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This paper studies global and local behavior of graph-convex set-valued mappings in finite-dimensional
vector spaces. This is done in terms of recession mappings and graphical derivatives which are set-
valued mappings whose graphs are convex cones. The main results are chain rules for computing the
recession mapping and the graphical derivative of a composition of two set-valued mappings. The results
on graph-convex mappings are applied to K-convex functions which are vector-valued generalizations of
extended-real-valued proper convex functions. Many generalizations of classical results in convex analysis
are obtained, along with a generalization of subdifferential calculus, in which the differential behavior
of a function is described by a sublinear mapping that resembles the classical Jacobian. A particular
advantage of this approach is that it leads to simple chain rules for compositions of vector-valued convex
functions. The generality is reflected in the fact that most of the classical rules for computing recession
functions and subdifferentials are obtained as special cases of the given chain rules. Some applications to
mathematical programming and matrix analysis are given.

1. Introduction

Because of their flexibility in modeling various situations both in theory and practice, set-
valued mappings provide a convenient framework for studying problems in optimization
and variational analysis. Since a set-valued mapping S : X == U may be identified with
its graph gph S = {(z,u) | u € S(x)}, its analysis can be reduced to the study of sets
in the product space X x U. A particularly convenient case occurs when the graph of S
is convex. Then the analysis falls into the realm of convex analysis, and the results are
stronger and more elegant than could be expected in the general case. This can be seen
for example in Robinson [33], Borwein [4], Aubin and Ekeland [2], Aubin and Frankowska
[3], and Rockafellar and Wets [37].

The purpose of this paper is to exploit convexity further, in the study of global and local
behavior of set-valued mappings. We derive simple rules for describing such properties for
mappings that have been constructed from other mappings whose corresponding proper-
ties are known. Specifically, we develop a recession calculus for graph-convex mappings,
and we simplify and strengthen some of the already existing results on graphical differen-
tiation of graph-convex mappings. This is based on the well known fact that a wide range
of mappings and sets with special structure can be expressed in terms of compositions.
Any property of a general composition yields information about these more special cases.

Two major themes in convex analysis are the study of recession and differential behavior
of convex sets and convex functions. We develop a corresponding theory for graph convex
mappings, and derive many extensions of the classical results as special cases. All the
proofs follow one simple idea, and we only use the standard results in Rockafellar [35].
To emphasize the simplicity we consider only the finite-dimensional case. A major part
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of our study is devoted to K-convex functions which can be identified with a special
class of graph-convex set-valued mappings. The special properties of this class have
consequences that show how K-convex functions share many important properties of
extended-real-valued convex functions. The study of K-convex functions is also motivated
by their increasing popularity in modeling various problems in optimization, especially
in semidefinite programming, eigenvalue optimization and vector minimization; see for
example Borwein [4], Craven [9], Shapiro [39, 40], and Lewis [24].

The global behavior of a graph-convex mapping will be described in terms of the “recession
mapping” which is the sublinear mapping whose graph is the recession cone of the original
graph. When the mapping is closed, the recession mapping coincides with the “horizon
mapping” introduced for general set-valued mappings in [37]. Our main result on recession
mappings is a new chain rule which states that, under mild conditions, the recession
mapping of a composition is the composition of the recession mappings.

The local behavior of a graph-convex mapping will be described in terms of the “graphical
derivative” which is the sublinear mapping whose graph is the tangent cone of the original
graph at some of its points; see Aubin [1], as well as [2, 3, 37]. In the presence of convexity
this is adjoint to the coderivative of Mordukhovich [26, 27]. In the general case, without
convexity, chain rules have been given in inclusion form in [27, 37]. For graph-convex
mappings strict chain rules are given in [37], and in [2] for the case where one of the
mappings is linear. Our chain rule applies under slightly more general conditions than
those in [37, Theorem 10.37], and in the finite-dimensional case, it implies those in [2].
Also, since we consider only the finite-dimensional convex case, our proofs are very simple,
and the “constraint qualifications” are more in the spirit of convex analysis. For reference
on generalized differentiation of set-valued mappings see [3, 37].

Let K C U be a convex cone, that is, a nonempty convex set such that axz € K whenever
x € K and a > 0. A function f from X to U defined on a set dom f is said to be K-conver
if dom f is convex, and for every 1,z € dom f,

flonzy + agxs) — a1 f(z1) — aof(22) € K,

whenever a1,y € [0,1], and oy + @y = 1. The convexity of a real-valued function may
be stated as R_-convexity, and concavity as R, -convexity. In accordance with the real-
valued case, a function f from X to U with dom f = X will be called affine if it is
{0}-convex. Note that, rather than extending the domain of a function to all of X, by
defining something corresponding to extended-real-valued functions, we explicitly state
the set dom f in which f has well defined values in U. Extended-real-valued functions
that have values in RU (400) fit this framework by defining dom f = {z | f(z) < o0}, as
usual.

Just as in the real-valued case, it is easily shown that f is K-convex if and only if the set

epi f = {(x,u) |z € dom f, u € f(a) — K},

called the K-epigraph of f, is a convex set in X x U. The K-epigraph of f is the graph
of the K-profile mapping S¢x : X = U of f defined by

5y (a) = {f(x) K ifz € domf,

0 otherwise.
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Through this relation all the results on graph-convex mappings can be translated into
facts about K-convex functions.

An interesting example of a nonsmooth K-convex function may be found in matrix anal-
ysis. Choosing X to be the space of n X n Hermitian matrices and U = R", one can
show that the function A : X — U giving the eigenvalues of a matrix in nonincreasing
order is K-convex; see Friedland [11], Lewis [21, 23, 24] or Section 9. As an example,
we will use K-convex functions to derive some recent results about A, in Overton and
Womersley [30], Hiriart-Urruty and Ye [16], Seeger [38], as well as in [11], which have
important applications in eigenvalue optimization and semidefinite programming; see for
example Overton [29], Vandenberghe and Boyd [43] and the references there in.

In [24], Lewis introduced the concept of a “normal decomposition system”. A normal
decomposition system involves a function v which generalizes the function A in the above
example [24, Section 7]. By [24, Theorem 2.4] 7 is K-convex, where K is the polar cone of
the range of . Consequently, our results apply to normal decomposition systems yielding,
for example, some of the closedness criteria and subgradient formulas in [24], as well as a
generalization of the recession function formula given in [38] for spectrally defined matrix
functions.

If f is a K-convex function from X to U, and g is an L-convex function from U to V, the
classical criterion for the convexity of their composition gof is that g is nonincreasing, with
respect to the partial order induced by L, in the directions of K. Because of its simplicity,
this condition is often easy to verify, but for some applications it is too restrictive. In
Section 6, we give a more general condition that also guarantees that the profile mapping
of the composition coincides with the composition of the profile mappings of f and g.
This will be used to translate facts about compositions of general graph-convex mappings
into facts about compositions of K-convex functions.

The “K-recession mapping” of a K-convex function is defined as the recession mapping
of its profile mapping. The special form of K-profile mappings implies interesting prop-
erties for the K-recession mappings. In particular, the adjoint sublinear mapping of the
K-recession mapping can be expressed in terms of domains of convex conjugates of “scalar-
ized” functions. This provides a useful link to the recession theory of extended-real-valued
functions [35]. The graphical approach to the recession properties of set-valued mappings
also yields closedness criteria for compositions of set-valued mappings and K-convex func-
tions.

When applied to K-convex functions, graphical differentiation leads to a vector-valued
generalization of the subdifferential calculus in convex analysis. The subdifferential is re-
placed by the “K-Jacobian” which is the graphical derivative of the K-profile mapping at
a point (z, f(z)); see also Pennanen and Eckstein [32]. Subdifferentials and K-Jacobians
are related in a way that allows us to interpret facts about either object in terms of the
other (Section 6), and for extended-real-valued functions, we have a one-to-one correspon-
dence between the two. In smooth analysis, this corresponds to identifying the space of
real-valued linear mappings with a dual space X* of X, and the real-valued Jacobians
with points (gradients) in X*. The relation between subdifferentials and K-Jacobians ex-
tends this correspondence in a natural way to the setting of convex analysis where points
and linear mappings correspond to the more general concepts of convex sets and sublinear
mappings, respectively, as pointed out in Rockafellar [34]. In general, this kind of repre-
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sentation is possible only when the range-space of the mapping is the real line. In order to
obtain a general differential theory applicable to vector-valued functions as well, it seems
necessary to pass from subdifferentials to the corresponding sublinear mappings. This
differs from the usual approach where the differential behavior of a K-convex function
is described by a set in the space of linear mappings, as in Levin [20], Kutateladze [19],
Thera [41] and Borwein [6], to name just a few. Also, in view of classical analysis, it seems
more natural to have a Jacobian which is a mapping instead of a set. Most importantly,
since the K-Jacobian is a graphical derivative of the corresponding K-profile mapping,
we can use the general calculus rules for graphical derivatives to compute K-Jacobians
for composite functions.

This approach to nonsmooth analysis of vector-valued functions is very similar to that
in [27] and [37]. However, our analysis replaces the local Lipschitz continuity by K-
convexity, and we obtain exact chain rules in the form of equalities instead of inclusions.
Relaxing the Lipschitz requirement, allows us to treat vector-valued functions which are
defined only on a subset of the domain space. This corresponds to the distinction between
real-valued and extended-real-valued functions.

