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ABSTRACT

A novel and efficient numerical method is used to investigate the nonlinear equations of motion for the
upper layer of a two-layer ocean in which the lower layer is infinitely deep and at rest. The efficiency is
achieved by seeking solutions that are in a steady state, translating in equilibrium with the storm. Oscillations
are found in the wake of the storm. Two features of the response are attributed to the nonlinear terms in
the equation of motion: 1) a rapid transition from a maximum in the downwelling phase, to a maximum
in the upwelling phase of each oscillation, followed by a gradual relaxation to the next downwelling maximum;
and 2) a displacement of the maximum response, usually to the right of the storm track, by ~40 km. It is
shown that the horizontal pressure gradient terms can be neglected from the momentum equations for
“fast”, “large” storms, in which case a Lagrangian integration can be performed, following fluid particles.
This enables feature 1) to be attributed to the along-track advection terms and 2) to be associated with the
cross-track advection terms. When the horizontal pressure gradient terms are more important, feature 1)
remains, but the maximum response is displaced, in the wake, to the left of the track from the right. It is
shown that even a symmetric storm can produce a strongly asymmetric response. Finally, results are compared

with observations of the response of the ocean to hurricanes.

1. Introduction

In this paper we consider the response of the ocean
to a single, isolated, moving storm. The situation to
which this is most applicable in nature is that of a
moving hurricane, but the same ideas would apply
to an extratropical storm. Hurricanes are particularly
strong forcing events for the ocean, and we would
anticipate nonlinearity to play an important role in
the dynamics. We take as our basic model a two-layer
baroclinic ocean in which the lower layer is infinitely
deep and at rest. The details of the model are de-
scribed in Section 2. In Section 3, the frictionless
equations of motion, with the wind forcing modeled
as a body force, are integrated using a novel and ef-
ficient numerical procedure in which we seek solu-
tions that are in a steady state, translating in equilib-
rium with the storm. The results compare well with
those of Chang and Anthes (1978) if allowance is
made for the decrease in amplitude associated with
the inclusion of mixed-layer effects in their model.

In Section 4, a scale analysis is carried out sug-
gesting that, on the time scale of a few inertial periods,
the dominant balance in the equations of motion is
often between the Coriolis and inertia terms, in which
case the horizontal pressure gradient terms in the
momentum equations can be neglected as a first ap-
proximation. A Lagrangian integration can then be
performed, following individual fluid particles, and
this is done in Section 5. Good agreement with the
numerical solutions obtained in Section 3 is obtained,

demonstrating the validity of the procedure. Fur-
thermore, the reasons for the along-track and cross-
track nonlinear effects can be identified and quanti-
fied.

In Section 6, consideration is given to changes that
occur when the horizontal pressure gradient terms are
more important in the momentum equations, and in
Section 7, the effect of asymmetry in the storm forcing
is investigated. Finally, in Section 8 we summarize
the results and their relation to observed features of
hurricane response.

2. The model equations

We consider the solution where, relative to a frame
of reference moving with speed U in the x-direction,
both the storm and the response to it are in a steady
state. The velocity (u, v) in the upper layer and the
depth A of the layer are then functions only of the
two variables £ = Ut — x and the cross-track coor-

“dinate y. The upper layer has density p; and lies over

an infinitely deep, resting, lower layer of density p,.
The equations are

(U~ wyu, + vu, — fo=p: + X, (2.1a)
U—-wv,+vv,+ fu=-p,+7Y, (2.1b)
(U—up; +vp, + p(—u: +v,) =0, (2.1¢)

where f is the Coriolis parameter (assumed constant),
D = g'hwhere g’ = g(p, — p,)/p: is the reduced gravity,
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and (X, Y) represents the forcing taken to be given

by
T T ;

X, Y =(—JL,—JL), 22

X, Y) oH pH (2.2)
where 7 = (7,, 7,) is the surface wind stress. The depth
H is taken as the undisturbed layer depth and is fixed
throughout the integration. In this way, (2.2) can pro-
vide a realistic wind forcing field, even though tur-
bulent entrainment has been neglected. It is conve-
nient to follow Chang and Anthes (1978), and model
the wind stress 7 as

(Tr’ 70) = (_Trmﬂxa TBmx)

-
T/ Ymin 0 <1< rpin)

X (rmax - r)/(rmax - rmin) (rmin srs rmax) (23)
O (rmax < r)a

- where 7, and 7,4 are the radial and tangential com-
ponents of the stress with respect to the storm center,
and r is the radial distance from the center. We put
Fmin = 30 kM, 7max = 300 km, 7, = 1 N m~? and
Tom, = 3 N m™2, suitable for hurricane forcing. An
asymmetric storm will be considered in Section 7,

[t is also convenient to begin by choosing the model
parameters to coincide with those of Chang and
Anthes (1978) who also worked with the same basic
model of a two-layer baroclinic ocean. We therefore
put H=50m, ¢ = (g’H)"> = 1 m s~} (corresponding
to a temperature difference between the two layers
of 10°C) and f = 7.5 X 107° s7'. The Rossby radius
of deformation is then 13.3 km.

