velocity w; in
Fig. 13d reveals relatively strong upwelling near the
west coast, with weak downwelling elsewhere. Where
D¢ is changing rapidly with latitude (y ~ 2000 km)
there is an increase in U (Fig. 13c) sufficient to shift
the maximum U substantially away from the U,
maximum at y ~ 900 km.

Due to the effect of T4, on a, the western boundary
layer can be very narrow (less than 20 km in places
in the example above) with associated large V. The
same effect occurs when nonlinear terms are retained,
and this causes a problem because the term U-VT
can then drive an unphysically large increase in S.
(This defect is due to the two-level truncation, which
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is inadequate for such regions where we expect higher
order vertical modes to be significant. Further, strong
upwelling emphasizes the poor representation of ver-
tical structure.) There are several ways of avoiding
such narrow boundary layers. Increasing K reduces
V, but makes Dy unreasonably large elsewhere. Non-
linear damping

D = KWV(1 + |V|/ V), (6.11)

where V), is some velocity scale, was tried with little
success.

The simplest remedy is to introduce a viscous
boundary layer similar to Munk’s (1950) wind-driven
model by

D =KV —vV,, (6.12)

where v is an eddy viscosity. This changes (6.6) to the
fourth-order ODE

VE2T ixx — KL2Tx — aTx + YT = 4T, (6.13)
to be solved with the extra no-slip condition
V=0 (6.14)

at the coasts. There are now four zonal length scales.
Effectively one is still the long-wave scale Dg. The
other three, Dy, di and dy, are approximately (vL?/
a)'. (Note the weaker dependence on a.) These
shorter scales represent a simple easterly decay dp
matching V to 0 at the east coast, and an oscillatory
decay dy, Dy from the west. Writing

T=T,+E, éxp[(x — Xg)/DEl
+ E, exp[(x — xg)/dg] + exp[—(x ~ xw)/Dwu]
X { W, cos[(x — xw)/dw]

+ Wasin[(x — xu)/du}}, (6.15)
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FiG. 14. Zonal sections of 77 for steady linear model with forcing
as for Fig. 13. (a) y = 2000 km, (b) y = 1000 km, (¢) y = 0 km
for K = 0.1 day™’, » = 0 (solid, corresponds to Fig. 13), and for
K=0,r=2X10>m?s™ = 170 km? day' (dashed, corresponds
to Fig. 15).

we can find E (), etc., from the boundary conditions.

As an example, results with » = 2 X 103 m? s~}
= 170 km? day~! and K = 0 are given. (This choice
for v gives Dy, etc., about 50 km.) The map of T in
Fig. 15a shows the usual eastern region, and a western
boundary layer with characteristic current/counter-
current structure, This oscillatory behavior also ap-
pears in the vertical velocity map (Fig. 15b). The
maximum poleward velocity is 0.34 m s™', with max-
imum countercurrent 0.05 m s™'. Zonal T sections
are given in Fig. 14. (Note how little the eastern region
is changed.) When K> 0 is included, the western
oscillations are damped.

There is virtually no countercurrent for K
= 0.1 day™ ..

Most of the basin is controlled by long waves, and
is little affected by the form of D because eastern
longshore decay scales are very large.

b. Nonlinear
Combining (6.1) and (6.2) gives
BSV-U — ¢ AT, — AU-NVNT
—WAU-VU -VT)+ (T —T7) = 0. (6.16)

The term U - V(U - VT) contains y derivatives, so this
general nonlinear equation cannot be solved simply
as an ODE with respect to x at a particular latitude.
When D is linear in ¥, as in (6.12), we write

U-V(U-VT)
= f2U-V(f?U-VT) - 28f'VU.VT.
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The y derivatives only occur in the first term on the
right, and are all of the form T,. We expect nonlinear
effects are important only near the coasts, where V'
is largest. But 7, is small in such regions due to the
large longshore scale, so it seems reasonable to neglect
this term. (Similar approximations can be used for
quadratic or other terms in 2.)