The next section gives the basic definitions and some background on sublinear mappings.
In Section 3, we define the recession mapping for a general graph-convex set-valued map-
ping, and derive a chain rule for the recession mapping of a composition. In Sections 4
and 5, we do the same for the graphical derivative and the “relative interior” of a set-
valued mapping, which is the set-valued mapping whose graph is the relative interior of
the original graph. In Sections 6 and 7, we apply the results to K-convex functions. The
last two sections are devoted to applications. In Section 8, we study the composite model
of convex programming, variational inequalities, and vector minimization problems. In
Section 9, we show how the eigenvalue function in the space of Hermitian matrices can
be treated under the framework of K-convex functions.

2. Preliminaries

We will use the notation of [37]. The domain and the range of a set-valued mapping S
are defined as projections of gph S to X and U, respectively:

domS={zreX |S()#0}, rgeS=|J{S(x) |zeX}.

The inverse of S is defined by S~ *(u) = {z | v € S(z)}. The closure c1 S of S is defined
by gph(clS) = cl(gph S). If S = clS it is said to be closed.

The main theme of this paper is composition of mappings. The composition of set-valued
mappings S : X =2 U and T : U =2 V is defined by

(ToS)(z) = T(S(x)) = (J{T(u) | u € S(z)}.

The following graphical characterization of the composition was used in [37]. Because of
its importance in all that follows, we provide the simple proof.

Lemma 2.1. Forany S: X =2 U andT :U =V,
gph(TeS) = Pxxv([(gph S x V) N (X x gph T))],

so that convexity of S and T implies the convexity of ToS.
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Proof. Everything is clear from the expression

gph(TeS) ={(z,v) | Fue S(z): veT(u)}
={(z,v) | Ju: (z,u,v) € (gph S x V)N (X x gphT)},

and from the fact that intersections and linear mappings (e.g. projections) preserve con-
vexity. O

Thus, to analyze “graphical properties” of compositions, it suffices that we are able to
analyze intersections of convex sets and images of convex sets under linear mappings. The
main reason to focus on compositions is their generality in the sense that other kinds of
composite mappings are obtained by special choices of S or T

Corollary 2.2.

(i) Let A: X — U be linear, and let T : U =3V be convex. Then ToA : X =V is
conver.

(ii)) Let S: X =3 U be convex, and let B : U — V be linear. Then BoS : X =2V is
convez.

(iii) Let S1,S2: X =2 U be conver. Then S; + Ss is convet.

(iv) Let DCU and T :U =2V be convexr. Then T(D) is convex.

Proof. In (i) we have S = A, and in (ii), 7 = B. Part (iii), follows from (i) and (ii)
by noting that S; + Sy = BeToA, where A(x) = (z,z), T(z1,22) = S1(x1) X S2(za),
and B(ui,us) = uy + us. Part (iv) follows by choosing S to be the constant mapping
S(z) = D, and using the fact that the range of the convex mapping (7=S)(z) = T'(D) is
convex. n

It follows that various properties about general compositions of convex mappings can be
translated into properties about the above cases. This will be the strategy in each of
the subsequent sections: using the expression for the graph of a general composition in
Lemma 2.1, we will first derive a result about a general composition, and then apply this
to the special constructions in the proof of the above corollary. It should be noted that
the above cases are just few special cases of composition. For example, mappings of the
form ToA™", B7'S or (S; N Sp)(z) = Si(x) N Sy(z) would be natural additions to the
above list.

A set-valued mapping is called sublinear if its graph is a convex cone [37]. Sublinear
mappings are set-valued generalizations of linear (single-valued) mappings. In particular,
every linear mapping is sublinear. It is also easily checked that sums and compositions
of sublinear mappings are again sublinear. We recall some basic facts about adjoints of
sublinear mappings [35, 37].

The polar of a convex cone K is the closed convex cone K* = {u* | (u,u*) <0 Vu € K}.
The upper adjoint of a sublinear mapping S : X = U is the sublinear mapping S** :
U* = X*, defined by

S (u") ={z" | (z", —u") € (gph S)"}.
The lower adjoint of S is defined by
S* (u) ={z" [ (=2",u") € (gph 5)"}.
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If S is a linear single-valued mapping, then both S** and S*~ reduce to the usual adjoint
linear mapping S*. Since K** = cl K, for any convex cone K, it follows that (S**)*~ =
(S*7)** = cl S. The inverse formulas (S71)** = (S*7)7L, and (S~1)*~ = (§*7)~! are also
valid. The following generalizes the formula (7S)* = S*oT* which holds when S and T
are linear. For set-valued mappings S and 7', S C T means that S(z) C T'(z) for all x.

Lemma 2.3 ([35, Theorem 39.8]). Let S: X =3 U and T : U 3V be sublinear. Then
(TeS)" D §*T™,

where * stands for either x+ or x—. Ifrirge SNridomT # 0, then equality holds. If S and
T are closed, and rirge T* Nridom S* # (), then ToS is closed, and (T=S)* = cl(S*T™).

One way to prove this is to use Lemma 2.1 and the rules for computing polar cones [37,
Exercise 11.31]. Applying Lemma 2.3 to more special compositions, such as those in
Corollary 2.2, one can derive expressions for adjoints of sums and other combinations of
sublinear mappings. The following generalizes the fact that rge S* = S~1(0)%, when S is
linear.

Lemma 2.4. For any sublinear mapping S : X = U,

(dom S)" = §*7(0) = -5 (0),
(rge S)* = (5*7)7(0) = —(5*")71(0),
(c18)(0) = (dom S*)* = —(dom S**)*,
(c19) 1(0) = (rge S*")* = —(rge S*)*.

Proof. By definition

(dom S)* = (Px(gph S))* = Py '[(gph S)"]
= {z" | (2%,0) € (gph S)"} = S**(0) = =" (0).

The second formula follows by applying the first to S~', and using the facts (S™1)*" =
(S*7)7! and (S71)*~ = (§*F)~!'. The last two formulas follow by applying the first two
to S**, and using the facts that (S*7)* = (S*7)*" = clS, dom S*t = —dom S* and
rge S*t = —rge S*. O

3. Recession mappings

Let C be a nonempty convex set. The recession cone of C is defined by [35, Section 8]

rcC={y |v+1y€C, Yz e, VT>O}=ﬂna(C—x).

zeC a>0

As an intersection of convex cones [),.,®(C — ), rcC is a convex cone, closed if C' is
closed. Also, if C' is a cone then rcC' = C. If C is closed, we have by [35, Corollary 8.3.2]

rcC:ﬂaC’—

a>0
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where z € C is arbitrary. Since the sets a(C — ) are monotonically decreasing as o goes
to zero, we see that the recession cone of a closed convex set does not depend on the form
of C on bounded sets. The recession cone describes a global behavior of a convex set.

Let S : X = U be graph-convex. The recession mapping of S is the sublinear mapping
RS : X =3 U, whose graph is the recession cone of the graph of S:

gph RS =rcgph S.

The mapping RS is closed whenever S is. We always have RS~! = (RS)™!, and if S is
sublinear (e.g. S or S~! is linear), then RS = S. The upper adjoint of RS will be denoted
by R*S.

Chain rules for recession mappings are obtained by combining Lemma 2.1 with rules
for computing recession cones. Since the conditions in the recession cone formulas also
imply the preservation of closedness, we obtain closedness criteria for compositions as
byproducts.

Lemma 3.1.

(i)  ([35, Theorem 9.1]) Let C C X be closed and convez, and let A: X — U be linear.
Then rc A(C) D A(rcC), and if rcC N A7H(0) is a subspace, then A(C) is closed,
and the inclusion holds as an equality.

(ii)  ([35, Corollary 8.3.3]) Let Cy and Cy are closed and convex sets whose intersection
1s nonempty. Then Cy N Cy is closed, and

I'C(Cl N CQ) =TIC Cl nrc 02.

The following lemma will be used to convert the chain rule into an adjoint form.

Lemma 3.2. Let K; and Ky be convex cones. Then
K NriKy,#0 <= K;{N-K, is a subspace.

Proof. By [35, Theorem 6.5, riK; NriKy #0 < 0 €1iK; —1i Ky & 0 € 1i(K; — Ko»).
Since K7 — K, is a cone, this means that K; — K5 is a subspace, which is equivalent to
(K7 — K»)* = Kf N —K3 being a subspace. O

Theorem 3.3. Let S: X =2 U andT : U =V be closed and convez, such that rge S N
domT # (). Then

R(TsS) D RTsRS,

and if RS(0) N (RT) *(0) is a subspace, then ToS is closed, and the inclusion holds as an
equality, with

R*(T6S) = cl(R*SeR*T).

Proof. By Lemma 2.1, gph(7=S) = Px«y(C), where C = (gph S x V)N (X x gphT).
By Lemma 3.1(i),

gph R(TS) = rcgph(T=S) D Pxxy(rcC)
= Pxxv|(rcgph S x V)N (X x rcgphT) = gph(RT-RS),
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with equality if rcC' N Pyl (0) is a subspace, in which case gph(7T»S) is closed. By
Lemma 3.1(ii),
rcC N Pyl (0) = (rcgph S x V) N (X x regph T) N ({0} x U x {0})
= {0} x (RS(0) N (RT)~(0)) x {0},

which is a subspace if and only if RS(0) N (RT)~"(0) is a subspace.

The closedness of S and T implies that of RS and RT', which in turn implies the closedness
of RS(0) and (RT)~'(0). Thus, by Lemma 3.2, RS(0) N (RT)~'(0) is a subspace if
and only if ri((RT) *(0))* Nri(—RS(0))* # (0, which by Lemma 2.4 may be written as
rirge R*T'Nridom R*S # (). The expression for R*(TS) now follows from Lemma 2.3. [

Applying Theorem 3.3 to the special compositions used to construct the mappings in
Corollary 2.2, we obtain the following.