Geisler (1970) showed that for a linear model,
when the storm translation speed U is greater than
the wave speed ¢, the equations are hyperbolic in
character and the ocean is undisturbed ahead of the
storm. This is because the group velocity for inertia~
gravity waves is bounded above by ¢. The same will
be expected to hold for the nonlinear equations. This
is the only case we shall consider and we shall, there-
fore, assume that

u=v=0 and p = c?ahead of the storm.

In practice, (2.4) will be applied at the leading edge
of the storm, § = &, say, the wind stress being zero
throughout the region £ < &.

3. The numerical method and calculated solutions

It was remarked at the end of the previous section
that when U > ¢, the ocean is undisturbed ahead of
the storm. With this as our initial condition, applied
at £ = &, the problem becomes an initial value prob-
lem in the time variable £ This is the approach
adopted here to integrate (2.1). The method can be
thought of as either integrating to find the time de-
velopment of the solution along a line of points per-

JOURNAL OF PHYSICAL OCEANOGRAPHY

2.4)

VOLUME 13

pendicular to the storm track, or integrating back-
ward from a line of points perpendicular to the storm
track ahead of the storm to find the spatial distri-
bution of the solution at a given time. The variables
u and p are stored at the same points along this line,
with v at intermediate points, corresponding to the
Arakawa C-grid (Arakawa and Lamb, 1977). The
leap-frog scheme is used in time (£), with second-or-
der, centered differencing in space (). The finite dif-
ference form of (2.1a) and (2.1¢) yields, at each time
step, two simultaneous equations for the new values
of u and p, ™" and p™!, ie.,

un+l(U_ un+l/2) — pn-H - Fn-H/Z’
= 2
pn+l(U_ un+l/2) — pn+1/2un+l — Gn+l/ ,

where 7 is the time index and F"*"/? and G"*'7? are
known quantities. These are easily solved to obtain
u"™" and p"*'. The detailed properties of the numer-
ical method are discussed elsewhere (Greatbatch,
1982a). It is sometimes desirable to apply some La-
placian smoothing in space (y) to control nonlinear
instability, and a very mild time smoothing in time
(&) to control time splitting. The grid spacing, per-
pendicular to the storm track, is fixed at 20.7 km;
that along the track at 15.5 km. The solutions remain
basically unchanged when the resolution is tripled.
Free-slip boundary conditions are applied at the edges
of the cross-track grid (It can be shown that no sig-
nificant reflection occurs on the time scale considered
here.)

Fig. 1 shows the computed horizontal divergence
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FiG. 1. The horizontal divergence field expressed as the equiv-
alent vertical velocity at the undisturbed layer depth H for a storm
translating at 5 m s™'. In this case H = 50 m and the reduced
gravity g' is such that the wave speed (¢’H)'? is 1 m s~'. The
contour interval is 5.1 X 107* m s™' and is one-sixth of the max-
imum response. The dashed contours denote downwelling. The
zero contour and contours denoting upwelling are shown as solid
lines. The coordinates are measured from the storm center, the
along-track coordinate increasing behind the storm.. The track of
the storm center is shown by the dotted line.



MARCH 1983

field, expressed as the equivalent vertical velocity at
50 m depth, for a storm translating at 5 m s™'. The
center of the storm is located at the origin of the
coordinate axes. The storm is translating up the cen-
ter of the figure, the storm track being indicated by
the dotted lines. Fig. 2 shows the equivalent picture
from Chang and Anthes (1978). It is important to
realize that in their model, both horizontal space di-
mensions are retained, the storm being “initiated” at
the beginning of the integration and then moved
across the grid. Their model also included turbulent
entrainment, which accounts for the difference in
amplitude between the two solutions. The horizontal
scales are the same in both figures. It is apparent that
the new model reproduces all the essential features
found in Chang and Anthes’ model, with the consid-
erable saving in computer resources obtained by elim-
inating the along-track coordinate. Turbulent en-
trainment has been included in an extended version
of the model which also includes a realistic vertical
structure (Greatbatch, 1982b).

The along-track wavelength can be estimated by
extending the integration further behind the storm
and is found to be near 420 km. The local inertial
wavelength (27 U/f) is also 420 km. Two important
features of the oscillation are as follows:

1) The upwelling and downwelling phases are not
evenly distributed throughout the oscillation, there
being a rapid transition from a maximum in the
downwelling phase to a maximum in the upwelling
phase, followed by a gradual transition to the next
downwelling maximum.
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FI1G. 2. The vertical velocity field obtained by Chang and Anthes
(1978) for a storm translating at 5 m s~ and an undisturbed layer
depth H of 50 m and wave speed (g'H)"* of | m s™'. The coor-
dinates and scale are as in Fig. 1. The contour interval is 2.5
X 107 m s, the solid contours denoting downwelling, the dashed
upwelling.
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FiG. 3. The equivalent of Fig. 1, obtained by integrating the
equations obtained by linearizing about the undisturbed state. The
contour interval is 5.0 X 107 m s~ and is one-sixth of the max-
imum response.

