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ABSTRACT

The reasons for the large-amplitude tidal motion observed in oceanic submarine canyons have been
explored with a Jaboratory experiment. A barotropic tide was forced in a stratified tank, containing continental
shelf-slope topography into which a narrow canyon was incised. Large-amplitude tidal motions were observed
in the canyon; it is shown that these were forced by the large horizontal pressure gradient existing on the
continental shelf near the canyon head. Another significant feature of this experiment was that internal
waves inside the canyon were partially reflected from the open boundary at the mouth of the canyon, like
sound waves from the open end of an organ pipe. This enabled energy to propagate down the canyon in
the form of leaky modes.

The character of the flow in the canyon was strongly dependent on the ratio of bottom slope a to ray
(or characteristic) slope ¢. For a/c <€ 1 the stratification had little effect on the motion, and the largest
displacements were nearly barotropic and occurred near the canyon head; for a/c =~ 1 the motion was
baroclinic and had the same pattern at all depths. For a/c > | the energy propagated down the canyon in
the form of leaky modes; because of reflection at the bottom, large amplitudes may occur near there in some
cases.

The analysis also suggests a mechanism for the large amplitudes of high-frequency internal waves observed
in submarine canyons. For a narrow canyon, wave motion in the canyon will be forced at the mouth by
the pressure field of an incident wave from the deep sea, plus that of the wave reflected from the external

continental slope; this will result in a wave with up to twice the amplitude (and hence four times the energy)
inside the canyon.
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1. Introduction

Observations of currents in submarine canyons in-
dicate that, rather than being quiet backwaters, they
are dynamically very active regions on a broad band
of time scales, ranging from upwelling and turbidity-
current phenomena to tidal and higher internal-wave
frequencies. The book by Shepard et al. (1979) de-
scribes observations made in a substantial number of
canyons distributed around the world, and the ubiq-
uity of the large tidal velocities (in particular) is strik-
ing. Wunsch and Webb (1979) have demonstrated
that internal-wave energy levels inside Hydrographer
Canyon (off the U.S. east coast) are quite large over
a broad range of frequencies. The most extensive
study to date is in Hudson Canyon (Hotchkiss, 1980;
Hotchkiss and Wunsch, 1982); at a number of lo-
cations distributed throughout the canyon, tidal and
internal-wave velocities were high, and the tidal ve-
locities increased as one moved up the canyon toward
the head.

In view of the general character of the above ob-
servations it was decided to carry out a laboratory
experiment 1o test the hypothesis that the large-am-
plitude tidal velocities (at least) were due to the three~
dimensional nature of the canyon geometry. The ex-
periment consisted of a finite tank filled with stratified
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fluid in which an oscillatory barotropic motion was
generated at one end, and a continental shelf/slope
geometry with a narrow incised canyon was placed
at the other. As is found in the ocean, substantially
larger displacements were observed in the canyon
than on the continental slope outside the canyon, at
the same depths. The spatial structure of this motion
varied substantially with the ratio «/c, where a is the
bottom slope (the same in the canyon as on the con-
tinental slope) and c is the slope of the rays for internal
waves at the tidal (forced) frequency. In order to in-
terpret these observations we employ the internal-tide
generation theory, of which a complete description
is given by Baines (1982). For a sufficiently narrow
canyon we may make the assumptions that the pres-
ence of the canyon has negligible effect on the mo-
tions external to it and that the motion inside the
canyon is driven by the external pressure field at its
open boundaries. As is shown below, this approach
gives a satisfactory description of the motions in the
experiment.

The plan of the paper is as follows. The nature and
details of the experiment are described in Section 2,
together with some examples of the observations.
Sections 3, 4 and 5 then develop the theory required
for the interpretation of these observations. The na-
ture of the mation of a fluid which is not stratified
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is described in Section 3, in the linear low-frequency
limit, for flow both inside and outside the canyon.
Section 4 gives the equations for the stratified flow
outside the canyon and Section 5 the corresponding
motion inside the canyon. A quantitative comparison

between the theoretical descriptions and the obser- -

vations is given in Section 6, where the changing char-
acter of the flow with a/c is described in detail. The
conclusions are summarized in Section 7.

One novel feature of this work is the recognition
that internal waves may reflect from an open bound-
ary (in this case, the canyon mouth) in much the
same way as sound waves reflect from the open end
of an organ pipe. As the gap width tends to zero the
incident wave energy becomes totally reflected, but
with a phase difference of 180° from that which is
reflected from a rigid boundary. This phase change
produces some interesting effects which may result
in large amplitudes near the foot of the canyon. The
complete diffraction problem for an internal wave in
a slit incident on a half-space is solved elsewhere
(Grimshaw et al., 1982), but the reflection coefficients
as a function of the gap (or canyon) width are given
here for the topographic slope of the experiment («
= 0.649).

Care is required in applying the results of this paper
to the ocean for two main reasons. First, the exper-
iment is non-rotating; the presence of rotation would
result in further complications in the form of internal
Kelvin waves and associated cross-canyon variations,
although the same general dependence of the flow
character on «a/c is expected. Second, the theory and
experiment are appropriate to canyons of approxi-
mately uniform horizontal cross-section and width.
The properties of real canyons with V-shaped cross-
sections and wide mouths may be significantly dif-
ferent.

2. Description of apparatus and experiment

Most of the experiments were carried out with a
transparent tank 22.9 cm wide and 183 cm long, and
the configuration is illustrated in Fig. 1. Two-dimen-
sional continental shelf/slope topography was in-
serted at one end of the tank. The “continental shelf™
consisted of a horizontal surface 30.8 cm above the
tank floor, spanning the width of the tank and ex-
tending from one end with a length of 45.0 cm. The
plane “continental slope” section sloped downwards
from the edge of the shelf (the “shelf-break’) at an
angle of 33° to the tank floor. Both the shelf and slope
sections were made of polystyrene. A narrow slit
(constituting the “canyon’) was cut into this two-di-
mensional topography adjacent to a tank side wall.
The horizontal length of this slit was constant with
height and measured 16.7 cm in from the slope, so
that the canyon floor had the same 33° slope as the
continental slope. Initially, the canyon was tapered
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FiG. 1. Diagrams (not to scale) showing the side (a)
and plan (b) views of the tank.

very slightly outwards, being 2.5 cm wide at the floor
and widening to 3.5 cm at the mouth. Several quan-
titative runs were made with this narrow slope. Later
the canyon was widened near the foot so that it nar-
rowed in both the horizontal and vertical as one
moved inwards from the foot toward the head. These
two shapes are shown in Figs. 2a and 2b, respectively.

<head —

foot (a)

P
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FI1G. 2. The two canyon geometries used in the experiments: (a)
narrow canyon, Runs 10-14; (b) wider canyon at the foot, Runs
15-18 (see Table 1).