Corollary 3.4.
(i) Let A: X — U be linear, and let T : U =2 V be closed and convex, such that
rge ANdomT # (). Then ToA is closed, and

R(T-A) = RT-A
R*(T-A) = cl(A™R'T).
(ii) Let S: X =3 U be closed and convex, and let B : U — V be linear. Then
R(B-S) D B<RS,
and if RS(0) N B~(0) is a subspace, then BoS is closed, and the inclusion holds as
an equality, with
R*(BoS) = R*S-B".
(iii) Let S1,Sy: X = U be closed and convex, such that dom Sy Ndom Sy # (). Then
R(S1 + S2) D RS1 + RS,,

and if RS1(0) N —RS5(0) is a subspace, then Sy + Ss is closed, and the inclusion
holds as an equality, with

R* (Sl =+ SQ) = CI(R*Sl + R*SQ)
(iv) Let DCU and T :U 3V be closed and convez, such that D NdomT # (. Then
rcT(D) D RT (rc D).

Ifre DN (RT)'(0) is a subspace, then T(D) is closed, and the inclusion holds as
an equality.

Proof. In (i), we choose S = A, so that RS(0) = A(0) = 0, and RS(0) N (RT)~1(0) is
trivially a subspace. In (ii), the closure operation in the adjoint relation is superfluous,
since dom B = U implies that R*SoB* is always closed by Lemma 2.3. To obtain (iii),
define A, T and B as in the proof of Corollary 2.2(iii), and apply (i) to A and 7', and
then (i) to T-A and B. In this case, R(T-A)(0) = RS;(0) x RS5(0), and B 1(0) =
{(u1,u2) | ug = —uy }, so that the condition in (ii) becomes RS1(0) N —RS3(0). Part (iv)
follows by defining S(z) = D. Then RS(z) = rc D, and R(T-S)(z) = r¢T(D), for all z.
Also, a constant mapping is closed if and only if its value is closed. O
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Note that, if S is linear in (iv), we recover Lemma 3.1(i), and if S is the inverse of a linear
mapping, we obtain the closedness criterion in [35, Theorem 6.7], and the recession cone
formula in [35, Corollary 8.3.4].

Expressions in (i) and (ii) in the following corollary may be convenient in checking the
subspace condition in Theorem 3.3.

Corollary 3.5.
Let S : X = U be closed and convex, and let x € dom S and u € rge S be arbitrary. Then

(i) RS(0) =rcS(x),

(ii) (RS)7(0) =rc S (u),

(iii) rge RS C rcrgeS, with equality if rc S~ (u) is a subspace, in which case rge S is
closed,

(iv) dom RS C rcdom S, with equality if rc S(z) is a subspace, in which case dom S is
closed.

Proof. Part (i) follows from Corollary 3.4(iv) by choosing 7= S and D = {z}, and (iii)
follows by choosing D = U. Since RS~ = (RS) ™!, parts (ii) and (iv) follow by applying
(i) and (iii) to S~ O

4. Graphical derivatives

Let C' be a nonempty convex set, and let x € C. The tangent cone Te(x) of C at x € C
is the closure of the positive hull

pos(C —z) = U a(C —1x)

a>0

of C' — z [37]. Thus, T¢(x) is a closed convex cone. If C' is a subspace, then Te(z) = C
for all z € C. Since the sets a(C' — z) are monotonically increasing with «, we see that
Tc(x) does not depend on the form of C outside any neighborhood of z. The tangent
cone describes a local behavior of C at x.

Let S : X = U be convex, and let (z,u) € gphS. The graphical derivative [37] (or the
contingent derivative [1]) of S at (x,u) is the sublinear mapping DS(z|u) : X =% U,
whose graph is the tangent cone to gph S at (z, u):

gph DS(zu) = Tgpn s(z, u).

It is clear that DS~'(ulz) = DS(z|u)~!, and that if gph S is a subspace (e.g. S or S™!
is linear), then DS(xz|u) = S for all (x,u) € gphS. The upper adjoint of DS(x|u) is
denoted by D*S(z|u), and it is called the coderivative of S at (x,u) [26, 27, 37].

We will use the same strategy as in the previous section. The following well known rules
for tangent cones correspond to Lemma 3.1. They can be derived for example from the
formulas for subdifferentials and polar cones in [35].

Lemma 4.1.
(i) Let C C X be convez, and let A: X — U be linear. Then for any u € A(C)

Ta(cy(u) = cl A(Te(2)),
where x € C N A~ (u) is arbitrary.
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(ii)) Let Cy and Cy be convezx, and let x € C; N Cy. Then

TC1ﬂCz (‘/'E) C TCl (‘/'E) ﬂ TC2 (‘,L.)’

and if 1iCy N1iCy # (O, then equality holds.

The following lemma will be used to obtain the adjoint form of the chain rule.

Lemma 4.2. Let C,Cy C X be convex, and let x € Cy N Cy be arbitrary. Then
riCiNriCy #0 <  riTe, (z) NriTe,(z) # 0.

Proof. We haveriCiNriCsy # 0 < 0 € 1i(C1—Cs) < “Te, ¢, (0) is a subspace”. Defining
C =C; x Cy and A(x1,29) = x1 — 22 in Lemma 4.1(i), we have T¢, _¢,(0) = cl(T¢, (z) —
Te,(x)). Thus, riCy NriCy # O if and only if cl(T¢, (z) — Te, (x)) = (T, (2)* N =T¢, (2)*)*
is a subspace, which by Lemma 3.2 holds if and only if ri7¢, (z) Nri7g, (z) # 0. O

Theorem 4.3. Let S : X 33U and T : U =V be convez, and let (x,v) € gph(ToS).
Then

D(T6S)(xz|v) C (DT (ulv)eDS(zu)),
D*(TeS)(x|v) D D*S(z|u)eD*T(ulv),
where v € S(x) NT~(v) is arbitrary. If rirge SNridom T # 0, then equalities hold.

Proof. By Lemma 2.1, gph(7TS) = Px«y(C), where C = (gphS x V) N (X x gphT).
Thus, by Lemma 4.1(i),

gph D(TS)(z|v) = T((z,v)| gph T=S) = cl PxxvTc(z, u,v),

where (z,u,v) € C N Pxl(z,v) is arbitrary, that is, u € S(z) N T~!(v) is arbitrary. By
Lemma 4.1(ii),

To(z,u,v) C T((z,u,v)|gph S x V)NT((x,u,v)|X x gphT)
= (gph DS(z|u) x V)N (X x gph DT (u|v)),

with equality under the condition ri(gph S xV)Nri(X xgph T") # @, which by [35, Theorem
6.8], is equivalent to rirge S Nridom 7 # (). Combining,

gph D(TS)(xzv) C cl Pxyxy(gph DS(z|u) x V)N (X x gph DT (u|v))
= clgph(DT (u|v)eDS(x|u)),
with equality if rirge S Nridom T # ().
The first formula and Lemma 2.3 imply
D*(TeS)(xzv) D (DT (ulv)eDS(z|u))* D D*S(z|u)eD*T (ulv),

where the first inclusion holds as an equality if rirge S NridomT # (), and then also
11 Trge s (u) Nri Tyom(u) # 0, by Lemma 4.2. Applying Lemma 4.1(i) to rge S = Py(gph S)
and dom T = Py(gphT), we see that this is equivalent to rirge DS(z|u)Nridom DT (u|v)
# (), so that Lemma, 2.3 implies the equality in the second inclusion. O



T. Pennanen / Graph-conver mappings and K -convez functions 245

The following corresponds to Corollary 3.4.

Corollary 4.4.
(i) Let A: X — U be linear, and let T : U = V be conver. Then for any (xz,v) €
gph(T=A),

D(T-A)(z|v) C DT (Ax|v)-A,
D*(ToA)(zv) D A*D*T(A(x)v),

with equalities if rge AN ridom T # (.
(ii)) Let S: X = U be convex, and let B : U — V be linear. Then

D(BoS)(z|v) = cl(BeDS(z|u)),
D*(BoS)(z|v) = D*S(zu)oB*,

where u € S(x) N B~Y(v) is arbitrary.
(iii) Let S1,S2: X =2 U be convex. Then

D(S: + S2)(zlu) C cl(DS1(x|uy) + DSy (xlug)),
D*(S1 + SQ)($|U) D) D*51($|U1) + D*SZ(-T|U2);

where u; € S;(x) are arbitrary such that u; + us = u. If ridom S; Nridom Sy # 0,
then equalities hold.
(iv) Let CC X and S:U =2V be convex. Then for any u € S(C)

Ts(c)(u) C cl DS(z u)(Te(x)),
Ns(c)(u) D =D*S(z1u)~ (=Ne(z)),

where x € C NS~ (u) is arbitrary. If riC Nridom S # 0, then equalities hold.