2) The maximum response occurs ~40 km to the
right of the storm track (when viewing the storm from
behind).

Both these features are a direct consequence of the
nonlinearity in the equations of motion, as can be
seen by comparison with Fig. 3, which is the equiv-
alent picture to Fig. 1, obtained by integrating the
equations of motion linearized about the initial, un-
disturbed state. The symmetry of the linear solution
about the storm track is a consequence of the radial
symmetry of the forcing field (2.3).

The results (not shown) obtained by integrating
with storms translating at 10 and 2.5 m s™* also com-
pare very favorably with those obtained by Chang
and Anthes, with the two features 1) and 2) referred
to above occurring in both cases, although in the 10
m s~! case these features are less pronounced, indi-
‘cating that the nonlinear terms in the equations of
motion are playing a less important role. This is dis-
cussed later in Section 5. The along-track wavelengths
were estimated to be near 835 and 195 km, respec-
tively, in these two cases, compared with the
corresponding local inertial wavelengths of 838 and
209 km.

A useful check on the numerical method is pro-
vided by the conservation of potential vorticity in the
wake of the storm. In fact

D (i+ f) |
—\—)=(-Y:— X,)/p, 3.1
D ( P (=Y = X,)/p @3.1)
where here, { = —v; — u, is the relative vorticity and
D ] ]
= = — — 4+ p—
=W Wgutvy,

is the total derivative following fluid particles. Con-
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FI1G. 4. The potential vorticity field corresponding to the hori-
zontal diveregence field shown in Fig. 1. The contour interval is
3.1 X 1077 m™" 57! and is one-sixth of the maximum attained value.
In the wake of the storm, the contours should coincide with the
particle paths. The coordinates and scale are as in Fig. 1.

tours of the potential vorticity [(¢ + f)/p] are shown
in Fig. 4. It can be seen that the model does, indeed,
conserve potential vorticity in the wake of the storm.
In this region, the contours should coincide with the
particle paths (these are discussed in detail in Section
5, where they are obtained by a different method).

4. Scale analysis

In this section, we use scale analysis to investigate
the dominant balances in the equations of motion
(2.1). To do this we let V be a characteristic velocity
scale for the response (that the components u, v have
the same scale V' is apparent from the velocity field
obtained from the integrations described in the pre-
vious section, although not presented here) and L a
length scale characteristic of the width of the response
across the storm track.! We take U/f as our length
scale along the storm track in accordance with the
observation in the previous section that the dominant
wavelength along the track is close to the local inertial
wavelength 27 U/f. Some variation in the length scale
of the response along the track was also noted [feature
1) described in the previous section]. It turns out,
however, that the regions over which this length scale
is comparatively small (where, in fact, the following
scale analysis would break down) are not important
in determining the structure of the response over the
time scales to be considered here, as will be seen in
Section 5.

We shall take 1/f as our time scale following ﬂmd
particles [i.e., D/Dt = O(f)] and ¢? as our character-

! L is also the scale of the forcing, see Greatbatch (1982a).
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istic value for p. It then follows from (2.1c) that the
change in p, i.e., Ap, has order

Ap = O(c?V/U, ¢*V/Lf), 4.1

the first term in (4.1) corresponding to the u; term
and the second term to the v, term in the horizontal

divergence. It then follows that

= O(c*Vf/U? ¢*VJUL), (4.2a)
= O(c2VJUL, ¢*V/L*f). (4.2b)

It then follows immediately that the horizontal pres-
sure gradient terms will be small compared to the
Coriolis terms in (2.1a) and (2.1b) if

cHU? < 1, (4.3a)

cHfL? < 1. (4.3b)
Eq. (4.3a) is the condition that the square of the ratio
of the non-rotating wave speed ¢ to the translation
speed U is small compared to 1, and (4.3b) is the
condition that the square of the ratio of the Rossby
radius of deformation ¢/f to the width scale of the
response across the storm track be small compared
to 1. Combining these, we can say that the conditions
(4.3a) and (4.3b) correspond to having “fast-moving”
and “large” storms, respectively.

We conclude that on a time scale of a few inertial
periods, if (4.3a) and (4.3b) are both satisfied, then
we would expect the horizontal pressure gradient
terms in (2.1a) and (2.1b) te be small compared with
the Coriolis terms so that the dominant balance is
between the inertia terms and the Coriolis terms. It
i1s important to realize that the horizontal pressure
gradient terms are crucial to the dispersion of energy
away from the storm track in the geostrophic ad-
justment process and cannot be neglected on time
scales characteristic of that process.