312

At the other end of the tank a large solid wooden
isosceles-triangular piston (angles 90°-45°-45°) was
inserted. This spanned the tank width and was ori-
ented with one short face against the end wall and
a 45° vertex pointing downwards reaching almost to
the bottom (See Fig. 1). The gap between the piston
and the side and end walls was approximately 2 mm.
This piston was connected to an electric motor, which
enabled it to be oscillated vertically over a range of
amplitudes and frequencies.

The tank was filled with a stratified fluid to a depth
h,, of ~35 cm (~4.5 cm above the continental shelf)
using the common two-tank method; in a tank with
vertical side-walls this would have produced strati-
fication with a constant density gradient. However,
because of the changing cross-sectional area with
height, the density gradient was not quite constant,
but increased slightly with height up to the continen-
tal shelf level. During the filling process, potassium
permanganate was injected at regular intervals into
the filling hose near the inlet, and this resulted in
horizontal dyed layers in the tank. With careful in-
jection these layers were initially quite sharp but they
thickened within a few hours on account of molecular
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diffusion. They formed the main means of flow vi-
sualization used in the experiment.

The experimental procedure was as follows. The
motor which oscillated the piston was turned on; after
a time interval of 5 minutes or longer to allow the
system to reach a periodic state, photographs were
taken at various phases of the piston from the side
view, recording the displacements of the dyed layers
both in the canyon and over the slope. Several runs
were also recorded on movie film.

The experiments as described above were per-
formed at the Woods Hole Oceanographic Institu-
tion; subsequent experiments with the same canyon
geometry but a longer tank (220 cm) and shelf length
(63 cm) were performed later at Aspendale to verify
various aspects of the interpretation. One of these
runs is described here (Run 1A, Fig. 5).

The piston motion resulted in a low-frequency os-
cillation in the free surface displacement in the tank.
This motion is described in detail in the next section.
The 45°-triangular piston was chosen to eliminate the
direct generation of any baroclinic motion by the
piston. During operation, some small-scale baroclinic
motion was visible near the bottom vertex and near

d

FIG. 3. Photographs taken at the four main phases of the tide for a/c = 0.25 (Run 13); (a) maximum flood tide;
(b) high tide; (c) maximum ebb; (d) low tide.
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the intersection of the piston with the free surface,
but this had very small amplitude and was inconse-
quential.

The forced horizontal fluid motion over the sloping
topography resulted in the generation of internal-
wave motion of the same frequency (internal tides).
Over the two-dimensional slope these waves tended
to propagate away from the generation region, which
was concentrated near the shelf break. No baroclinic
motion was visible over the shallow continental shelf,
where some weak but persistent mixing due to bottom
stress was apparent. The waves on the deep-water side
propagated toward the piston end. Generally speaking
these were small-scale waves in terms of the tank
dimensions, and would be severely attenuated by vis-
cosity whilst propagating from the shelf break region
to the piston and back. No significant reflected waves
could be observed during the experiment, and theo-
retical estimates of the wave dissipation (Appendix
B) indicated that the reflected waves were negligible
in the flow areas of interest (i.e. mainly in the canyon).
Inside the canyon the observed motion was very
nearly two-dimensional, except for the wider canyon
(Figure 2b) near the mouth where some cross-canyon
variation was apparent. The presence of the tank side-
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wall had no visible effect on the motion of the dyed
layers. For oscillatory motion with frequency « we
expect a Stokes boundary layer of thickness (v/w)"/?
where » is the kinematic viscosity, giving a thickness
of O(1 mm) in these experiments, which is negligible.

Some representative observations of the flow in the
canyon and over the slope are shown in Figs. 3-5.
The prinicipal dimensionless parameter governing
the character of the flow is a/c, where « is bottom
slope and ¢ = w/(N? — w?)'?, the internal-wave ray
slope. In Fig. 3 the flow is representative of cases
where «/c < 1 (here specifically e/c = 0.25, Run 13,
Table 1), with the motion in phase with the piston
motion and with large displacements concentrated
near the head of the canyon. In Fig. 4 the flow is
representative of a/c ~ 1 (specifically a/c = 1.0, Run
17); the flow in the canyon generally has the same
amplitude and phase at all depths, and the motion
is no longer in phase with the piston motion. In Fig.
5, where a/c is somewhat larger than unity (specifi-
cally a/c = 1.69, Run 1A), the motion in the canyon
is again large and is conspicuously baroclinic.

It is obvious from these observations that the three-
dimensional canyon geometry resuits in large-ampli-
tude tidal motions in the canyon, particularly when

FI1G. 4. As in Fig. 3 but for a/c = 1.0 (Run 17).



314

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 13

FIG. 5. As in Fig. 3, but for a/c = 1.69 (Run [1).

contrasted with motions over the continental slope
at the same depth, and that the character of this mo-
tion varies greatly with «/c. In order to understand
the reasons for this we need to construct a theory for
wave motion in the canyon, and this is done in the
next three sections. Readers who wish to omit the
theoretical development may proceed to Section 6.

3. The unstratified or barotropic motion

We first consider the flow which would be observed
in the tank if the water were homogeneous (i.e. a fresh
water fill). This is done in two stages: we first obtain
the flow in the tank with the canyon assumed absent
so that the topography is two-dimensional, and then
we obtain the flow in the canyon assuming that it is
sufficiently narrow to have little effect on the pressure
field immediately outside it. Conditions required for
the general validity of this assumption, and its ap-
plicability to the experimental configuration, are dis-
cussed below.

a. Flow with a two-dimensional continental shelf/
slope

We consider a configuration as shown in Fig. 6,
which gives a representation of the side view of the

tank and defines the quantities involved. In the usual
notation the equations governing the fluid motion are

1
u, + ul-Vul = ———Vpl
Po s

V-ul =0

G.1)

where u,, p; denote the perturbation velocity and
pressure respectively and po is the fluid density. The
boundary x = 0 has been placed at the mean position
of the point where the triangular piston intersects the
free surface, and we assume that at this point the
horizontal velocity forced by the piston is constant
with depth. The boundary condition is then

ISR RRRNRY
ISRRRARRRY
LBV
ALLLMLMAY

Scale U=10 -

FiG. 6. Numerical solution for periodic two-dimensional flow
of a homogeneous fluid in the low-frequency limit. The arrows
give velocity vectors at peak flood tide. The dashed region shows
the location of the canyon in Fig. 7.
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u; = u, coswt = Re[u,e ™), x=0, (3.2

and since the piston face is at an angle of 45° to the
horizontal we have
U, = wa,,

where q, is the (small) vertical amplitude of the piston
motion. The other boundaries are rigid apart from

the free surface, which oscillates vertically with an .

amplitude a,h,,/! in the mean, where 4, is the fluid
depth in the deepest region, and [/ is the effective
length of the tank (i.e. total length minus piston
length at surface).