The nonlinear model can then be conveniently
solved numerically as follows. Starting from (xg, ys)
where T = Ty(ys) is known, first solve the ODE as-
suming no west coast influence (T'— 7, as x —
—o0). Knowing D at xg, step T up the coast using
(6.4), solve at the new latitude, and repeat the process.
Then add a west coast correction by similarly stepping
down xjy from yy, matching to the known eastern
solution far from the coast. Note that with v # 0 we
have U = 0 at the coasts, so (6.16) reduces to a linear
equation there allowing a good first guess. The cal-
culation can be further simplified by using the long-
wave approximation away from the boundary layers.
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FIG. 15. As for Fig. 13, but with K = 0 and » = 170 km? day™":
@) 7T,=5-72°Cand (b) w; = =55 X 107"'-3.3 X 107" m 5™,
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This also helps avoid numerical difficulties associated
with Dg > Dy etc.

The solutions obtained for T are quite like the lin-
ear results above. The main nonlinear effect is the
change in S due to the term U- VT, and this is only
important near the coasts. Fig. 16 shows 7, and 75
for a nonlinear model with K = 0.1 day™!, » = 170
km? day™' and T = (1 — 6)7/6. These maps are dom-
inated by large perturbations (positive for T, and neg-
ative for T,) near the west coast, where the static
stability is still unreasonably large. Corresponding
zonal sections of T are given in Fig. 17. Note that T
still varies only slowly along the coasts, and that the
western countercurrent is damped by K > 0. For a
larger benthic timescale 7 the western boundary layer
is thinner and S even larger there.

" Though there are difficulties with the western
boundary, this region has little effect on the rest of

3000

- 2002
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-3000 -2000 -1000 o
X KM)
1
" | . § : ' 3¢00
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. - 2000
IRE 26 . £
-
1080
M : : | : 0
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FIG. 16. Steady nonlinear model with east and west coasts, forc-
ing as for Fig. 13, K = 0.1 day™', » = 170 km? day~": (a) T, = 8.0-
16.5°C and (b) 7, = —5.1-4.0°C.
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FIG. 17. Zonal sections of T; corresponding to Fig. 14, at
(a) y = 2000 km, (b) y = 1000 km, (c) y = 0 km.

the ocean in this model, so the nonlinear model can
be used to investigate the eastern region further. Static
stability is smallest at the east coast, and one question
of interest is whether reduced S allows T to vary more
rapidly alongshore due to the associated decrease in
offshore scale Dy and increased ¥ and D. Fig. 18
shows profiles of S and T along the east coast for »
=0 and K=0.1 day™!. Here atmospheric Tn =6
(instead of the usual 8°C) and T = 3(1 — 6)7/é has
been used. The offshore scale is large while T4, < 0,
so Vis small and nonlinear effects are negligible until
y approaches 2000 km. Then V increases rapidly to
about 0.12 m s~! and the damping term KV? causes
S to increase somewhat (reversing the decreasing
trend to that point). Despite the relatively large V,
however, T is still almost constant along the east
coast. The local (no-coast) values S; and T are in-
cluded in Fig. 18 for comparison.

0 1000 2000 3000

y km

FiG. 18. Profiles along east coast for steady nonlinear model with
8T = 3(1 = 8)r, Ta(ya) = 6°C, v = 0, K = 0.1 day": (a) T;(x), (b)
S(x;). The dashed curves are the local (no coast) profiles (¢) T,
(d) S;.
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7. Summary

An elementary two-level model with large-scale
temperature forcing has been described. The aim is
to explore some of the processes affecting the distri-
bution of density while avoiding the complexities of
numerical modeling. With temperature allowed to
vary at each level effects such as dependence of sur-
face heat flux on ocean temperature, the influence of
density structure on wave speeds, and the generation
of regions of weak static stability (potential deep-con-
vection areas) can be investigated.

In response to a change in forcing there is first a
rapid coastal response, followed by Rossby wave
spinup on the much slower time scale 7 (essentially
an upper layer effect) extending a distance ¢r from
the eastern boundary. Finally there is a very slow
change associated with benthic processes as a new
steady state is approached.