Proof. Parts (i)—(iii) follow by applying Theorem 4.3 to the special cases of Corollary 2.2.
Part (iv) follows by noting that for any constant mapping S(z) = D, we have DS(z|u) =
Tp(u), and D*S(z|u) * = —Np(u). O

Parts (i), (ii) and (iii) are finite-dimensional versions of Theorem 6, Proposition 7 and
Corollary 10, respectively, of [2, Section 4.2]. Note that, if S is linear in (iv), we recover
Lemma 4.1(i), and if S is the inverse of a linear mapping A, we obtain the familiar formula
Ta-1(py(x) = A (Tp(Ax)), for € A"1(D), where D C U is such that rge ANri D # 0.
Using the fact that

D*S™Hulz) = —D*S(x|u) " o(—1), (4.1)

we could write the normal cone formula in (iv) as Ngc)(u) D D*S !(ulz)(Ne(z)).
Corollary 4.5. Let S: X = U be convex, and let (x,u) € gph S be arbitrary.

i DS(zu)(0) D Ty (u), and dom D*S(x|u) C —Ngip(u), with equality of x €
(z) (z)
ridom S,
(ii) DS(ziu)~'(0) D Ts-1()(x), and rge D*S(xz|u) C Ng-1(y(z), with equality if u €
rirge S,
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(iii) clrge DS(z u) = Tyges(u), and D*S(zu)~1(0) = —Nyges(u),
(iv) cldom DS(z|u) = Tgoms(x), and D*S(z|u)(0) = Ngom s().

Proof. These are special cases of Corollary 4.4(iv). Part (i) follows by choosing C' =
{z}, and noting that the closure is superfluous by Corollary 3.4(iv). Part (ii) follows by
applying (i) to S~', and using (4.1). To get (iii) we choose D = X, and (iv) follows from
(iii) and (4.1). O

5. Relative interiors of graph-convex mappings

In the differential calculus of the previous section, the relative interiors of the domains and
ranges of mappings have an important role. In calculating relative interiors associated
with graph-convex mappings, the following concept turns out to be useful. The relative
interior of a convex mapping S : X = U is the mapping ri.S : X = U with the graph

gphriS =rigph S.

By [35, Theorem 6.2], ri S is convex. It is also clear that ri.S™' = (riS)™!, and if gph S is
affine, then riS = §.

In studying relative interiors of composite mappings we take the approach of the previous
sections.

Lemma 5.1.

(i)  ([35, Theorem 6.6]) Let C C X be convez, and let A : X — U be linear. Then
riA(C) = A(xriC).

(ii)  ([35, Theorem 6.5]) Let Cy and Cy be convez. IfriCiNriCy # 0, then ri(C1NCy) =
ri Cl Nri 02.

Theorem 5.2. Let S: X = U and T : U =V be conver. Ifrirge SNridomT # 0, then
ri(7S) =riTori S.

If in addition, RS(0) N (RT)~(0) is a subspace, then also
cl(TeS) =clTeclS.

Proof. By Lemma 2.1, gph(7TS) = Pxyy(C), where C = (gph S x V)N (X x gphT). So
by Lemma 5.1(i), gphri(7S) = Pxxy(riC). Since the condition rirge S NridomT # ()
is equivalent to ri(gphS x V) Nri(X x gphT) # (), we have by Lemma 5.1(ii) that

gphri(ToS) = Pxyy[(rigph S x V) N (X x rigphT)]

which by Lemma 2.1 equals gph(riTori S). The second assertion follows similarly by using
the closure formulas in Theorems 6.5 and 9.1 of [35]. O

Corollary 5.3.

(i) Let A: X — U be linear, and let T : U =V be convez. If rge ANridomT # 0,
then ri(ToA) = 1riToA, and cl(ToA) = clT-A.

(ii) Let S:X =3 U be convez, and let B : U — V be linear. Then ri(BeoS) = Bori§,
and if RS(0) N B~'(0) is a subspace, then also cl(BoS) = BoclS.
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(iii) Let S1,S2 : X = U be conver. If ridomS; Nridom Sy # (0, then 1i(S; + Ss) =
ri Sy +1iSy. If in addition RS1(0) N —RS2(0) is a subspace, then also cl(Sy + S2) =
clS; + clS,.

(iv) Let C C X and S : X = U be convez. If riC Nridom S # 0, then 1iS(C)
(riS)(riC). If in addition ¢ C N (RS)™'(0) is a subspace, then also c1S(C)
(c1S)(c1C). In particular, dom(riS) = ridom S, and rge(riS) =rirgeS.

(v)  For any graph-convex mapping S,

(115)(z) = riS(z) forx € r?dom S,
0 for x ¢ ridom S,
and for any x € ridom S, (c1S)(z) = ¢l S(z).
(vi) For any graph-conver S : X = U and T : U =V such that rirge S Nridom T # 0,
we have

ridom(7eS) = {z € ridom S |riS(z) NridomT # 0},
rirge(ToS) = {v €rirgeT | riT '(v) NrirgeS #0},

Proof. Parts (i)—(iv) are obvious counterparts of (i)—(iv) in Corollary 2.2. Part (v) is
obtained from (iv) by choosing C' to be a singleton. The last part follows by noting that
dom(7T-S) = S7'(domT), so that by (iv) ridom(7S) = (riS) '(ridomT). The final
form for rirge(7=S) now follows from (v). The second formula follows from the first since
rge(To5) = dom(ToS)™! = dom(S~1oT1). O

If S is linear in (iv), we recover Lemma 5.1(i), and if S is the inverse of a linear mapping,
we obtain the rule in [35, Theorem 6.7]. The expression for ri S in (v) is just [35, Theorem
6.8] stated in terms of a set-valued mapping.

6. K-convex functions

Recall that a function f from X to U defined on a set dom f is said to be K -convez if for
every 1,2y € dom f,

flonmy + apxs) — oy f(21) — 0o f(22) € K,

whenever oy, ay € [0,1], and a; +as = 1. By the definition of polar cone, this implies that
the extended-real-valued functions (u*, f) (z) := (u*, f(x)), with dom (u*, f) = dom f, are
convex for every u* € K*. Since K** = cl K, the latter condition is equivalent to (cl K)-
convexity of f. This provides an important link to the extensive theory of real-valued
convex functions [35]. It allows us to use various facts about real-valued convex functions
to deduce facts about K-convex functions and vice versa.

For any function f from X to U, let K be the collection of all convex cones with respect to
which f is convex. As long as dom f is convex, we have U € Ky, so that s is nonempty.
By definition, K;, K, € Ky implies K1 N Ky € K¢, and K; € Ky and Ky, D K; imply
K, € Ky. Thus, a small cone corresponds to a strong property. The following lemma
characterizes the smallest closed member of KCy.
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Lemma 6.1. Let f be a function from X to U be such that dom f is convex. Then
K ={u" e U" | (u", f) is conver},

is the polar of the smallest closed convex cone Ky in Ky.

Proof. Denoting K} = {u* | (u*, f) is convex }, we have

Ky ={u"| (u", f) (0121 + 1) < oo (U™, f) (1) + 0 (u”, f) (22),
Vo; € dom f, o; € [0,1]: oy + ap = 1}
={u"| (u*, flagz1 + asxs) — a1 f(z1) — aaf(z2)) <0,
Vr; € dom f, o; € [0,1] : oy + ap = 1}

Thus, K; is a closed convex cone, and it is the largest cone whose polar is in Kf. Since, in
terms of inclusion, the polarity operation is order reversing, (K}’)* has to be the smallest
closed cone in Ky. O

We say that a function f is K-closed if Sy is closed, or equivalently, if epiy f is closed.
This property of K-convex functions has been studied e.g. in [33, 42]. Just as in the
real-valued case, it is easily shown that K-closedness of f implies

(i) All the nonempty sets of the form {z | f(z) — u € K} are closed,
(ii) For any zj 5, * € dom f, we have f(x) —lim f(x;) € K, whenever the limit exists.

It is also easily verified that if K is pointed, as in the real-valued case K = R_, the
converse implications hold. For a real-valued function, R_-closedness is equivalent to
lower-semicontinuity, and R, -closedness is equivalent to upper-semicontinuity. For any f,
{0}-continuity is equivalent to continuity relative to dom f, and U-continuity is equivalent
to closedness of dom f. Note that since the closedness of Sy x implies the closedness of
its values Sy k(z) = f(z) — K, K-closedness of f implies the closedness of K.

Lemma 6.2. If K is closed and (u*, f) is lower-semicontinuous for every u* € K* then
f 1s K-closed.

Proof. Assume, for a contradiction, that there is a sequence {(z;,u;)} C epig f such
that (z;,u;) — (z,u) € epig f. Then, since K is closed, there is a u* € K* such that
(u*, f) (x) > (u*,u). Since (u*, f) (z;) < {(u*,u;), and (x;, (u*,u;)) — (x,{u*, u)), the
function (u*, f) cannot be lower-semicontinuous. O

The converse of Lemma 6.2 does not hold in general as can be seen by taking u* = 0,
and f(x) = 1/z if x > 0 and +oo otherwise. Then f is R -closed, but (u*, f) = 0 for
x > 0 and 0 otherwise, so that (u*, f) is not lower-semicontinuous. A sufficient condition
for the closedness of (u*, f) will be given in Corollary 7.4(ii).

Other kinds of “semicontinuity” properties, which reduce to the familiar one in the case
of extended-real-valued functions, have been studied for example in [42, 6]. However, the
geometric nature of K-closedness is often more useful in applications. Since K-closedness
is equivalent to the graph-closedness of the associated K-profile mapping, we are able
to use the general closedness criteria of Section 3 to obtain criteria for K-closedness of
composite functions. Just like the recession properties of set-valued mappings were used
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to guarantee the closedness of their compositions, the closedness of compositions of K-
convex functions will depend on the recession properties of the functions involved.