We scale the above equations formally by writing

X =x/h,,, Z=z/h,
T=wt, HXx) = h(x)/hn, (3.3)
U=wfu,, W=wu, P =Iip/pewiiyh,
We thus obtain
Ur ;‘;ﬂ (UUx + WUy) = iPy
" , (3.9
Wy + Z—i (UWx + WWy) = iP,
with the boundary conditions
U=Re[e], at X=0
U:a=0, at Z = —H(X) (3.5)

and X =1/8=1[h,

together with the free surface condition. This scaling
does not consider the variable depth or shallow to-
pography, but it is clear that if @, and w are sufficiently
small, and if resonances in the tank are avoided, the
nonlinear terms will be negligible and the motion will
have harmonic time dependence. The free surface
condition in linearized form then may be written

P, = h,g P — e, (3.6)

where the real part is taken.
If we regard the time dependence as implicit and
with w?h,,/g < 1 the equations are

U= "’Px, W= _PZ
, 3.7
Ux+ WZ=0
with
U=1, at X=0
VP-i =0, at Z=—-H(X)
,  (3.8)
and X=1/8
P;=—-8, at Z=90

so that we require the solution of Laplace’s equation.
These equations describe the motion in the tank in
the low frequency limit.
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In the experiments the parameter values were

a<19cm, h,=355cm
I=1475cm, w<0.83rads™!,

@/ hm < 0.05,

so that
wh,g ' <0.02 J

. (39

Egs. 3.7, 3.8 have been solved numerically using
a standard package (IMSL TWODEPEP) which em-
ploys a finite element method, and the associated
velocity field is displayed in Fig. 6.

We next discuss an analytic approximation to the
flow over the slope which illustrates its character and
is useful in describing it. We begin by assuming that
the flow is hydrostatic, so that U is essentially inde-
pendent of depth. This is a good approximation in
the ocean where a < 1, but is not so appropriate in
the tank where o =~ 0.65; nonetheless, it gives a rea-
sonable description of the gross properties of the flow
field.

We therefore assume that U is independent of Z,
and integrating the continuity equation (3.7) with
respect to depth gives

d

— = — .10

o (HU) = =B, (3.10)
where the suffix “1°” denotes the hydrostatic solution.
Integrating and using the boundary conditions then
gives

1 -36X

H(X) ’

According to this expression, the fluid velocity de-
creases linearly away from the piston above the hor-
izontal bottom, increases with X on account of de-
creasing depth over the slope, and then decreases lin-
early to zero over the shelf; the largest fluid velocity
occurs over the shelf break. From U, we may obtain
a corresponding W, from the continuity equation,

namely 4 (1 ¥
W1=/3—zd7‘,( H6 )

U,, W, satisfy all the equations and boundary con-
ditions (3.6), (3.7), except for the equation W = —P,
and the singular points at the top and bottom of the
slope. .

In practice, in the tank the slope « is too large for
the flow to be purely hydrostatic. For a region which
has a constant slope a, we may construct a local
power series solution in Z of the form

Uix) =

0<X<1/8 (3.11)

3.12)

U, I’V,P= z (Uns Wna Pn)a

n=1

(3.13)

where
Un = —ans Unx + an = 09 Wn = _Pn+lza (3'14)

with the hydrostatic solution constituting the first
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term. Each successive term (U,, W) satisfies the ho-
mogeneous boundary conditions at Z = 0, —H, and
these together with the condition
0 .
f U,dzZ = 0, (3.15)
-H
determine the constants of integration. The power

series in Z generated by this procedure may be
summed, after some algebra, to yield the solution

_1-gx [_ B 1_-_@{(}
U H + o * H
a 1
X [ 2 l:l
arctana 1 + (aZ/H) (3.16)
_ _ a
‘arctana
B 1- BX] «Z/H
X[ ot 1T+ @zHY |

These expressions apply over a constant slope «, and
in the limit o — O they reduce to U,, W, for a hor-
izontal bottom. Hence they describe the flow over the
slope except for the effects of the corner points, and
comparison with the numerical solution gives very
good agreement in the range 67 < x < 95 cm (the
slope covers the range 55.1 < x < 102.5 cm). In gen-
eral, the horizontal velocity is increased at upper lev-
els and decreased at lower levels, relative to the uni-
form hydrostatic profile.

b. Flow in the canyon

As shown in a simple model calculation in Ap-
pendix A, if
bl wzblz
—— < 1,
Bl ghs

<1, 3.17)

where b,, B, are the canyon and tank widths respec-

tively and 4, is the depth on the shelf, then the pres-

ence of the canyon will have little effect on the true

surface elevation and hence on the pressure and ve-

locity field in the tank external to the canyon. In the
experiment we have

272

bi_gag, ¥

B 1 ghs

<€3.1074, (3.18)

so that the requirements are satisfied. From this we
may assume that the “barotropic” motion inside the
canyon will be driven by the pressure field set up just
outside it by the two-dimensional flow field which
would exist if the canyon were absent.

For a narrow canyon we may also assume that the
motion in the canyon is two dimensional (it is gen-
erally observed to be so in the experiments—vide
Figs. 3-5). The equations for the flow in the canyon
are then (3.7), assuming linearity, with the boundary
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conditions being the rigid boundary condition on the
canyon floor and the imposed pressure field at the
open boundaries. This problem has been solved nu-
merically using the same procedure as described
above for the external flow, and using the pressure
field obtained on the slope and shelf from that cal-
culation and given in Fig. 9. The resulting flow is
shown in Fig. 7. Note that the largest velocities occur
near the head of the canyon, and that the flow pattern
is similar to that shown in Fig. 3 (as discussed in more -
detail below). .

We may contrast this flow pattern with that which
would be obtained if the flow were hydrostatic. In
this case we would have in the canyon (in dimen-
sional form),

8u1

- = —&%,

o (3.19)

where { is the free surface elevation, and hence

u, (inside canyon) = u, (outside canyon)

for the same x value. Since u, is largest at the shelf
break, this would give the largest horizontal displace-
ments in the canyon at the point corresponding to
the shelf break. However, in the tank, where the slope
is too steep for the flow to be hydrostatic, the up-
slope velocities are found (in the numerical solution)
to be independent of the coordinate normal to the
bottom, rather than the vertical. Consequently, the
largest velocities are found near the canyon head
rather than directly beneath the shelf break. This sim-
ple mechanism for large amplitude motions near the
upper regions of the canyon should have wide appli-
cability in certain oceanic situations, as discussed
below.