For forcing that is colder poleward, the general
upper level picture (qualitative at best) is of eastward
zonal flow with poleward coastal currents (strongest
near the western boundary). The lower level circu-
lation is weaker and oppositely directed. There is
weak downwelling over a relatively warm broad east-
ern region, associated with long Rossby waves that
decay while travelling away from the east coast, and
upwelling in the colder, narrower western boundary
layer. This density pattern is similar to that observed
in the North Atlantic during the 1962 Erika Dan
cruise [see the atlas by Worthington and Wright
(1970)]. In particular, the zonal section at 53°N
shows warmer (and less dense) water over a broad
eastern region. However, for a model with such sim-
ple forcing (and no wind stress) this evidence must
be regarded as circumstantial.

The density changes near coasts are associated with
Kelvin waves which tend to flatten longshore isopyc-
nals. (Only the first baroclinic mode appears in the
two-level model.) The longshore scale near the eastern
~ boundary is very large (unless static stability is very
small), and 7; = (T, + T>) is almost constant there,
even for rather large damping. Further investigation
of this important feature is in progress.

There are a number of improvements and exten-
sions that could be made. Inclusion of wind stress is
straightforward, and potentially the most interesting
addition because advection effects should increase.
(With thermal forcing only, the advection terms are
generally small due to the thermal wind balance. Fur-
ther, stronger wind-driven currents are expected.)
Seasonal variations can also be incorporated. For the
resulting periodic solutions, a shorter longshore decay
scale than that found for steady equilibrium is ex-
pected because ageostrophic effects are greater.

The most obvious deficiency is the primitive rep-
resentation of forcing, and some form of surface
mixed-layer model is needed if quantitative calcula-
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tions are to be made. Better vertical resolution is de-
sirable, particularly near the western boundary, though
a variable thermocline depth may alleviate this prob-
lem. In a true basin model explicit benthic forcing
by deep convection should be used. However, these
modifications involve overturning and the ensuing
complications lead back to numerical modelling.

Acknowledgments. Valuable advice from Dr. A. E.
Gill and Dr. P. D. Killworth helped the development
of this paper.

APPENDIX A
Derivation of Equations for Two-level Model
1. Continuous equations
The temperature equation in flux form is
T,+V-(uT) + (wT), = F, (A1)

where F is a forcing term. In the absence of direct
momentum forcing the linear equation for velocity
u is, with the Boussinesq approximation,

u, + fk X u=—-Vp/p. + D(u), (A2)

where k = (0, 0, 1), p is pressure and D is a damping
term. Small velocities are expected, so advection is
omitted in the momentum balance. Nonlinear terms
are retained in (A1), however, because changes in 7’
may be relatively large. For hydrostatic conditions

D: = —p8&.
Density p is related to temperature by

p = pdl — T — T))). (A3)
Then (A2) and (A3) give
u, + fk Xu, = —agVT + D(u,). (A4)

We have prognostic equations for u, and 7. Con-
tinuity provides a diagnostic equation for w:

w,=—-V.u (AS)

With the bottom boundary at the constant depth
—H and a rigid lid at the surface z;y = 0, boundary
conditions are

WT=WB=0.
\

The depth averaged velocity is

(A6)

0
a=H"! f udz.
—H

When u is initially zero, and there is no surface or
bottom stress, we find u is always zero. Then u is
determined by u, and the above set of equations is
closed. )

2. Two-level approximation

The temperature and continuity equations are ap-
plied at levels z; and z,, and the velocity equation
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(A4) is used at an intermediate level z;. The vertical
derivatives in (A1) and (A5) are approximated by, for
example,

(Tw)Ax, zy, t) = (T7wr — Tyw)/(zr — z)).