In the experiments described in the previous sec-
tion, we took ¢ = 1 m s™! so that ¢/U = 0.2, 0.1 and
0.4 for storms translating at 5 m s™', 10 m s~ and
2.5 m s™', respectively. This gives (c/U)? = 0.04, 0.01
and 0.16, so that we could reasonably expect (4.3a)
to be satisfied for the storms translating at 5 and 10
m s~! with more significant second-order effects in
the case of the storm translating at 2.5 m s~/

To estimate the ratio ¢/fL we need to assign values
to L. We can do this by estimating the scale L from
the numerical results described in the previous sec-
tion. A value of 100 km was assigned for each of the
three translation speeds considered. For the Rossby
radius used here of 13.3 km, this gives ¢/fL = 0.13.
(¢/fL)? then has the value 0.02 so that we would ex-
pect (4.3b) to be satisfied in each case.

We conclude that we would expect the dominant
balance in the equations of motion to be between the
inertia terms and the Coriolis terms on the time scale
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of a few inertial periods in the cases considered here,
with this approximation being less good in the case
of the storm translating at 2.5 m s™!, In fact, in the
2.5 m s7! case, it is the p; term that is likely to be
more important, as can be seen by substituting the
appropriate values for the scales in (4.2). This ac-
counts for the shortening of the wavelength along the
track compared with the inertial wavelength in this
case, noted in the last section. To understand this, we
note that the dispersion relation obtained from linear
theory is
wz = 0(2 + csz)/(Uz —_ 6'2),

where  is the along-track wavenumber and k is the
cross-track wavenumber. In this case (ck)? < f? [this
is (4.3b)] so

w2 ~ f2/(U2 — CZ).

The along-track wavelength is, therefore, shortened
compared to the inertial wavelength, by the factor
(U? — ¢?)'2/U = 0.92 in this case. This gives an along
track wavelength of 192 km., compared with 195 km,
estimated from the model results.

5. A simple Lagrangian model

In this section, we exploit the conclusion of the last
section and drop the horizontal pressure gradient
terms p; and p, from (2.1a) and (2.1b). We can then
write (2.1a) and (2.1b) in Lagrangian form as

d
o= Xx@, v, G.la)
Lt = Y@, y0.0, G

where d/dt is the rate of change in time for a particular
fluid particle. [x(), y(¢)] is the position of that particle
at time ¢, and [u(2), v(1)] is the velocity of the particle
at time ¢ In fact

dx _
T u(t), (5.1¢)
dy _
p v(?). (5.1d)

The problem is now reduced to solving the system
of ordinary differential equations (5.1) for the vari-
ables u(1), v(1), x(2), y(t). We do this, numerically, for
a grid of points perpendicular to the storm track, ini-
tially ahead of the storm, for each of the three cases
of storms translating at 5, 10 and 2.5 m s™!. The
output from the model consists of an irregular grid
of points given by the positions [x(?), ¥(#)] of each
particle after each time step, with # and v specified
at each of these points. The horizontal divergence
field 6 = u, + v, and the relative vorticity field ¢
= v, — u, can then be estimated at each point (see
the Appendix for a detailed discussion of the method
used). The depth of the upper layer £ is then found
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using (2.1c) written in the form

dp

& +pé=0,
where, once again, p = g'h. This enables us to cal-
culate the potential vorticity (¢ + f)/p, which again
provides a useful check on the numerical method [Eq.
(3.1) still holds in the reduced system].

Fig. 5 shows the horizontal divergence field ob-
tained for a storm translating at 5 m s™! and is equiv-
alent to Fig. 1, which shows the horizontal divergence
field obtained by integrating the full equations (2.1).
It is clear that the reduced, Lagrangian model is ca-
pable of reproducing both the amplitude and struc-
ture of the solution, demonstrating that on this time
scale, in the cases considered, the horizontal pressure
gradient terms do not play an important role in the
governing equations. In particular, the two main fea-
tures 1) and 2) of the response shown in Fig. 1, and
discussed in Section 3, are reproduced. A similar
striking agreement is obtained for storms translating
at 10 and 2.5 m s~! (see Table 1) except for the dis-

- crepancy in the along-track wavelength noted for the

2.5 m s7! case in the last section. The conservation
of potential vorticity along particle paths in the wake
of the storms has been verified in each case.