4. Baroclinic motion: theory for a two-dimensional
tank : '

The linearized equations for a stratified two-di-
mensional fluid are

Scale U=10-

F1G. 7. Numerical solution for two-dimensional flow of a ho-
mogeneous fluid in a narrow submarine canyon, forced by the
external flow represented in Fig. 6. Arrows represent the velocity
field at peak flood tide.
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poUy = —Dx

PoW; = —D; — pg

(114473 z , (41)
pit+ wpo, =0
u +w,=0

where p, is the mean fluid density and p the pertur-
bation.

We may express the total velocity and pressure
fields in the form

p=p +p, 4.2)

where u,, p, represent the motion with homogeneous
water as described in the previous section; u;, p; then
represent the baroclinic flow. As in Section 3, we first
discuss the two-dimensional motion exterior to the
canyon, assuming that the latter is absent, and then
discuss the motion in the canyon itself.

We again consider the region shown in Fig. 6. For
two-dimensional motion we may define a stream
function ¢ by

u=u +u,

U = _‘pz, w; = ‘Px‘ (43)

Substitution of (4.1), (4.2) into the equations of mo-
tion, linearized about a state of rest, and invoking the
properties of u, yields (e.g., Baines, 1973)

Vi + NA2Wx = —NPwy, = =N}, (44)

where N(z) is the Brunt-Viisald frequency, ¢, is the
corresponding stream function for u, defined by

w =y, w =y, (4.5)
and y satisfies the boundary condition
v =0, 4.6)

on all the boundaries.
With harmonic time dependence we may write

W Y1) = (¥, ¥))e™ 4.7)
so that (4.3) becomes
Y, —c*¥,,=—(1+ cz)\Illxx, 4.8)
where ,
¢? = N—Z(g_—w—z . 4.9)
To solve this equation we write
V=¥, + ¥,, (4.10)

where ¥, is a particular solution of (4.8). A suitable
particular solution is

¥, = -V, 4.11)

since ¥, satisfies Laplace’s equation. ¥, then gives
the total motion and satisfies

¥, — 25, =0, (4.12)
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with :
v, =¥, 4.13)
on the boundaries. Hence the boundary conditions
for ¥; may be written

Vi =uh,x/l—1), z=0
=0, z = —h(x)
¢ 4.14)
=-ufz+hy,, x=0
=0, x=1
We may write
V3 = wh,(x/l — 1) + ¥} (4.15)
so that ¥} also satisfies (4.12) but with
=0, z=0, x=1
. (4.16)
= wh(1 — x/1), z=—h(x)

¥, contains both barotropic and baroclinic mo-
tions, and the barotropic motions (in terms of the
vertically integrated mass flux) are prescribed by the
boundary conditions (4.13). Hence only the baro-
clinic structure is unknown. This baroclinic motion
will be generated by the interaction of the barotropic
tide with the topography, so that the problem is the
same as the familiar internal-tide generation problem
(e.g., Baines, 1973, 1974, 1982), provided that baro-
clinic wave reflection from the ends of the tank may
be neglected. This may be justified under the con-
ditions of the experiment, as shown below. We define
the vertically integrated mass flux Q(x) by

O(x) = uh,(1 — x/1). 4.17)

When «o/c < 1 (“flat” topography), if O(x) and N(z)
are constant over the region of sloping topography
the baroclinic motion ¥; = ¥, + ¥; will be small
unless (Baines 1973)
c> 1 — hs/ hm

1 + hghn

In the present case with A, = 4.65 cm, A,, = 35.5 cm,
this requires

) (4.18)

0.77 < afc < 1,

i.e., “single hop” geometry. In the experiments N is
not constant in the lowest 10 cm, and Q varies by
+30% of its mean value over the slope. However,
these variations appear to have little effect; the ex-
periments with «/c < 1 are all in the range 0 < a/c
< 0.84, and the baroclinic motions over the slope are
observed to be small compared with the barotropic
motions. Their effects will be neglected in the inter-
pretation of the motions in the canyon in the next
section. For a/c < 1, therefore, the pressure field on
the topographic surface will be predominantly that
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of the barotropic component, except where a/c is
close to unity.

For a/¢c > 1 the baroclinic motion is primarily gen-
erated near the shelf break, and the flow may be cal-
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culated with the assumption that the generation is
local and the slope infinite in extent (Baines, 1982).
If Q is constant and equal to Q, (which in general
denotes the value of Q at the shelf break x = x.), then
the velocity field over the slope may be written

o [ ( . ) ( ; ) ' 1]
=¥, == |V -V-=
“s 3 4h, 2. 2v)’ n>0
1
——V(l —~”—)— V(—i), n<0
| 4 2vq 2y J 1
CQ - ( n E i T (419)
=¥ =——= |N—|+V|-=
s 3 4h 27) V( 27) ’ n>0
1
—-—V(l —~”—)+ V(—i), n<0
| 4 2vq 2y
- )
where
E = _‘E +x —Xe ™Y Uz = —(l) s w3 = CZ(_) s (421)
0 Pow/ Pow/ ;
: dz so that .
=] —-x-x-mp (4.20) v(—”—’—) = —uk + 23, (4.22)
° oo Pow c \
P Ea- e SV g The unit vector along the slope i
a=-T "y € unit vector along the slope is
o2tk (4.23)
The geometry is shown in Fig. 8, and the function (1 + a2’ B
V' is given in Fig. 8 of Baines (1982). If Q is not 4pd hence
constant these expressions are slightly more compli-
cated but are still valid in the region # < 0 adjacent v Y . 1 _a 4.24)
to the slope, although in general V' will be slightly Pow r= (1 + o)\ Us— 2 Ws (.
different. With regard to the effects of the ends of the _
tank, on the shallow shelf the motion described by - _ 1 Y [__ (- e/
this solution is essentially barotropic, and this is con- (1 + A ah, q

sistent with observations; hence the end at x = / has
no effect on the baroclinic motion. In the deep water,
the structure of the relatively narrow beam is atten-
uated by viscosity. It is shown in Appendix B that,
for the tank and parameters used in the experiment,
baroclinic motion which is reflected from the gen-
erating piston will have greatly decreased amplitude
when it reaches the topography. This is consistent
with experimental observations: although some small-
amplitude internal-wave motion could be observed
in the deep water, no evidence of any coherent mo-
tion reflected from the deep end could be discerned
near the topography.
Our primary objective in this study is the nature
of the motion inside the canyon, which we regard as
- being forced by the pressure field at its open bound-
aries. Hence, we next calculate the pressure field on
the surface of the two-dimensional topography. In
(4.1) for the total flow, over the slope we may identify
u, w with u;, w;, and, expressing these in terms of
the pressure, we obtain

X V(l - %‘}) -1+ a/c)V(— 5%)] . (4.25)

On the slope we also have

// \716 ////
g\// ~L.
~
7=2Y
//
t
K arctan ¢

a
/orcmn _

FIG. 8. Definition sketch for flow of a stratified fluid
with two-dimensional geometry.
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. R 3 (4.26)

2vq 2y

and substituting this into (4.25) shows that the brack-
eted term on the right hand side vanishes. Hence the
pressure gradient along the surface of the continental
slope is zero, regardless of the form of the function
V. It follows that, for /c > 1, all the forcing of motion
inside the narrow canyon is affected at the upper end
on the shelf, since the pressure field is constant along
the slope and is equal to the value at the shelf break.
On the shelf the pressure field is barotropic so that
p = p; as described in Section 3. The pressure field
p1 on the lower boundary for the solution shown in
Fig. 6 is given in Fig. 9; on the part of the shelf cor-
responding to the position of the canyon the gradient
dp,/dx is constant, to a good approximation.