Let f be a K-convex function from X to U. The K-recession mapping Rxf : X = U of
f is defined as Ri f = RSy k, or directly by

gph Ry f = rcepig f.
In other words, u € Ry f(z) means that

(' + az,u' + au) € epig f, V(z',u') € epig f, Ya >0
& f(@'+ar)—u —-aue K, V(' u')€epigf, Va >0
& f@'+az)— f(@')—aue K, Vi'edomf, Va > 0.
The set
ex f = (Rief) (0) = {z | f(& +ax) — f(&') €K, Va' € dom f, Ya > 0)

will be called the K-recession cone of f. It gives the set of directions in which f is
nonincreasing with respect to the order induced by K.! For an extended-real-valued f,
the R_-recession mapping is the epigraph of the recession function of f, and the R_-
recession cone is the ordinary recession cone of f [35, Section 8]. Note that, if f is
K-closed, then by [35, Theorem 8.3], u € Ri f(z) means that

f(@ +az)— f(z')—aue K, Va>0,
where 2’ € dom f is arbitrary. Similarly, for a K-closed f

e f={x | f('+az)— f(a') e K, Va>0}.
The K-range of f is the set

rgeg f =rge Sy = Pylepig f)= |J fl@)-K=rgef-K
r€dom f

Unlike the ordinary range rge f, the K-range of a K-convex function is always convex.
Corollary 3.5 translates to the following.

Proposition 6.3. Let f be a K-convex and K-closed function from X to U, and define

L(u) = Sﬁ}((u) ={z | f(z) —ue K}. Then

(i) Rxf(0)=-K,

(ii) rcL(u) =rck f, for any u € rgeg f

(iii) rge Rif C rcrgey f, with equality if rci f is a subspace, in which case rge f is
closed,

(iv) dom Ry f C rcdom f, with equality if K is a subspace, in which case dom f is closed.

'We think of K as a generalization of R_, so that u; < us € u; —ug € K.
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Part (ii) generalizes the recession cone formula for level sets in [35, Theorem 8.7]. Part

(iii) will be useful in guaranteeing the existence of solutions in extremum problems.

As usual, f* stands for the convex conjugate of an extended-real-valued convex function f:
fr(@*) = sup{(z, ") — f(z)}.

The upper adjoint of Rg f will be denoted by R}, f.

Proposition 6.4. Let f be a K-convex and K -closed function from X to U. Then R} f

is the closure of the sublinear mapping H : U* = X* given by

o Jdom (u*, )" foru* e K*,
Hw') = {(b for u* ¢ K*,

and the (cl K)-recession cone of f may be expressed as

rcax f = m ICr_ <U*af)'

u*eK*
Proof. By [35, Corollary 14.2.1],
gph Ry f = {(u",2%) | (27, —u*) € (gph Rk f)" }
= {(u",2%) | (2%, —u") € (rcepiy f)*} = el {(u*,2") | Oepiy (2", —u") < 00},
where the support function o, ; may be expressed as

Tepiye (27, —u*) = sup {{z", z) — (u*,u) | f(x) —u € K}

= sup{(z”, 2) — (u', f(2))} + sup (u', u) =

(u*, f)* (z*) for u* € K*,
~+o00 for u* ¢ K*.
This proves the first formula.
By the definition of polar cone,
reax f ={y | f(e +ay) - f(2) € cIK, Va >0, Va € dom f}
—{y | (u", f) (z + ay) < (u", ) (2), Vu' € K*, Yo > 0, Va € dom f}

={y |yerr_(u', f), W e K} = [ rea_(u", f).

u*eK*
]
Since dom (u*, f) = dom f, the domain of (u*, f)* is nonempty for any u* € K* [35,
Theorem 12.2], so that dom R} f = K*. Hence, by Corollary 5.3(v)
Ry f(u*) = cldom (u*, f)* Vu* € ri K*.

For extended-real-valued f, this gives the following one-to-one correspondence between
the recession mapping of f and the closure of dom f*:

cldom f* = Ry f(1),
gph Ry f =clpos{(1,z%) | z* € dom f*}.
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Note that, by [35, Theorem 13.3], the recession function of f is the support function of
dom f* (or cldom f*), so that the above relation can be used to translate facts about the
recession mapping into facts about the recession function. Since (Rx f)~1(0) = (rge R f)*
by Lemma 2.4, we obtain in particular

(rcg_ f)* = (Rg_f)"'(0)* = clrge R}, f = clposdom f*,
which agrees with [35, Theorem 14.2].

The special form of K-profile mappings has some interesting consequences also in graphical
differentiation. Once the X-component in the argument of the graphical derivative of a K-
profile mapping has been fixed, a natural choice for the U-component is the corresponding
value of f. The K-Jacobian Dk f(x) : X =3 U of f at x is defined by Dy f(z) =
DSk (x1 f(z)), or directly by

gph D f(x) = Tepiy 1 (2, f(2))-

If f is extended-real-valued, then Dg_ f(x) is the epigraph of the closure of the directional
derivative function of f at x. The upper adjoint of Dy f(x) will be denoted by D3 f(x).

Proposition 6.5. Let f be a K-convex function from X to U, and let x € dom f. Then
D3 f(x) is given by

Dicf (z)(u") = {8<u*’f> (z) ifu" € K",

0 if ur ¢ K*.
Proof. Because (gph DKf(x))* = (Tepi, £(z, f(2)))*

) =
Dy f(z ={z *) € Nepi 5 (2, f(2)) }
={:L‘ |(x'—x,x)+(f()—u,u)go‘v’(x',u')Eepin}
={z* | {2’ —z,2") + (f(z) — f(') + v, u*) <O0Vz' €edom f, v € K}.

Hence, for v* ¢ K*, D5 f(z)(u*) = 0, and for u* € K*,
Dy f(x)(u") = {z" | (", f(z')) = (u, f(2)) + (2", 2" — z) Va' € dom [} =D (u”, ) (x).
U

NepiK f(xaf(x))a we have

This is a convex version of the scalarization formula [27, Proposition 2.11] for locally
Lipschitz functions. In the above proposition, Lipschitz continuity is replaced by K-
convexity. If f is differentiable at z, so is (u*, f), and D3 f(z) reduces to the adjoint of
the classical Jacobian on K*:

{Vf(2) ()} ifu e K7,

Dicf (@)(u) = {@ g K

Proposition 6.5 gives the following one-to-one correspondence between Dj; f(x) and the
subdifferential of an extended-real-valued convex function:

of(x) = Dg_f(z)(1),
gph Dg_f(z) = clpos{(1,z*) | z* € Of(z) }.
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Through this, facts about K-Jacobians can be translated into facts about subdifferentials
of extended-real-valued convex functions.

The following is obtained from Corollary 4.5.

Proposition 6.6. Let f : X — U be K-conver, and L(u) = S;}{(u) = {z|f(z) —

€ K}. Then for any x € dom f

(i)  Dgf(z)(0) D =K, and dom D}, f(x) C K*, with equality if v € ridom f,

(i)  Dxf(z)7(0) D Tp(sey (), and rge Dif(x) C Niy) (), with equality if f(z) €
rirgey f,

(i) clrge Dicf (2) = Togo 1(/ (@), and Digf()(0) = —Nogo /(/ (@)),

(iv) cldom Dg f(z) = Taom r(z), and Di; f(x)(0) = Ngom f().

By Proposition 6.5, (i) may be expressed as 0 (u*, f) (z) # 0 for any v* € K* and
x € ridom f. Part (ii) gives an expression for the normal cone of a “level set”, and
it generalizes the corresponding result [35, Theorem 23.7] for extended-real-valued func-
tions. By Corollary 3.5(i), part (iv) implies that rc D} f(z)(u*) = Ngoms(x) for any
u* € dom D} f(z ), so that in particular, D} f(z)(u*) = 0 (u*, f) (z) is nonempty and
bounded for any v* € K*, if and only if z € intdom f [35, Theorem 8.4]. These facts
agree with [35, Theorem 23.4].

Combining (v) and (iv) of Corollary 5.3, we obtain the following.
Proposition 6.7. Let f be a K-conver function f. Then

f(z) —riK ifx €ridom f,

0 otherwise,

(ri Spi)(z) = {
and for x € ridom f, (cl Sy k)(z) = f(xz) — cl K. Hence,

rirger:U{f(a:)—riK | z € ridom f }.

7. Convex composite functions

In this section f will be a K-convex function from X to U, and g will be an L-convex
function (L is a convex cone) from U to V. The composition of f and g is defined by

domgof ={z € dom f | f(z) € domg},
(9of)(2) = 9(f(z)), Vz e domgof.

A classical criterion for L-convexity of the composition gof is that g is nonincreasing in
the directions of K, in the sense that for any u € dom g and v € K, we have u+v € dom g
and

g9(u+v) —g(u) € L.

In our notation this can be expressed compactly as K C rcy, g. Although often sufficient,
this condition is far from being necessary, and it precludes some interesting applications
we have in mind. As an example,let X =U =R, K =L =R _, f(z) = €%, and g(u) = u>.
Then K ¢ rcy, g = {0}, but still (gof)(x) = €?? is convex.
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The above condition ignores the fact that the behavior of g outside the range
gef= |J f@)
z€dom f
of f has no effect on the composition. A more general condition is the following
uy € domg, ug €rgef, us—u € K = wuy €domyg, g(us) —g(u1) € L. (C)

Note that this is implied in particular by K C rcy, ¢ which can be written as

u; €domg, up —us € K = wuy € domg, g(us) — g(uq) € L.
For an extended-real-valued g, (C) can be stated more simply as

upergef, us—u € K = g(ug) < g(w),
or as
gk (u) =g(u) Vu € rge f,

where g (u) = inf,ex g(u —v). This condition says that g can be replaced by gx without
effecting the composition. Since necessarily, K C rcg_ gk, we see that the composition
gief is always convex. The following lemma shows that condition (C) works for vector-
valued functions as well.