The key to understanding the role of the nonlinear
terms in the equations of motion in shaping the re-
sponse is found by examining the individual particle
paths collectively. Fig. 6 shows the computed particle
paths for a storm translating at 5 m s~!, This can be
compared with Fig. 4 in which the contours in the
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F1G. 5. The horizontal divergence field corresponding to that
shown in Fig. 1, obtained by integrating the reduced equations
(5.1) along the paths of 47 particles initially distributed uniformly
across the storm track. The contour interval is 4.9 X 107 m s7!
and is one-sixth of the maximum response. The coordinates and
scale are as in Fig. 1.
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TABLE 1. A comparison between the maximum values of the
horizontal divergence, given as the equivalent vertical velocity at
50 m depth, computed by the direct numerical integration method
and by the Lagrangian method. In the latter model, the horizontal
pressure gradient terms are dropped from the momentum equa-
tions.

Storm Direct Lagrangian
translation speed integration model model
(ms™) (ms™) (ms™')

2.5 23X 1073* 2.5 %1073

5 3.1x107? 2.9 % 1072

10 1.5 x 1073 1.6 X 1073

* Laplacian smoothing in the cross-track direction was applied
in this case.

wake of storm coincide with particle paths. In the
wake of the storm, the particles execute inertial circles
which, in the frame of reference fixed with respect to
the storm, appear as cycloids—that is, circles with the

T
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translation of the storm superposed. This gives a rel-
atively long region in which the particle is moving
away from the storm and a relatively short region in
which it is moving towards the storm. It is this un-
evenness along the track which gives rise to the un-
even nature of the oscillation in the horizontal di-
vergence field, feature 1) noted in Section 3. The pa-
rameter which controls this unevenness for a given
particle is the ratio of the particle speed to the storm
translation speed. When viewed collectively it is

A= maximum current speed in the wake
T storm translation speed )

(5.2)

When A7 is small compared with 1, the oscillation
along the track is even, as in the linear solution shown
in Fig. 3. When 47y = 1, the quantity —u,, which
dominates the horizontal divergence along the center
of the response, has a singularity and there is an
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FIG. 6. Some of the computed particle paths used to obtain the horizontal di-
vergence field shown in Fig. 5. The arrows are proportional to the particle vector

velocities. The maximum particle velocity is 2.7 m s

~!, This compares with the

storm translation speed of 5 m s™*. The along-track and cross-track coordinates and

their orientation are as in Fig. 1.
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abrupt transition from a maximum in the down-
welling to a maximum in the upwelling.

In terms of the equation (2.1), the parameter A+
measures the ratio of the u(d/9¢) term to the U(d/
9f) (i.e., 9/91) term in each of (2.1a) and (2.1b), in-
dicating that it is the advection along the storm track
that generates feature 1) noted in Fig. 1.

To gain some understanding of the asymmetry of
the response about the storm track (feature 2 noted
in Section 3), we must calculate the mean displace-
ment of the particles from the storm track due to the
action of the storm. To do this, we first integrate (5.1a)
with respect to time ¢ along a particle path, giving

uto) - f J; ° vdt = fo ° xa, (5.3)

where ¢, is some time after the passage of the storm.
Letting, y(y,) be the mean displacement perpendic-
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F1G. 7. (a) Mean displacement of the particles perpendicular to
the storm track plotted against their initial position. The cross-
track coordinate is measured in km from the storm track and
positively to the right. The displacements are also measured in
kilometres and positively to the right. (b) Layer depth #,, consistent
by conservation of volume with the particle displacements shown
in Fig. 7a. h,, is measured in m and is plotted against the cross-
track coordinate which is measured in km. The cross-track coor-
dinates of the particles have been adjusted to account for their
displacements.
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ular to the storm track of the particle initially at y
= y, (here y is measured positively to the right of the
track); then, averaging (5.3) over an inertial period
in the wake of the storm gives

$0n) = fo_'”v;t -~ [xa, s

where the overbar denotes the average over an inertial
period in £y, and the integral of X is taken along the
particle path for the duration of the storm. In Fig. 7,
¥ is plotted against ). We can calculate the depth of
the upper layer Ay, that is implied by these displace-
ments by conservation of volume (mass). In fact,

- ﬁy;)"’
e+ )

where A, i1s the depth of the upper layer implied by
the displacements y and is the equilibrium depth of
the upper layer in the wake of the storm. H is the
undisturbed depth. A, is also plotted in Fig. 7.

It is immediately clear that the maximum upward
displacement of the thermocline has occurred to the
right of the track. We can see from Fig. 7 that outside
a distance of ~ 100 km from the storm track, y as a
function of yy, is approximately antisymmetric about
the storm track. A particle initially on the track is,
however, displaced to the left of the track (this con-
trasts with the prediction from linear theory that y
is strictly antisymmetric about the storm track, with
a particle initially on the track receiving no net dis-
placement). Indeed, it is apparent, that the displace-
ment of the maximum net upwelling to the right of
the storm track is a consequence of the fact that the
particle which receives no net displacement perpen-
dicular to the track lies initially to the right of the
track. Particles initially to the left of this pass to the
left of the center of the storm and consequently the
dominant contribution of X in the integral on the rhs
of (5.4) is such as to give the particle a net displace-
ment to the left of the track. To understand why this
happens, we must appreciate that before rotation ef-
fects become important (that is on a time scale small
compared with 1/f), particles are accelerated to the
left by the winds ahead of the storm centre.