5. Baroclinic motion in the canyon

As stated above, we regard the total motion in the
canyon as forced by the pressure field associated with
the two-dimensional motion immediately outside it.
This will be formally applicable in the limit of van-
ishing canyon width and it embodies the assumption
that the canyon is sufficiently narrow to have a neg-
ligible effect on the exterior flow, However, before
discussing motion in the canyon we must first con-
sider the appropriate boundary condition at the open
edges for the baroclinic motion inside it.

r

OASP B

05t 4

-25F

L

«-Slope—» «—Shelf —3
it haulsaamry

020 40 60 80 100 120 140 cm

F1G. 9. The pressure field on the two-dimensional topographic
surface (continental slope and shelf) for the solution shown in
Fig. 6.
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a. The open boundary condition

We consider the problem of reflection of a plane
internal wave in a semi-infinite two-dimensional re-
gion of width 2a, from a plane where the fluid region
opens abruptly into a semi-infinite half-space. The
geometry is shown in Fig. 10. The problem is dis-
cussed in some detail and with greater generality by
Grimshaw et al., (1982). This problem is an analogue
of a classical wave-diffraction problem, and the rel-
evant equations for this situation are summarized in
Appendix C.

If we write the pressure field for the incident wave
in the form

pr = expli(k(z — cx) — wi)]
k(1 + ‘
= xp[f(l(Jr—C;;%’] expli(ms — wf)], (5.1)

the primary reflected wave (with no y-dependence)
from the junction r = 0 may be written

Dr = Ap expli(kr(z + cx) — wi)]

, tkp(1 — ac)r .
= Ap exp[m] expli(ms — w?)], (5.2)
where
_La—c¢ _ k(a=0)
kR_k(x+c’ _(1+a2)”2’

m being the along-slope wavenumber. The real part
of these expressions is implied, and N and ¢ are con-
stants. The amplitude and phase of A4; are shown in
Fig. 11, as a function of the gap width 2a, for various
values of a/c for a = 0.649, the topographic slope in
the experiment. Note that

Ay — —1,. as ma— 0,

in this limit the appropriate boundary condition is

p = constant,

and the reflected wave differs in phase by 180° from
the corresponding wave that would be reflected from
a rigid boundary. As ma — oo the incident wave
escapes completely into the open half-space. The sit-
uation is similar to that of the reflection of a sound
wave from the open end of an organ pipe, although
here the aperture is a slit rather than a circular orifice.

If k is altered in sign so that the wave-energy flux
is reversed, i.e., the wave represented by (5.2) (with
unit amplitude) is incident and that by (5.1) is re-
flected, then the amplitude of the reflected wave is
Ap with the same value so that Fig. 11 applies to this
case also. We may now discuss the nature of internal-
wave modes in a narrow canyon, which are useful for
interpretation of the observations.
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FI1G. 10. Geometry for a plane internal wave propagating
in a vertical slit which opens into a half-space.
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F1G. 11. Reflection coefficients for the streamfunctions for the plane wave of Fig. 10. A} is the relative
amplitude of the reflected wave with no cross-slit (y) variation. The curves have been computed for «
= 0.649, the value pertaining to the experiments.
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b. Internal wave modes in a narrow canyon

We refer to Fig. 12 and define new coordinates x’,
z' and r, s which have their origin at the canyon head
(x = x4, z = —h,). The coordinate s is directed up-
slope with r normal to it, so that

' —ax 5= az' + X'
1+ o®'?’ (1 + A’

and x’, z/, r, s all have the same units.
The equation for the total stream function ¢ in
terms of r and s is

(a2 - CZ)‘l/rr - 20‘(1 + cz)‘prs

r (5.3)

+ (1 = Wi =0. (5.4)
We look for normal modes of the form
Y = ¢(Ne ", (5.5)
which satisfy
v=0, on r=0. (5.6)
These have the form
\0 — (eimﬂlr — eimﬁzr)e—ims’ (57)
where
(1 — ac) 1 + ac
= - — = - . 5.8
ﬁl o + ¢ ) ﬁz a—cC ( )

For a canyon with a perfectly reflecting open
boundary, and horizontal breadth b, the boundary
condition of constant pressure at

ab
r= v e B (5.9)
is
¢zr+;‘§w =0, (5.10)
or
o? 1
l—?¢,+al+?¢s=0. (5.11)

F1G. 12. Definition sketch for baroclinic motion in the canyon.
Rays have been drawn for a typical case where a/c > 1.
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This condition gives eigenvalues for the wavenumber
m, which are
2 2

o —C ™
=—'—-———2 R
A1ap2 2" D

n=0,%+1,+2, « -

my

(5.12)

We therefore have an infinity of modes which may
be used to describe motion that is generated in a lo-
calized region of the canyon. The longest (lowest)
mode has a length in the s-direction corresponding
to two characteristic periods (as against one charac-
teristic period for modes between two rigid bound-
aries at r = 0, B). For a/c < 1 the directions of phase
and energy propagation are the same for any given
mode, whereas for a/c > 1 the directions are opposite.

¢. Leaky modes in a canyon of finite width

If the finite width of the canyon is considered so
that the open boundary is only partially reflecting,
the modal structure still has the form (5.7). We con-
sider specifically the case «/c > 1 with the wave-en-
ergy flux directed downward. Then the term in (5.7)
containing 3, denotes the n-wave, which is incident
on the boundary r = B, whilst the 3,-term denotes
the £-wave which emanates from r = B. Taking into
account the reflection condition, we may write

eimB|B = ei((ﬁ-*rr). eimﬁzB, (5.13)
where we identify ¢“*~™ with 4} of Fig. 11, so that
Aol = €7, " argd = ¢, — , (5.14)

where ¢, and ¢; denote the real and imaginary parts
of ¢. Hence the eigenvalues m, are

o —¢?