Using (A5) and (A6) the temperature equations (A1)
become

T, +V-T)-TV-u =F. (A7)
Similarly we use

u(x, z;, 1) = (uy — w)/(z, — z2)
to write (A4) as

U, + fk X U = —V¢ + D(U), (A8)

where
U=u —u,

¢ = Y2Hag(T; — TC)} )

Here T, is a reference temperature. The geostrophic
thermal wind U, is

fk X U= -V, (A9)
In finite difference form vanishing u gives
Hp, + Hyu, = 0. (A10)

To close this system we need to relate 7 to T, and
T,. A simple linear relation is

T] = O)Tl + (1 - (A))Tz, (Al 1)

where 0 < w < 1 is some constant.
It is useful to write prognostic equations in terms
of T, (which drives U) and the difference

S =T, — Ty)

which is a measure of static stability. Using the
expressions above, (A7) gives

Ty + (@ — HU-VT; + 20(1 — @)V - (US)

, =wF; + (1 — w)F;, (Al2a)
S, +%U-VT; + (1 — 6 — w)V-(US)
= (F, — F;). (Al2b)

In a region with solid and/or periodic boundaries
these equations conserve the temperature average. By
choosing :

w=1/2

the total temperature variance is also conserved, as
in the continuous system. [See appendix B. Multi-
level numerical ocean models often use this choice
(Bryan, 1969).] Other choices for w have different
advantages. For example, w = § or w = (1 — ¢) leads
to linear wave speeds with the same dependence on
é as found in two-layer models. Selection of small
w makes U less sensitive to changes in 7). Wells
(private communication) uses w = é in a two-level
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equatorial model with wind and thermal driving, to
obtain a reasonable balance of pressure gradient and
wind stress.

3. Relation to shallow water equations

Two special cases are described, for which the
model reduces to a form analogous to the shallow
water equations with a mass source/sink. '

a. Deep lower layer

When H, > H, the response to surface forcing is
effectively confined to the upper level. In the limit
6 — 0, we find u, — 0 and u; — U. From (A8), finite
HT; is needed for finite U. This can be achieved by
choosing, for example, w = §, in which case 7, — T,
but HT; — H,T, as 6 — 0. Then from (A7)

T,+V-(UT)=F,
which with (A8) can be solved for 7 and U.

(A13)

b. Linear model with T = 7

Consider F, = (T, — T)/r and F;, = (Ty — T»)/
T, as defined in Section 2, and suppose T = 7. Then
(A12a), linearized about constant temperatures Tq
and Ty, becomes

Ty + 20(1 — w)SV-U
= (T4 + (1 —)Tp)/r — T)/7. (Al4)

Egs. (A8) and (A14) form a closed system for U and
T;. We also find
(H\T, — H,T), + (H,T, — H,T»)/7

= (H\T4 — H,Tg)/7; (Al5)

thus H,T, — H,T, can be found independently, and
hence 7, and 7;, obtained. (See also Section 5.6 for
the corresponding nonlinear geostrophic case.)

APPENDIX B
Conservation Properties

We let angle braces denote the average over a hor-
izontal area with fixed impermeable and/or periodic
boundaries, and denote the finite-difference form of
the vertical average by an overbar. From (A7) and
(A10) we find

(Tye =TV -ui)y + (Fy)
= —(1 —8U-VTy +(F), (Bl)
and similarly |
Ty = KU-VT) + (Fy).
Hence the time variation of average temperature is

(TY, = (F), (B3)

(B2)
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so (T’ is conserved in this volume when there is no
forcing.
From (A7) we also have

V{T?y, + (TV-(uT)y ~ (T, TV -U) = (TF),
which can be rearranged using (A10) to give

(T, + ho(1 ~ (T, — To)

X (T, + T, — 2TV -U) = (TF). (B4)

For the choice )
T, =T, + T),
we have

V{T?), = {TF), (BS)

and temperature variance is conserved in the absence
of forcing. Note that these conservation properties do
not depend on the momentum equations.

Through the velocity equations the term (U - VT,)
is related to the rate of change of kinetic energy, the
form of the kinetic energy depending on the actual
equations [see (2.17a), for example]. Energy conser-
vation can then be derived from (B1) and (B2).

When 7; = »(T, + T,), we can also obtain from
(AT)

(H1T1 - H2T2)l + 2H5(1 - 6)U'VT1
= (H\F\, — H,F;), (B6)

and hence find a Bernoulli function. For example,
(2.17a) leads to

log(H\ T\ — H,T)) — 26(1 — 8)V?),
= ag(H\F, — HoF,) + 45(1 — 8)VD; (B7)

thus the term in brackets is conserved in the absence
of damping and forcing.