The above argument suggests that it is the advec-
tion perpendicular to the storm track that is impor-
tant in shaping the asymmetry about the storm track
of the response shown in Fig. 1. We can estimate the
magnitude of the v(d/dy) terms using the scales dis-
cussed in Section 4. It follows that the ratio of the
v(8/3y) terms to the U(9/3f) (i.e., 3/3¢t) terms in (2.1)
is measured by the Rossby number?

(5.5)

2 Ay stands for along-track, Py for perpendicular to the track.
Both A; and P; are Rossby numbers, formed with appropriate
length scales.
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TABLE 2. The importance of the non-linear terms in the equa-
tions of motion. Here, U is the storm translation speed, ¥ is the
maximum current speed obtained in the appropriate model, At
= V/U measures the ratio of the along-track advection terms to
the local acceleration terms, Pr = V/Lf measures the ratio of the
cross-track advection terms to the local acceleration terms. L = 100
km in each case.

Chang and Anthes

Lagrangian (1978)
| 4 vV

U (ms™') Ar Py (ms')y Ar Py

S5mst 2.7 0.54 0.36 1.7 034 023

10 ms™’ 2.0 020 0.27 1.4 0.14 0.19
25ms :

Forcing 2.1 0.84 0.28 1.2 0.48 0.16

wake 1.2 048 0.16 0.5 0.20 0.07

Py = V/L{, (5.6)

where ¥V is the velocity scale and L is the scale of the
width of the response. The time scale has been taken
as 1/f, as before.

In Table 2, velocity scales ¥ are given for each of
the three cases; that is, storms translating at 5, 10 and
2.5 m s7!. In each case, these are the maximum cur-
rent speeds attained in the model. In the case of the
storm translating at 2.5 m s~', the forcing region and
the wake are separated because of the disparity be-
tween the maximum currents in each region. The
parameter At = V/U [c.f. (5.2)] is given in each case.
Of course, these values are higher than those obtained
when mixing is included in the modél, so estimates
of the corresponding current values from Chang and
Anthes (1978), who include mixing in the form of
turbulent entrainment, are also given with the cor-
responding values for Ar. The corresponding values
of Py are also given, with L = 100 km, as in Section
4. Tt is clear that nonlinearity plays a less important
role in the response to a storm translating at 10 m
s~! than in the other two cases, as was remarked in
Section 3. This is not surprising, since the storm ac-
celerates a given fluid particle for less time as the
storm translation speed increases.

No mention has been made of the actual particle
displacements y that have been calculated. These are
summarized in Table 3, where details of the layer
depth £ as calculated in Section 3 and by the reduced
Lagrangian model presented in this section, are also
compared. We can see that the particle excursions are
increasingly comparable to the scale of the forcing as
the storm speed decreases, and vary, approximately,
in inverse proportion to the storm translation speed
U (linear theory predicts an exact inverse propor-
tionality to U). It is also of interest to remark that
the ratio of the oscillatory movement of the ther-
mocline to the net displacement given by [((Aa)min
— Bmin)/(H — (Mapmin)] increases as the storm speed
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TABLE 3. Summary of results from the Lagrangian model with
a comparison of the minimum layer depth predicted by the direct
integration model. A, is the minimum depth, (A is the min-
imum mean depth, 5,, being given by (5.5). The undisturbed layer
depth H = 50 m. :

Direct Lagrangian model
integra-
tion Maximum
model mean particle
displacement
Storm from the track
translation (km)
Speed ' hmin hmin (hM)min
(ms™!) (m) (m) (m) Left Right
2.5 6.8 6.8 11.9 60.2 56.4
S 12.2 13.4 23.1 30.0 31.2
10 . 240 24.2 34.5 14.7 16.0

increases, in general agreement with the findings of
Geisler (1970). This ratio has values of 0.13, 0.36,
0.66 for storms translating at 2.5, 5 and 10 m s7!
respectively.