T 2¢(1 + 2B
n=0,-1,-2, - (5.15)

for downward energy flux. ¢, and ¢; may be deter-
mined from the curves of Fig. 11 by an iteration pro-
cess, with

m, QRnr + ¢, — 7 + i9),

ma = Re(k,a), (5.16)

and starting with m, given by (5.12) (¢ = 0). Note
that the phase change ¢, accompanying partial re-
flection has the effect of reducing the effective wave
number and hence increasing the amplitude of the
reflection coefficient. These complex m, result in a
set of leaky modes which decay exponentially in am-
plitude as the energy propagates down the canyon
(although in this case the phase propagates upward).

d. Application to forced flow in a canyon

We consider first the case a/c > 1. As shown in
Section 4, here the motion is forced at the line z’
= 0. Over the range —b < x' < 0 the horizontal pres-
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sure gradient is specified, implying that, inside the
canyon,

o= —f(x) 2=0,-b<x'<0 (517)

is specified. For canyons with a perfectly reflecting

open boundary, if we ignore for the moment reflec-

tions from the bottom end, we may assume that the

motion may be represented in the form
=00

‘p = 2 ane_imns(eiﬁlmnr‘_ eiﬂzmnr)’
n=0

(5.18)

with the m,, given by (5.12). At z’' = 0 equations 5.17
and 5.18 yield
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2(x) = (afc + 1) e"p[i(zn ety %]

!

—(afc— 1) exb[—i(Zn - 1)1 - c/a) ’rﬂ . (5.20)

The functions g,(x’) are not orthogonal. We may ob-
tain the amplitudes a, by multiplying (5.195 by g%
(the complex conjugate of g,), integrating over
(—b, 0), and truncating the infinite set of linear equa-

tions obtained. Since
f(x") = constant = u,, (5.21)

from Fig. 9, the equations obtained have the form

- 5 Gmn(zn - l)an = ) )
S @n - Dagie) = 22 fe), S 2m =1
n=0 =0,-1,-2,..., (5.22)
—b<x' <0, (5.19) Where o 4 aby
where _ w2 el + oY)’
Gwm=1 m=n,
2
[(2m — 1)2n = 1)(=1)™" sin =< (n — m) — i{Z(l - c—z)
[a4 {04
» X (n—mP+(2m— 1)2n — 1)[1 — (=1)y"*n cosw—c (n— m)]}]
ajc T«
G = m#n. (523)

[(a/c + 1r

In practical situations the modes are leaky, and
unless a/c is close to unity only the lowest modes
penetrate to near the bottom of the canyon with sig-
nificant amplitudes in the experiments. However, in
general it is not appropriate to apply this procedure
with the leaky modes to the boundary condition at
z = 0, since the exponential decay, etc. only apply
for s < —b/(1 + o?)'2. Hence we here adopt the pro-
cedure of using (5.19)—(5.23) to determine the initial
amplitudes, and then regard the modes as leaky for
s < =b/(1 + o®)'7,

For a/c < 1 the situation is more complex because
forcing by the external pressure field exists all along
the outer boundary and also some energy may prop-
agate toward the canyon head. However, the baro-
clinic motion is small for a/c < | so that the flow is

predominantly barotropic, and the concepts de-

scribed above may be used to establish a qualitative
interpretation of the flow for larger values of a/c.

6. Interpretation of observations

We now describe the observations in more detail
in the light of the theoretical development of the pre-
ceding three sections. Photographic data was recorded
for nine runs, as given in Table 1: five with the narrow
canyon and four with the canyon mouth widened at

(n— m)[(Zm -1N2n-1)+ (1 - Z—z)(n - m)z] ,

the foot (Fig. 2b). We will discuss these results in
increasing order of a/c.

If a/c < 1, computations for two-dimensional to-
pography show that the generated baroclinic motion
is small (Baines 1973). Hence we may expect this to
be the case in the canyon situation also. Fig. 13 shows
the characteristic pattern for a/c = 0.25. The many
reflections near the canyon head indicate that the lo-
cal internal wavelength is much shorter than the scale
of the barotropic forcing. Observations of the flow for

TABLE 1. Experimental parameters.

Piston

Run amplitude a, Frequency w
No. afc Geometry (cm) (rad s7%)
13 0.25  Narrow (Fig. 2a) 1.0 0.830
10 0.27 Narrow (Fig. 2a) 14 0.821
16 0.31  Wider at foot (Fig. 2b) 1.9 0.65
15 0.64 Wider at foot (Fig. 2b) 1.9 0.515
12 0.84  (Fig. 2a) .14 0.543
17 1.0 (Fig. 2b) 1.9 0.393
14 1.15  (Fig. 2a) 1.9 0.438
18 1.51 (Fig. 2b) 1.9 0.285
1A 1.69  (Fig. 2a) 2.4 0.319

For Run No. IA the tank and shelf are longer than for the other runs.



FEBRUARY 1983

PETER G. BAINES

323

a/c =025

F16. 13. Typical rays for the internal waves for a/c = 0.25.

a/c = 0.25, 0.27 (narrow canyon—Runs 13, 10) and
a/c = 0.31 (wider canyon—Run 16) show motion
which is totally in phase with the piston motion, and
the flow pattern at the flood and ebb phases is qual-
itatively very similar to that of Fig. 7. The displace-
ments of dye lines along the topography, both in the
canyon and on the continental slope at the same
depths, are shown in Fig. 14 as a function of time for
afc = 0.25 (Run 13). The pattern follows that of the
barotropic motion, with largest displacements occur-
ring in the canyon near the canyon head. A quali-
tative comparison between the observed horizontal
displacements on the canyon floor for the above three
runs and the “barotropic” numerical solution is given
in Fig. 15; the agreement is generally good, in spite
of the scatter in the data. Hence, for a/c <€ 0.3 at

least, the motion is almost entirely barotropic, with
the largest motions occurring near the canyon head,
and driven by the external pressure field.

As a/c increases toward unity, phase variations in-
side the canyon begin to become apparent and the
region of significant motion extends farther down the
canyon. Phase variations of up to quarter-period from
the barotropic motion appear for a/c = 0.64 and 0.84.
These two flow patterns show significant differences,
reflecting the fact that the flow depends on the char-
acteristic geometry.

For «/c = 1 the flow patterns in the canyon differ
substantially from those for a/c < 1 and also (for the
runs of Table 1) from each other. For a perfectly
reflecting open boundary, the model procedure of
Section 5 converges increasingly slowly (i.e. more

Vertical distance above tank floor cm.