Lemma 7.1. Let f be a K-convex function from X to U, and g be an L-convex function
from U to V. If (C) holds, then

Sgon,L = Sg¢,L°Sh,K
and thus, goh is L-conver.

Proof. We have

dom Syep, = {z €dom f | f(x) € domg}
C{zxedomf | f(z) €domg+ K}
={zedomf | (f(z) — K)Ndomyg # 0} = dom(S, S x).

Assume z € dom(Sy oSy k), i.e. there exists an u € K, such that f(z) —u € domg.
Choosing u; = f(x) — u and us = f(z) in (C), we see that f(z) € domg, so

dom Syoy,, = dom(Sy oS k).
For any x € dom Syoy, 1,
(SgroSrx) (@) = Sg.1(Spx(@))
=J{9(f(@) —w) = L |u€ K, f(x)—u € domg}
=J{o(f(z) —u) = 9(f(2)) |u€ K, f(z) —u € domg} +g(f(z)) - L,

where the first term contains zero, so that (Sy oSr,k)(z) D g(f(x)) — L = Sgos,r(x). On
the other hand, (C) implies that the first term is contained in —L, so that

(Sg,Lo51,,) (@) € =L+ g(f(2)) = L = g(f(x)) = L = Sgoy,p(2)-
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The following corresponds to Corollary 2.2.

Corollary 7.2.

(i) IfA: X — U is linear and g is an L-convez function from U to V, then goA is
L-convez.

(ii) If f is a K-convex function from X to U, and B : U — V is linear, then Bof is
B(K)-convex.

(iii) If f1 and fo are functions from X to U, K;i-convex and Ko-conver respectively, then
fi+ fa2 is (K1 + K3)-convex.

(iv) Let f be a K-convex function from X to U, and let D be a convex subset of U. If
(D+ K)N (rgef) C D, then f~Y(D) is conver. In particular, f~'(D) is convez
whenever K C rc D.

Proof. Since A is affine, and since we always have 0 € rcy, g, the condition K C rcp g
holds trivially in (i). In (ii), choose g = B and L = B(K). Then

rcg={u | B(a+ au) — B(a) € B(K),Va>0,Yae U} ={u | B(u) € B(K)} DK,

so that Bef is B(K)-convex. Part (iii) follows from (i) and (ii) by writing fi+ fo = BefoA,
where Az = (z,z), f(z1,72) = (f1(71), f2(z2)), and B(uy, us) = u; + ug. The set f~1(D)
in part (iv) may be written as dom gof, where g = dp. Since g = 0 on D, the condition
(C) may be written as

ur €D, ug € (K+uy)Nrgef = wug €D,

or (K+D)Nnrgef C D. So gof is convex which implies the convexity of domgef =
D). O
The following is obtained by combining Lemma 7.1 and Theorem 3.3.

Theorem 7.3. Let f be a K-convexr function from X to U, and let g be an L-convex
function from U to V', such that dom gof # () and (C) holds. If f is K-closed, and g is
L-closed, then

Ri(gof) D RrgeRxk f.

If in addition, (—K) Nrcr, g is a subspace, then gof is L-closed, and the inclusion holds
as an equality, with

R (gof) = cl(RihoR}g).

Proof. Since by Lemma 7.1, Sgor,r = Sg,205¢,x, we may apply Theorem 3.3. The special
form of the subspace condition follows from the definition of rcy, ¢ and Proposition 6.3(i).
0

Corollary 7.4.
(i) Let A: X — U be linear, and let g be an L-convez function from U to V', such that
dom goA # (. If g is L-closed, then goA is L-closed, and

RL(goA) = RLgoA,
Rp(geA) = cl(A™Rpg).
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(ii)) Let f be a K-convex and B : U — V be linear. If f is K-closed, then
RB(K)(BOf) D) BORKf.

If in addition, KNB~(0) is a subspace, then Bof is B(K)-closed, and the inclusion
holds as an equality, with

Rpx)(Bef) = Ry fB".

In particular, (u*, f) is closed for any u* € ri K*.
(iii) Let f; be a K;-convexr and K;-closed function from X to U, such that dom f; N
dom fo # 0. Then

Ry, vk, (f1 + f2) D Rk, f1 + R, fo-

If in addition, (—K1) N Ky is a subspace, then f1 + fo is (Kq + Ks)-closed, and the
wncluston holds as an equality, with

R, 11, (f1 + f2) = l(Ry, fi + Ri, f2).

(iv) Let f and g be as in the theorem. Then

reg, gof D (Rif)™'(rer g),

with equality if (—K) Nrcp g is a subspace.
(v)  Let f be a K-convex function from X to U, and let D be a convex subset of U, such
that f~1(D) # 0 and (D + K)Nrge f C D. If f is K-closed, and D is closed, then

rc f1(D) D (Rxf) '(rc D).
If (—K)NrcD is a subspace, then f~1(D) is closed, and equality holds.

Lemma 7.1, Proposition 6.7 and Corollary 5.3 yield the following.

Lemma 7.5. Let f be a K-convex function from X to U, and let D be a convex subset
of U such that (D + K) N (rge f) C D. Then rirge, f NriD # O if and only if there is
an x € ridom f such that h(x) € ri D, in which case

ri f~(D) = {z €ridom f | f(z) €1iD}.

The following gives a chain rule for K-Jacobians.

Theorem 7.6. Let f be a K-convexr function from X to U, and let g be an L-convex
function from U to V', such that (C) holds. Then

Dr(gf)(z) C cl(Dryg(f(z))eD f(x)),
Di(gof)(x) > D f(2)eDrg(f(x)),

with equalities if rirgey f Nridom g # (0 which is equivalent to

dr eridom f:  f(z) € ri(dom g + K).
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Proof. The chain rules are obtained by combining Lemma 7.1 and Theorem 4.3. The
alternative form of the constraint qualification is obtained by applying the previous lemma
to f and dom g. O

In the case K C rcp g, we have dom g + K = dom g so that the constraint qualification
simplifies slightly.

Corollary 7.7.
(i) IfA:X — U is linear, and g is an L-convex function from U to V, then

Dy (goA)(x) C Dpg(Ax)eA,
D1 (goA)(z) D A*Dg(Ax),

with equalities if rge AN ridom g # (.
(ii) If f is a K-convex function from X to U, and B : U — V is a linear, then

DB(K) (Bof) (.’E) = C](BODKf(.T)),
Dpx)(Bof)(x) = Dy f(x)B".
(iii) If f; is a K;-convex function from X to U, then
D+, (f1 + f2)(2) € d(Dk, fi(z) + D, f2(2)),
Dy 1k, (1 + f2)(z) D Dk, fi(z) + Dk, f2(),

with equalities if ridom f; Nridom fy # 0.
(iv) Let f be a K-convez function from X to U, and let g be a convex function from U
to R, such that (C) holds. Then

9(gof)(x) > Dy f(x)(0g(f(2))),
with equality if rirgey f Nridom g # ().
(v) Let f be a K-convex function from X to U, and let D be convex subset of U, such
that f~1(D) # 0 and (D + K)Nrge f C D. Then
Ny-yp)(z) D Dic f(x)(Np(f (2))),
with equality if rirge, f NriD # (.

Part (iv) gives a subdifferential chain rule for extended-real-valued compositions. By
Proposition 6.5, it can be restated completely in terms of subdifferentials as

A(gof) (@) > (J{o (", ) (z) | u" € dg(f(x)) NK"}.

This formula is closely related to [15, Corollary 8.1] which gives the subdifferential in terms
of e-subdifferentials of g and f, for the case K C rcy g. For locally Lipschitz continuous
f, there is a nonconvex inclusion version of this for generalized subgradients [37]. In the
special case where f is differentiable at x, the above formula simplifies to

9(gef)(z) > V()" (9g(f(x)))-

If f = A for alinear A : X — U, we may choose K = {0}, so that condition (C) holds
trivially, and the constraint qualification reduces to rge ANridom g # (). Thus, we obtain
[35, Theorem 23.9] with

9(goA)(x) > A*(9g(A(x)))-
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8. Composite model of convex programming

Let fy and g be extended-real-valued convex functions on X and U, respectively, and let
f be a K-convex function from X to U, such that (C) holds. Consider the problem

minimize fy + gof over dom(fy + gof), (P)

where dom(fo + gof) = {z € dom fyNdom f | f(z) € domg}.

When g = dp, such that (D + K) Nrge, f C D, (P) may be written with more explicit
constraints as

minimize fy(x) subject to f(z) € D.

With f(z) = Az and K = {0}, condition (C) is satisfied for any g, and we obtain the
Fenchel-Rockafellar model [35, Section 31]

minimize fo(x) + g(Ax).

Proposition 8.1.
(i)  Assume that fy and g are closed, f is K-closed, and —K Nrcg g is a subspace.
Then the condition

0 € ri(dom f§ + R} f(domg*)), (Cr)

guarantees that (P) has a solution. Moreover, (C1) holds if and only if there is a
u* € ridom g* such that ridom f& N —ridom (u*, f)* # 0.
(ii)  The condition
0 € 0fo(2) + Di f(2)(99(f(2))), (KKT)

is always sufficient for optimality of T in (P), and if
Jdz € ridom fy Nridom f:  f(z) € ri(dom g + K), (Co)
it 1s also necessary.