6. A case in which the horizontal pressure gradient
terms are more important

We have seen that the horizontal pressure gradient
terms do not play a significant role in shaping the
structure and amplitude of the response shown in Fig.
1. In this section, we make comparisons with a case
in which these terms are more important. The model
derived in Section 3 was run with ¢ = 2 m s™! and
H = 100 m (corresponding to a temperature differ-
ence between the two layers of 20°C) all other factors,
including the wind stress forcing (2.3), remaining the
same. In this case the wave speed ¢ is double that
previously used so that on the basis of the scale anal-

aalaaaasgaaatagaaaaaaslaag

£ o5 ] 2
@ 3
250 E_
E
‘ E
500 2

R N S

~~308 (5] 300

kilometres

F1G. 8. The horizontal divergence field expressed as the equiv-
alent vertical velocity at the undisturbed layer depth H. In this case
H = 100 m and the reduced gravity g’ is such that the wave speed
(g’H)"* is 2 m s™'. The storm translation speed is 5 m s™'. The
contour interval is 4.1 X 107* m s™' and is one-sixth of the max-

~ imum response. The coordinates and scale are as in Fig. 1.
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ysis given in Section 4, we would expect the hori-
zontal pressure gradient terms to be four times more
important in the equations of motion. Fig. 8 shows
the computed horizontal divergence field for a storm
translating at 5 m s~! and is directly comparable with
Fig. 1, discussed in Section 3. Two important differ-
ences emerge:

1) The dominant wavelength of the oscillation
along the track has been reduced from near 420 km
to near 370 km.

2) There is only a slight bias to the right of the
track under the storm (more obvious from the con-
tours of /2 shown in Fig. 9) with a marked bias to the
left of the track developing in the wake of the storm.

Despite these differences, the basic uneven nature
of the oscillation along the storm track (feature 1)
noted in Section 3) is still apparent.

The first difference, that in the wavelength along
the track, is easy to understand. We saw in Section
4, when discussing the response to a storm translating
at 2.5 m s™!, how the wavelength along the track was
reduced from the inertial wavelength 2z U/f by a fac-
tor (U? — ¢?)V%/U. This factor has the value 0.92
when U = 5m s~ and ¢ = 2 m 5™}, which predicts
an along-track wavelength of 386 km. This reduction
is attributable to the along-track pressure gradient
term p;. The further reduction to 370 km can be
attributed to the cross-track pressure gradient
term p,.

We can estimate the ratio of the pressure gradient
to the Coriolis terms by (g'VA)/fV, where V is the

aa s b laa s ias ey g
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F1G. 9. The layer depth 4 corresponding to the horizontal di-
vergence field shown in Fig. 8. The contour interval is-7 m and
is one-sixth of the maximum displacement from the undisturbed
layer depth of 100 m. The dashed contours denote deepening of
the layer. The zero contour and contours denoting shallowing of
the layer are shown as solid lines. The coordinates and scale are
as in Fig. 1. The line A-B is referred to in the text.
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F1G. 10. The response of subsurface temperature across the track
of hurricane Ella (1978) after Fedorov et al. (1979). The contour
interval is 0.5°C, negative values are dashed. XBT casts were made
at approximately 20 km intervals along a section approximately
one day before and after the passage of the hurricane. Note the
displacement to the right of the track (denoted by the hurricane
symbol) of the upwelling column (taken from Price, 1981).

maximum current speed found in the model (1.2 m
s™! in this case) and for VA4 we take the maximum
gradient of / along the line A-B shown in Fig. 9. This
line extends perpendicularly across the storm track
200 km behind the storm center. This ratio has value
of ~0.16 in this case. This compares with the cor-
responding ratio of 0.05 estimated for the calculations
described in Section 3 withc=1ms'and U= 5
ms~'. As we would expect, this ratio is approximately
quadrupled when the wave speed c¢ is doubled, while
all other factors remain the same, in agreement with
our expectations on the basis of the scale analysis
given in Section 4 [c.f. (4.3)].

The second difference, regarding the asymmetry of
the response in the wake about the storm track, is
less easy to understand and will not be discussed here.

7. Forcing with an asymmetric storm

To investigate the effect of forcing with an asym-
metric storm, the model described in Section 3 was
run with the surface wind stress (2.3) multiplied by
the factor (1 + 0.3 cosf), where 6 is measured from
a semi-axis extending from the storm center, perpen-
dicular to the storm track and outwards to the right,
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when viewing the storm from behind. It is usual for
hurricanes to have this sort of asymmetry, with the
strongest winds being found to the right of the track,
although the factor 0.3 represents a case of strong
asymmetry. Two cases were considered, that of 1) ¢
=IlmsLU=5ms"'and2)c=2ms , U=35
m s™!. Although the computed horizontal divergence
field (not shown here) is a little more biased to the
right of the storm track than in the corresponding
cases with symmetric forcing discussed in Sections 3
and 6, respectively, the basic response is changed little
from that discussed before. This suggests that in these
cases, asymmetry in the storm forcing is not impor-
tant, in comparison with the nonlinear dynamics, in
determining the asymmetry of the response.

8. Summary and discussion

We have seen that the nonlinear terms in the equa-
tions of motion (2.1) introduce two important fea-
tures to the character of the oscillation in the wake
of the storm:

1) There is a rapid transition from a maximum in
the downwelling phase to a maximum in the up-
welling phase, followed by a gradual transition to the
next downwelling maximum.
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2) The maximum of the response is displaced to
the right of the storm track, although when the hor-
izontal pressure gradient terms in (2.1a) and (2.1b)
play a more important role in the equations, the
maximum response in the wake, behind the storm,
shifts to the left of the track.