Piston Time 0 10
position - .
bottom |- 7/ 2w
1/2 upd b w/w

top{ 37/ 2w
Y down | |- 0,27/
bottom — | 7/ 2w
+ Slope, oCanyon, a/ =025

FI1G. 14. Observed dye-line displacements as a function of time for «/c = 0.25 (Run 13), measured on
the continental slope (shown dashed) and on the canyon floor (solid). The circled numbers refer to the

dye lines, numbered upward from the lowest.
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FIG. 15. Comparison between the observed horizontal displacement amplitudes on the canyon floor for Runs
13, 10 and 11, compared with the theoretical result from the solution of Fig. 7 (solid curve). The corresponding

curve for hydrostatic flow is shown dashed.

modes are required) as o/c — 1+. The limit a/c
= 1 is singular, and the procedure is not applicable.
Instead, one must resort to an integral equation ap-
proach, paralleling that used for two-dimensional to-
pography (e.g., Baines, 1982). The details are too
lengthy to warrant inclusion here, but the inviscid
solution for a/c = 1, assuming an infinite, bottomless
canyon, is (to a good approximation)

@l +a)'” [ b—(z'/c) + x'l
B 2w (z'/c) — x'

. 1
sinwf + — | In
T

b
+ m) COSwt] , (6.1)

where ¢, is the particle displacement parallel to the
topography, and # is the mean barotropic velocity on
the shelf over the canyon head. The flow patterns for
a/c = 1 (Run 11) are (at least) qualitatively consistent
with (6.1), as may be seen from a comparison with
Fig. 4. The pattern of motion of each dye line is the
same, and they are (almost) in phase down the full
length of the canyon. The phase propagation is out-
ward, indicating downward energy flux, and there are
large displacements near the canyon floor which
probably reflect the presence of the inviscid singu-
larity. The energy reaching the bottom cannot be re-
flected back inside the canyon, and it escapes through
the canyon mouth after reflection from the tank
bottom. v

For a/c = 1.15 (Run 14) the overall flow pattern
is similar to that for a/c = 1.0, in that the motion is
almost the same down the full length of the canyon
with an outward phase propagation; however, there
are differences in detail—the displacements on the
canyon floor, for example, are substantially different
from those for a/c = 1.

$s

As a/c is increased further the character of the flow
undergoes more significant changes. For a/c = 1.69
(Run 11—the largest value studied) the motion is
more complicated, with the largest amplitudes again
occurring in the upper half of the canyon (vide Fig.
5); amplitudes measured on the canyon floor are
shown in Fig. 16. The motion has the overall upward
phase propagation and amplitude decreasing with
depth expected from the theory of the previous sec-
tion. The nature of the motion suggests nonlinear
behavior. Similar behaviour (but different in detail)
is observed for a/c = 1.51 (Run 18). As described in
the preceding sections, the motion in the canyon is
forced by the time-varying pressure gradient on the
shelf directly above the canyon. The resulting flow
may be expressed as a set of modes which propagate
energy down the canyon towards the foot. For a/c
= 1.69, the ratios of the streamfunction amplitudes
of the lowest three modes, as determined from (5.23)
are 1:0.185:0.086. Further, the decay rates due to
leakage through the open boundary are such that only

the lowest mode reaches the foot of the canyon with

any significant amplitude; this is 71% of its amplitude
at the canyon head. When this mode is “reflected”
from the bottom of the tank it is scattered into the
set of modes which propagate energy back up the
canyon. The stream—function amplitudes of the low-
est three such modes, again computed from (5.23),
are in the ratio 1:0.35:0.54, with the amplitude of the
lowest mode reduced by the factor of 0.44 in the
reflection process. Of these upward energy-propagat-
ing (downward phase-propagating) modes, all but the
lowest decay rapidly in the vertical.

The nature of the motion reflected from the bottom
of the canyon may also be interpreted from the rays.
For a perfectly reflecting open boundary the motion
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FIG. 16. As in Fig. 14 but for a/c = 1.69 (Run 11).

near the corner ray (C’ in Fig. 12) has the same phase
as the incident motion, and therefore adds to it.
Hence we expect larger motions here, particularly
over the range CC'.

Overall, the motion in the canyon is fairly well
described by the downward propagating first leaky
mode, although the fit is not perfect, presumably be-
cause of the approximations involved and the pres-
ence of higher modes at both the top and bottom
ends. The small-scale overturning visible near the
bottom in Fig. 5 (Fig. 5a in particular, in the second-
bottom dye layer) is probably due to the reflection
of motion from thé corner between the rays CC’ of
Fig. 12. In suitable circumstances this small-scale
motion reflected from the corner may be quite sig-
nificant.

7. Summary and discussion

~ The experiments designed here were originally de-
signed for a first investigation of the nature of tidal
flows in submarine canyons, and the rich range of
phenomena observed was not expected. The obser-
vations made were not adequate for a definitive quari-
titative study in all cases, but provided an adequate
qualitative picture which could be compared with a
descriptive theoretical framework. There is scope for
more detailed experiments of this type, covering the
whole gamut of variable parameters.

The above experiments and theoretical discussion
suggest that the nature of the tidal canyon motions
mhay be grouped into five regimes, depending on the
value of a/c. The boundaries of these regimes are not
well defined and some may depend on factors not
varied extensively in the experiments, such as canyon
shape and amplitude of tidal forcing. The regimes are
as follows.

1) 0 < a/c < 0.4. In this regime the stratification
has very little effect on the flow, which is essentially

barotropic. The largest motions occur inside the can-
yon near the head.

2) 0.4 <€ a/c < 1. Here the motion is dominated
by thie barotropic motion, but also contains a baro-
clinic component which is sensitive to the ray ge-
ometry and has a down-canyon phase propagation.

3) a/c =~ 1. Here the motion has virtually the same
pattern at all depths down the canyon, with outward
phase (downward energy) propagation. Energy loss
by leakage through the open boundary is small until
after reflection from the tank floor at the foot of the
canyon; here most of the energy escapes directly
through the open boundary.

4) 1 < a/c < 10. Here the wave energy of one or
more modes propagates to the foot of the canyon
where it is reflected into a number of upward-energy-
propagating modes, most of which decay rapidly in
the vertical. The superposition of these modes may
result in large amplitude (and possibly strongly non-
linear) motions in the lower part of the canyon.

5) a/c > 1. As a/c increases the wavenumber m,
increases, and hence from Fig. 11a the energy loss
due to leakage also increases. Hence for a/c suffi-
ciently large we have the situation where the modes
generated at the canyon head do not reach the foot,
so that the amplitude of the motion decays mono-
tonically down the canyon. Unlike the situation
where a/c < 1, however, the motion is strongly baro-
clinic.