Proof. The function fy + gof has a minimizer if and only if its R_-range is closed and
bounded from below. By Proposition 6.3(iii) a sufficient condition for the closedness
is that fy + gof is closed and its recession cone is a subspace. This also implies the
boundedness. By Corollary 7.4(iii) (or [35, Theorem 9.3]) and Theorem 7.3, the conditions
in (i) guarantee that fo + gof is closed. Also, by Lemma 2.4

reg_(fo + gof) = (Re_(fo + 9°f)) 7' (0)
=clrge Ry _(fo + gof) = clpos Ri_(fo + gof)(1),

where the last equality holds since the range space of fy 4+ gof is the real-line. Thus
rcg_(fo+geof) is a subspace if and only if 0 € ri R} (fo+gof)(1), where by Corollary 7.4,
Theorem 7.3 and Proposition 6.4

Ry (fo+gof)(1) = (Rg_fo+ Ry foRr_g)(1)
=Ry fo(1) + Ry f(Rg_g(1)) = dom f§ + R} f(domg*).
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This proves the first part of (i). By the remarks after Proposition 6.4, (rcg_g)* =
clposdom ¢*, so that by Lemma 3.2, —K Nrcg_ g is a subspace if and only if ri K* N
ricl posdom g* # () or equivalently ri K* Nridom g* # (. Since dom Ri f = K*, Corol-
lary 5.3(iv) implies that

ri(dom f§ + R} f(domg*)) = ridom f; + ri R} f(dom g*)
= ridom f§ + (ri R} f)(ridom g*).
The second claim of (i) now follows from Proposition 6.4 and Corollary 5.3(v).

By (iii) (or [35, Theorem 23.8]) and (iv) of Corollary 7.7,

A(fo+ gof)(@) D dfo(x) + Di f(9g()),

which proves the sufficiency. Applying Corollary 5.3(vi) to S = Sy and T' = Syr_, we
obtain

ridom(gef) = {z € ridom f | ri(f(z) — K) Nridomg # 0}
={z €ridom f | f(z) € ri(domg + K) },

so that (Cy) implies that the conditions for equality in both (iii) and (iv) of Corollary 7.7
are satisfied, so that (K KT) becomes necessary for 0 € 9(fo + gof)(Z). O

Condition (K KT) means that there exists a u* such that
0 € dfo(z) + 0 (U, f) (2),
u* € 9g(f(z)).

The vector u* may be interpreted as a Kuhn-Tucker vector for (P). If g is closed, these
conditions can be derived from the conjugate duality framework where #* is a solution
to a maximization problem dual to (P) [36]. The above derivation is based solely on
subdifferential calculus, and the closedness of g is irrelevant.

When g = 0k, the condition @* € 9g(f(Z)) reduces to the familiar complementarity
condition

f(z)e K, u"€K*, (u",f(z)) =0,
and conditions (C;) and (Cy) may be written as
0 € ri(dom f§ + rge Ry f),
Jz € ridom fyNridom f:  f(z) €1 K,

the latter being a generalization of the classical Slater condition. For the Fenchel-
Rockafellar model f(x) = fo(z) + g(Az) with K = {0}, the subspace condition in Propo-
sition 8.1(i) is trivially satisfied, and conditions (C;) and (Cs) become

dz e ridom fo :  A(z) Nridomg # 0,

Ju* € ridomg* :  A*(u*) Nridom f # 0,
which agree with those in [35, Corollary 31.2.1].

The following gives a Karush-Kuhn-Tucker theorem for a fairly general class of variational
inequalities.
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Proposition 8.2. Let f be a K-convez function from X to U, and let g be an extended-
real-valued convez function on U, such that (C) holds. For any single-valued mapping
S : X — X*, consider the variational inequality

(S(x),y —x) > (9of)(x) — (9of)(y) Vy€ X, (VI)

and the inclusion

0 € S(z) + D% f(z)(0g(z)). (P)

Then every solution T of (P) solves (VI), and if rirgeg f Nridomg # (), the converse
holds.

In particular, a sufficient condition for an X to solve the variational inequality
<S($),y—$> 2 0 ‘v’y € C,
where C = {z | f(z) € K}, is the ezistence of a @* such that

0eS(@)+o(a", f)(z),
f(z)e K, u'eK*, (u"f(z)=0.

If there exists an x € ridom f such that f(x) € ri K, this condition is necessary as well.

Proof. By the definition of a subgradient, (VZ) is equivalent to —S(z) € 0(gef)(z), where
by Corollary 7.7(iv), d(gof)(x) D D f(x)(0g(x)), with equality if rirge, f Nridomg #
(). The second variational inequality is (VZ) in the case ¢ = 0. The Karush-Kuhn-
Tucker condition is obtained from (P) by using Proposition 6.5, and the fact that u* €
00k (f(x)) = Ni(f(z)) is equivalent to the given complementarity condition. We have
used the alternative form of the constraint qualification in Theorem 7.6. O

The similarity of the above conditions with the KKT-conditions in optimization suggests
that there is some kind of duality involved with variational inequalities. This is indeed
the case; associated with (P) there is a “dual inclusion” whose solutions are the vectors
u* satisfying the above conditions with some Z [31].

K-convex functions give a natural framework for studying convex “vector minimization”
problems too. In vector minimization it is not so clear what a “solution” should mean.
The most classical concept is the so called Pareto-efficiency. The following is closely
related to proper efficiency as defined by Borwein [5]. We will say that a vector u € D
is K-minimal in D C U, if Tp(u) N K is a subspace. If K is closed, this is equivalent to
ri Np(@) Nri —K* # (), by Lemma 3.2. For other solution concepts and further references
on vector minimization, see Borwein [8] and the references there in.

Lemma 8.3. Let K be closed and let D C U be convex, such that —K C rc D. Then u is
K-minimal in D, if and only if Np(u) Nti—K* # (0. If D is closed, then a K-minimizer
exists if and only if rc D N K s a subspace.

Proof. The recession condition implies (rc D)* C —K*, so that since rc D C Tp(u), we
have Np(a) C —K*. By [35, Corollary 6.5.2], this means that K-minimality of @ can be
expressed as Np(u) Nri—K* # (. When D is closed, so is rc D, so that by Lemma 3.2,
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rc D N K is a subspace if and only if ri(rc D)* Nri—K* # (), where by Corollary 14.2.1,
Theorem 23.4 and Corollary 23.5.1 of [35]

ri(rc D)* =ridom d}, = ridom 06}, = rirge dép = rirge Np.

Thus, rc DN K is a subspace if and only if rirge Np Nri —K* # (). Since rge Np C —K*,
this is equivalent to rge Np Nri —K* # (). O]

We will say that an Z € dom f is a K-minimizer of a function f if f(Z) is K-minimal in
rgey f. The second part of the following proposition generalizes the existence criterion
[35, Theorem 27.1(b)] for minimization of extended-real-valued functions.

Proposition 8.4. Let f be K-convez for a closed K. Then x is K-minimal for f if and
only if T minimizes (u*, f) for some u* € ri K*. If f is K-closed, and rck f is a subspace,
then a K-minimizer exists.

Proof. Since rgeyx f — K = rgey f, we have —K C rcrgey f, so by the above lemma, ¥
is K-minimal if and only if Ny, f(f(Z)) Nri —K* # (), where by Propositions 6.6 and 6.5

Nige 1(f(2)) = =Dy f(z) 1(0) = —{u" |0 € (u", f) (z)}

This proves the first claim. If rck f is a subspace, Proposition 6.3(iii) implies that rge, f
is closed, and rcrge, f = rge Rk f. So by Lemma 8.3, it suffices to show that rge Rx f N K
is a subspace.

Assume u € K Nrge Rk f, i.e. there is an z such that u € K N Ri f(x). Since rcg f =
(R f)~10) = (Rgf) Y(K), this implies that = € rcg f. Since rcx f is a subspace, we
have —z € rck f, or 0 € Ry f(—x). By the sublinearity of R f, u+ 0 € Ry f(x — x),
which by Proposition 6.3(i) means that u € —K. Thus, K Nrge R f C K N —K, which
by Proposition 6.3(i) must hold as an equality, so that K Nrge Rk f is a subspace. O

Using Proposition 8.4 and the calculus rules of Section 6, one could derive conditions and
existence criteria for K-minimality for more structured models of vector minimization.
9. The eigenvalue function on Hermitian matrices

Let H be the real vector space of n x n Hermitian matrices, and define an inner product
on H by

(A,B) =tr(AB), VA,BeH.
Since tr(AB) = ), A;;Byj, it is clear that (4, B) = (B, A), and
(A,CBC™*) = tr[(ACB)C*| = tr[C*(ACB)] = (C*AC, B)

for any C' € C™" and its adjoint C* = C”. Recall that any A € H can be expressed as
A = Udiag(M(A))U*, where A(A) € R™ is the vector of eigenvalues of A in nonincreasing
order, and U is unitary: U*U = UU* = I [17]. The set of unitary matrices will be denoted
by U.

Our aim is to analyze the function A : X — R” in the framework of Sections 6 and 7.
This is based on the following; see [21] and the references there in.



T. Pennanen / Graph-conver mappings and K -convez functions 261
Lemma 9.1 (Fan-Theobald). For any A, H € H,
(A, H) < (MA),MH)),
with equality if and only if U*AU = diag(A(A)), and U*HU = diag(\(H)) for some
Uel.

Define the closed convex cone

k

Zuigo, k=1,...,n—1, zn:uizo},
=1

=1

K:{UER"

whose polar cone is
K'={u" eR" |[u]>--->u}.

The following scalarization formula for A has been observed at least in [11, 23]. The
convex hull of a set C' will be denoted by co C'.

Proposition 9.2. For any u* € K* and A € H,
(', A(A)) = sup {(A, H) | \(H) =},

HeH

where

arglg;{ax{(A,H) | AM(H) =u"} ={Udiag(u")U* |U e U : U*AU = diag(A(A)) }.