A Lagrangian integration technique, following in-
dividual fluid particles, has been used to show that
feature 1) is attributable to advection of momentum
along the track and that feature 2) is associated with
the cross-track advection terms. It has also been
shown that the nonlinear dynamics can be more im-
portant than an asymmetry in the storm forcing in
producing an asymmetric response.

Finally in this paper, we ask whether or not any
of the above mentioned features are found in obser-
vations of the ocean’s response to particular hurri-
canes. Within the limited set of observational studies
available, (Price, 1981 contains a general review of
such studies) there are some examples in which the
upwelling column is displaced to the right of the
storm track (there are no examples of a clear-cut dis-
placement to the left of the track). A particularly fine
example is provided by the study undertaken and
documented by Schramm (1979) of the response to

-
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FiG. 11. (a) Current direction along the storm track obtained from the same
numerical experiment as Fig. 1. Direction is measured clockwise from the direction
of motion of the storm with the current flowing from the direction indicated. The
dashed line shows the result obtained by integrating the linearized equations, all
other factors remain the same. The origin of the time axis is at the center of the
storm; (b) As in a, except that here the layer depth h is shown. This can be thought
of in terms of temperature below the wind-mixed layer. )
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typhoon Phyllis of 1975. In this case, the upwelling
column is centered ~40 km to the right of the track
with half-width ~ 100 km, in broad agreement with
the model results presented here (cf. Fig. 1). Fig. 10
is taken from Price (1981) and shows the difference
in temperature along a section across the path of hur-
ricane Ella of 1978, between XBT casts made ap-
proximately one day before and one day after the
passage of the storm (Fedorov et al., 1979). A right-
ward bias in the upwelling column is again apparent.

Observations of feature 1) noted above requires a
good time series of data in a region sufficiently close
to the storm track that the surface current reaches a
value that is a significant fraction of the storm trans-
lation speed, i.e., we need the parameter A [cf. (5.2)]
to be significantly different from zero. The only likely
candidate available at the present time would seem
to be the data set recorded by the EB-10 buoy during
the passage of hurricane Eloise in 1975 (see Johnson
and Withee, 1978 for a presentation of this data set).
In this case, the storm translation speed at the time
of crossing the buoy was near 8.5 m s~!. Unfortu-
nately, current speed was only measured by one sen-
sor, nominally at a depth of ~50 m. It recorded a
maximum value of 0.8 m s~ at which time the tem-
perature measured by the sensor was within ~0.3°C
of that measured by a sensor at a nominal depth of
2 m. This suggests that 0.8 m s~! may be a represen-
tative value of the current speed within the mixed
layer. This gives a value for A+ = 0.8/8.5 of only
~0.1 so that nonlinear effects are likely to be small
and easily obscured by other factors.

Fig. 11 shows time series along the storm track
obtained from the numerical model described in Sec-
tion 3. In this case, At = 0.54 (this based on a max-
imum computed current speed of 2.7 m s™!, the storm
translation speed being 5 m s'). The equivalent plots
obtained by integrating the linearized equations are
also given, highlighting the nonlinear effects [these
are associated with feature 1) noted above]. It 1s hoped
that these figures will provide a guide to interpreting
observations in a more highly nonlinear case than
that recorded by the EB-10 buoy.
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APPENDIX

We describe here the method used to calculate the
divergence and relative vorticity .from the velocity
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field obtained as output from the Lagrangian model
described in Section 5.

Consider a scalar field Fx(s, 1), y(s, 1)]. Here [x(s,
D, y(s, 1)] is the position at time ¢ of the particle
initially at position (x, 5), the line x; = constant being
the initial line of particles ahead of the storm. We
know F as a function of s and ¢, and we wish to know
its derivatives with respect to x and y. We can then
take F = u and F = v and combine the calculated
derivatives with respect to x and y, appropriately, to
form the divergence u, + v, and the relative vorticity
Uy — U,.

Using the chain rule,

a,x 9, x
(8:F, 8,F) = (3,F, ayF)( ’ ) (A1)
ay oy
where 4, = 9/4; etc.
Inverting (A1) we have
1 (9,}/ —G,X) B
a,.F, 0,F)=—(0,F, 0,F . (A2
(8.F, 8,F) = - (A.F, 9, )(_asy ax) B
‘where
_9xdy 0xdy
ds at At ds’

In applying (A2) numerically to the data output
from the model, we can parameterize the coordinates
in such a way that the distance between neighboring
points at fixed s is 1, and similarly at fixed ¢. This
useful observation simplifies the computations. In
particular, by using centred differencing to estimate
the derivatives in (A2) we can now achieve a second-
order approximation.
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