APPENDIX C
An Unstable Free Mode for the Frozen f Model
The velocity equations (2.14), with D = 0, can be

written
oV = &%, (Cla)
ffoU = —Bo* — foF — o, (C2)
where
fo* = fod.

The divergence is

V.U = (B3 + ¢/ ffos

so the linearized equation (2.20) bccomes (omitting

F for convenience)
(f/foret — Lo’ (Bo% + ¢¥) = 0
where Ly? = g'H/fo".

(€3
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A constant f in (C2) and (C3) gives the consistent
equations

fo'U = —B¢* ~ fod} — %, (Clb)
oF — Lo’(Bo¥ + ¢%a) = 0. (C4)

Vanishing U at east and west coasts requires
¢k + Bo* + fod} = 0 (C5)

at xz and xy. Sinusoidal meridional modes can now
be used to conveniently solve for ¢* by separating
the y and x, ¢ dependence.

The solution

o* = X(x) exp(ily + o1)
requires, from (C4),
oX — Ly*(BX, + oX,,) = 0. (C6)

There is a mode with U = 0 that automatically
satisfies (C5). This requires

O'Xx + (6 + l[fo)X = 0,
which has a solution

X = exp(Ax),

(€7

where

A = —(8 + ilfy)/s.

Combining this with (C6) we can find ¢ with Re(o)
> 0, which represents a mode growing in time (and
spatially decaying eastward). Veronis (1966) men-
tions a similar Rossby wave instability when f is con-
stant. :

Physically the instability can be explained by con-
sidering an energy equation. From (C1) and (C4) we
have

[¢*" + (Lo%)2), = BLAG*"), + 2LA(¢* d%)x
= —BLY¢*"), — 2¢'HV - (Ug*). (C8)

Integrating over a north—south periodic area between
the coasts gives

(@ + Loty = B [ %) — ¥ ey (C9)

The right-hand side is positive for a west coast Kelvin
wave, which has amplitude decaying eastward. [The
right-hand side vanishes for the variable version
of (C8).]
Interestingly, the term in angle braces is conserved
if
28¢* + fody + o%

vanishes at xz and xj,. Unfortunately it does not seem
possible to find a conservative separable model with
consistent equations and boundary conditions for a
mid-latitude 8-plane.
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APPENDIX D

Nonlinear Long Waves

For the nonlinear long waves in Section 5 (with
T = 7), we found

T, —c(1 + 87So)Tx — dU T, = F, (D1)
8" = (1 = 26)(T — Ty) + LA[l — exp(—t/7)]. (D2)

Eq. (D1) can be written as an equation for 7 — T},

ie.,

(T — Ty —c[l +5/So + U NT — Tw)s
+(T—T)/r=0. (D3)

Then by defining a new dimensionless variable £ by

T-T.= 1hAh exp(—t/r) (D4)
and substituting for S’ using (D2), we have
b= c{1 + [l — exp(—t/7)]
+ nh exp(—t/7)}h. = 0, (D3)
where
n = (1 —26)A/2S, }
r = (A — 20T 4,f/B)/2Sy)
Boundary conditions for (D5) are
b= {0, - oat 1= 0, (D6a)
exp(t/7) — 1, at x= xg. (D6b)

At a given latitude, u and 7 are constant, so (D5)
can be solved as an x, ¢ problem using characteristics.
The term £ is constant along a characteristic, and this
information travels at speed dx/dt = —c{ }. From
position (xg, %) these characteristics carry

expllo/7)— 1, =0
b= {O’ plto/7) | tz _ 0} (D7)
to the position
x=xg—c{(l + )t —t0) — 7[n + (0 —n)
X exp(—to/T[1 — exp(—(t — #)/7)]} (D8)

at time ¢. Given x and ¢z, (D8) can be easily solved to
find ¢y, and hence find A, then T. The position of the
wavefront can be found explicitly. It leaves xi at ¢
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= 0 to travel to
x =xg — c{(l + )t — pr[1 — exp(—1/7)]}

at time ¢.

(D9)
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