We conclude with some remarks about the rele-
vance of these résults for oceanic canyons. There are
at least two significant aspects in which the experi-
ment differs from oceanic conditions, namely that the
experiment is not rotating, and that the topographic
slope is much steeper in the tank than in the ocean.
For narrow canyons, which are the main objects of
the present study, the Coriolis force is expected to
have a small effect on the motions inside the canyon
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FiG. 17. Modulus of the reflection coefficients (for the stream
function) for plane waves that correspond to the lowest internal
mode propagating down the canyon, as a function of a/b where
b is the horizontal breadth and a is the canyon half-width at the
mouth. The figure has been computed for « = 0.1, and is therefore
representative of oceanic situations, although rotation is absent
here.

per se, producing for the most part only a slight cross-
canyon variation. The possible presence of internal
Kelvin wave modes in not-so-narrow canyons intro-
duces substantial complications which are currently
being studied. Turning to the second point of small
oceanic topographic slopes, computations using the
equations of Appendix C for a <€ 1 (specifically, «
= (.1) show that the amplitude and phases of reflected
waves as a function of ma are very similar to those
presented in Fig. 11 for & = 0.649. The importance
of the internal reflection of internal waves from can-
yon mouths for oceanic geometries may be gauged
from Fig. 17. This figure has been computed using
the corresponding form of Fig. 11 for a = 0.1, and
gives the amplitude of the reflected stream function
to that of the incident for the lowest mode, in a can-
yon with given ratio a/b, where a is the half-width
at the mouth and b is the breadth. Since a/b < 0.2
for many canyons, these internal reflections will be
significant.

Tidal motion in Hudson Canyon (a/c =~ 0.25) is
in regime 1, and this mechanism provides a plausible
explanation for the tidal observations described by
Hotchkiss and Wunsch (1982).

Finally, the above results have implications for in-
ternal waves that impinge on the mouth of a canyon
from the outside (i.e. the deep sea). A sufficiently
narrow canyon should have a negligible effect on the
flow outside it so that internal waves impinging from
the deep sea will reflect from a two-dimensional con-
tinental shelf with negligible perturbation. In partic-
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ular the pressure field will be largely unchanged. How-
ever, if we consider the motion inside the canyon as
forced by the external pressure field, this will be dou-
ble that due to the original incident wave since it is
the sum of the incident and reflected waves. Hence,
in this narrow canyon limit, the incident wave will
enter the canyon at double its external amplitude,
and four times its external energy flux and density.
This mechanism for the enhancement of internal
wave energy in narrow canyons complements those
proposed by Gordon and Marshall (1976) and Hotch-
kiss and Wunsch (1982) for wide-mouthed canyons,
where the enhancement of wave energy may be due
to narrowing geometry.
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APPENDIX A
The Narrow Canyon Approximation

Here, we investigate the conditions under which
it is possible to make the “narrow canyon” approx-
imation, in which it is assumed that the motion in
the canyon is driven by the externally imposed pres-
sure outside it. We consider a simple model of hy-
drostatic wave motion in a channel of width B, with
variable A(y) across the channel. This system is a
crude approximation to the flow situation of the ex-
periment, but should give a good indication of the
relative importance of the various parameters in-
volved.

The equation for the free surface elevation ¢, is

V0. = V- 8hVs,. ! (A1)

We assume that we have periodic waves propagating
along the channel in the x-direction, i.e.

g‘O = «y)ei(kx—wt)y

4 d_f) (ef_z)=
a’y(ha'y+g k)¢ = 0.

We take a cross-channel depth profile of the form

hc,
h.h

(A2)
where

(A3)

O0<y<b,

A4
b, <y < By, (A4)

h(y) = {

with A, < A, so that b, is the width of the deep region.
The boundary conditions on {{(y) are then
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=0, =0,B
& y ‘} : (AS)
h, g—y y = bl
conditions
The solution is
cosa.y/B,, 0 <y<b,,
acb,  cosall — y/B))
COS " cosadl — bjB,)° 1 <Y< B
(A6)
where
@?B? W’ B2
of == -~ kB2 al="2t—K'BY, (AD)
and k is given by
astanal — by/B,) = —h.h, o, tana,.b/B,. (A8)

For the canyon to have negligible effect on the free-
surface elevation we require |a.b,/B;| < 1. Since
a;— 0as b, — 0, we must have o2 < 0 for sufficiently
small b,/B,, from (A8). Then Eq. (A7) may be written

achi|? _ o?by? _( aby
Bl - ghs ( s/hc) B

so that sufficient conditions for the neglect of the ef-
fect of the canyon on the free surface are

) , (A9)

bl w2b12

— <1, < 1. Al0

Bl ghs ( )
APPENDIX B

Viscous Dissipation of Internal Waves Propagating
Toward the Piston

For a monochromatic wave packet with wavenum-
ber k and energy density E, the energy dissipation
rate is vk?E, where » is the kinematic viscosity. Hence
we may write

E = Ege™*, (B1)

when E, is the energy density at ¢ = 0. Since the
packet travels with group velocity ¢, we may write

r=ct, E = Egexp[-vkrc,™"], (B2)
N
Cg = ———-————lkl(l n 02)1/2 . (B3)
- With k& = 2n/L we therefore have
vkt (21r) 2,
. =N (1+cH (B4)

If we take a representative value of L to be the
width of the “beam” generated near the shelf break,
we have, for the “worst” case in the experiments
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(#11),c = 0.38, N=0.89, L = 6 cm, r = 300 cm,
v = 0.01 cm?/s, so that

exp(—vk®rc,”") = €736 = 0.03. (BS)

" Hence viscous damping severely attenuates the baro-

clinic motions propagating toward the piston.

APPENDIX C

Equations Used For the Reflection/Diffraction
of a Plane Internal Wave in a Slit
Encountering a Half-Space

We consider the geometry shown in Fig. 10. For
an incident wave of the form given by (5.1), i.e.,

pr = expliltk(z — cx)wt]

k(1
= exp[l(—lg%a;l%:l expli(ms — w?)], (C1)

where (C2)
m = k(a — o)/(1 + a»)'?,
the backscattered wave in the slit may be expreésed

2 A, cos(nwy/a)e eims—n,
n=0

(C3)
where
kha = [a(l + cHma — (1 + a?)

2122 172
nr? %—21} ] / (&® = c?). (C4)

X {(ma)z - 1+«

- If k), has a complex part, the appropriate sign gives

a wave which decays exponentially away from the
boundary. By use of the boundary conditions of con-
tinuity of pressure and normal velocity at the slit and
the appropriate Green’s function for the half-space,
one obtains the following integral equation for the
coefficients 4, Grimshaw et al. (1982)

1 D0
1 —iva GO, Y—-S)dS= 2 A’,,{—coser
-1 n=0

1
+ iB,a f GO, Y-2S5) cosmrSdS} , (C5)
-1

where Y = y/a, S = s/a and

1+ a2\
GO, Y~ S8) = é( “2) H{(lalY ~ S)), (C6)
with
va = |mlac
1+ az)'/z
la = Imlac(a2 — €7
, a2 _ c2 1+ c2
Bua = kna "= 5 — maa s
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Eq. (CS) has been solved numerically by use of a
Galerkin technique to give the results for 4, shown
in Fig. 11.
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