Thus, A 1s K-convex and K-closed, and for any u* € K*
Dy AA)(u") = co{U diag(u")U* |U €U : A=U diag(A(A))U"}.

Proof. Let H € H be such that A(H) = u*. Then by Lemma 9.1 equality in (A4, H) <
(M(A),u*) holds if and only if U*AU = diag(A(A)) and U*HU = diag(\(H)) for some
U € U. Solving for H, we obtain the attainment criterion. For any u* € K*, (u*, \) is
convex as a pointwise supremum of linear functions. Since K is closed, Lemmas 6.1 and
6.2 imply the K-convexity and K-closedness, respectively, of A. The formula for D} \(A)
follows from Proposition 6.5 and [35, Corollary 23.5.3]. O

Choosing u; = 1 for + = 1,... ,m and zero otherwise, we see that the sum of m largest
eigenvalues A is a convex function of A [16, 30].

Corollary 9.3. Let u* € K*, and define L(u*) = {H € H | \(H) —u* € K}. Then
co{HeH | \NH)=u"}= L(u").

Indeed, we have the expression (u*,\) = orwe), and the function X is sublinear in the
sense that

MA+B)—AA)—\B)e K VA Be™.

Thus, the K-epigraph of A is a convex cone, so that RxkA = S k.
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Proof. Because A\(A) € K* for any A € H, we have (v* —u*, A(4)) < 0 whenever
v* —u* € K. Thus, for any u* € K*

(u®, A) (A) = sup {(v*, A} (4) [v" — v EK}
=sup{(4,H) | \(H) = *—ute K}
= sup {(A, H) M(H)—u EK}—GL ) (A).

This implies that clco{H € H | A\(H) = u*} = clco L(u*), where the closures are super-
fluous by continuity of A and the boundedness of the sets. Since A is K-convex, the set
L(u*) = S, i (u) is convex. By the sublinearity of the functions oy,

(u';\) (A+ B) — (u™,\) (A) — (u",\) (B) <0, VA, BeH, Yu" € K",
which by closedness of K is equivalent to the given inclusion. O

The above sublinearity property was recognized in [12, Lemma 2.1]. Choosing u} = 1 for
1=1,...,m and zero otherwise, and using the definition of K, we obtain

co{UU* |UeC” . U'U=I}={HeH |\XH)e[0,1]", tr H=m},

which is a complex version of [16, Proposition 2.1].

We will next study the condition (C) in the case f = A. Since diag(u) € H for any u € R”,
we see that rge A = K*. The sets of permutation matrices and doubly stochastic matrices
will be denoted by P and DS, respectively. That is, P € P means that P has exactly
one 1 in each row and each column, and all other entries are 0’s, whereas P € DS means
that P has nonnegative entries and all the row and column sums equal 1.

The simplest example of a nonsmooth K-convex function is given by the following vector-
valued generalization of the max-function. Define the function dec : R* — R", by

dec(u); = the ith largest component of u.
It is easy to check that for any u € R* and v* € K*, (u*,u) < (u*,dec(u)), so that

(u*, dec) (u) = Isjlég (u*, Pu) (9.1)

which is a pointwise supremum of linear functions, and hence convex. Thus, dec is K-
convex by Lemma 6.1. Note that dec may also be viewed as a restriction of A to the
diagonal matrices [24]. Proofs of the following can be found for example in [25].

Lemma 9.4.

(i)  (Birkhoff) DS = coP

(ii) (Hardy-Littlewood-Polya) dec(us) — dec(uy) € K if and only if uy = Puy for some
P eDS.

A function g will be called permutation invariant if g(Pu) = g(u) for all v € dom g and
P € P, i.e.if the value of g is not changed if we reorder its argument vector. The following
is an obvious vector-valued generalization of [25, Proposition C.2].

Lemma 9.5. If g is L-convex and permutation invariant, then it satisfies (C) with f = A.
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Proof. Assume u; € domg, uy € rge f = K*, us—u; € K. It follows from the expression
(9.1) that (u*,dec(u;)) > (u*,u;) for any u* € K*, so that u; — dec(u;) € K. Together
with uy — u; € K this implies us — dec(u;) € K. Since uy € K* implies uy = dec(us),
Lemma 9.4 implies that u, can be written as a convex combination uy = ), o; Pju, for
some P; € P. Thus, by permutation invariance and L-convexity of g

g(U’Q) - g(ul) =g (Z aiPiul) - Za,g(P,ul) e L.

O

The following facts about spectrally defined matrix functions now follow easily. The
horizon (or recession) function f* of a closed convex function f is defined by

epi [ =rcepi f.

Proposition 9.6. Let g be extended-real-valued, convex and permutation invariant. Then

(i)  geoA is conver,
(ii)  The subdifferential of go)\ satisfies

d(geA)(A) D Uco{Udiag(u*)U* |U el :U"AU = diag(A(4)), u* € dg(A(A4))},
with equality if g(u) < oo for some u € int K*.
(iii) If g is closed and (—K)Nrck g is a subspace, then (go) is closed and (geA)® = g™o\.

Proof. Part (i) is obtained by combining Lemmas 7.1, 9.5 and Proposition 9.2, and (ii)
follows from Corollary 7.7(iv) and Proposition 9.2 by noting that the interior of K* is
nonempty.

Since A is K-closed by Proposition 9.2, the conditions in part (iii) imply by Theorem 7.3
that go\ is closed, and

RR_ (go/\) = RR_ goRKA.

Using the definition of the horizon function, and the formula Rx A = S) x in Corollary 9.3,
this can be written as

S(gon)=R. = Sgoo R_OS\K-
Permutation invariance of g implies that of ¢, so that by Lemmas 9.5 and 7.1,
Sgoo R_0S\ k = Sgeorr_-
Thus, Sgoryee,k_ = Sgeeorr_, Which means that (goA)® = g>\. O

Part (i) was obtained in [10] for real-valued functions and in [23] for extended-real-valued
functions. It can be shown that the conclusions of (ii) and (iii) remain valid even without
the qualification conditions; see [23, Theorem 3.1] and [38, Theorem 8.1|, respectively.
This is based on a different approach that makes direct use of the special structure of the



264 T. Pennanen / Graph-convex mappings and K-convez functions

problem. Somewhat similarly, using polyhedral refinements of the basic results in [35],
one can show that the qualification conditions in our main results can be relaxed if the
mappings are polyhedral.

In minimization algorithms, it is often sufficient to find a single subgradient of a function
at a given point [14]. Proposition 9.6(ii) gives the following simple procedure: form a
spectral decomposition A = U diag(A(A))U* of A (There are many efficient algorithms
for doing this [13]). Find a subgradient u* of g at A(A). Then U diag(u*)U* € 0(goA)(A).

In [24], Lewis introduced the concept of a normal decomposition system. This provides a
unified framework which includes the above framework of Hermitian matrices as a special
case. Another example is the setting of m xn complex matrices where A is replaced by the
singular-value function [22], [24, Section 7]. In general, a normal decomposition system
involves a function v which generalizes A\. By [24, Theorem 2.4] v is K-convex, where K
is the polar cone of the range of v. The above analysis generalizes immediately to this
setting, in which the horizon function formula in Corollary 9.6(iii) would seem to be new.

In problems like semidefinite programming and eigenvalue optimization, one is interested
in matrix-valued functions and the behavior of the associated eigenvalues. Except for
[39], semidefinite programming has mainly concentrated on affine matrix functions. We
let P C ‘H denote the convex cone of positive semidefinite Hermitian matrices.

Lemma 9.7. Let g be an extended-real-valued convexr and permutation invariant func-
tion on R™, and let A be a P-convex function from X to H. If g is coordinate-wise
nonincreasing, then the function godoA is convex, and

0(gereA) () > | {0 (H, A) (z) | H € 0(goN)(A(x)) },
with equality if there exists an x € ridom A such that A(z) € ridom(ge]).

Proof. If g is coordinate-wise nonincreasing, we have P C rcg_(geo)), which implies the
convexity of goAo(G. The rest is just an application of the chain rule. O

The above condition for convexity of goXoA generalizes [39, Proposition 3] which ad-
dressed the case where A is differentiable and g is the standard barrier function g(u) =
— > Inu; for R . Note that in computing the matrices H € 9(go)A)(A(x)) in the above
formula, one may use Proposition 9.6(ii).

The P-convex matrix functions have been studied by many authors; for reference see
[25, 18]. In general, A could be a function of a matrix, or it might have been constructed
from such functions. For example, the functions A;(H) = H ! and Ay(H) = —H'/? are P-
convex functions from H to H, with dom A; = dom A, = int P, and rcp A; = rcp Ay = P.
Also, if L € H,, (m x m Hermitian matrices) is positive semidefinite, then the function
A(C) = C*LC from C™*™ to H is P-convex. Any of these functions could be combined
according to Lemma 7.1 or Corollary 7.2 to obtain other P-convex functions. For example,
if C: X — C™" is affine, then

Ai(z) = C(2)"LC(z), As(z) = [C(2)"LC(2)]™",  As(z) = ~[C(z)*LO(2)]'?

are a P-convex functions from X to H. Also, Corollary 7.2(ii) implies that for any P-
convex function A from X to H and a B € C**™, the function

C(z) =B*A(x)B
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is (B*PB)-convex from X to H,,. Note that B*PB is contained in the cone of positive
semidefinite matrices in H,,, and it is equal to it if the rank of B is at least m. Nons-
moothness enters this framework naturally when A(z) = diag[a;(z),... ,a,(x)], with q;
convex and nonsmooth.
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