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ABSTRACT

An efficient and semantically secure public key cryptosystem based on
singular cubic curve is proposed in this paper. It is about two times faster
than the cryptosystem of David at the same security label and more efficient
than the Koyama scheme at high security level. Further, the partially known
plaintext attack and the linearly related plaintext attacks are analyzed and
concluded that those are not possible in the proposed scheme.
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1. INTRODUCTION

The most striking development in the history of cryptography came in
1976 when Diffie and Hellman published ”New Direction in Cryptogra-
phy” [9]. This paper introduced the revolutionary concept of public key
cryptosystem and also provided a new and ingenious method for key ex-
change, the security of which depends on the intractability on the discrete
logarithm problem . In such a system each user secretly obtains a crypto cell
(E, D) and then publishes the encryptor E in a public file. The user keeps
secret the details of his corresponding decryption procedure D. Clearly the
central requirement of such a system is that it be prohibitively difficult to
figure out the decryptor D = E~! from a knowledge of E but D and E are
easy to compute. In 1978, Ravist ,Shamir and Adleman discovered the first
practical public key encryption and signature scheme known as RSA [19].
The security of RSA scheme was based on factoring product of two large
prime numbers, which is a very hard mathematical problem.

The efficiency and security are two important goals for any cryptosystem.
The details about the all kinds of attacks and security notions we refer the
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reader to the paper by Bellare et.al [1]. In 1984, Goldwasser and Micalli [11]
defined a security notion, that an encryption scheme should satisfy, namely
semantic security. This notion means that the ciphertext does not leak any
useful information about the plaintext. The encryption scheme proposed by
T. ElGamal [10] based on the Diffie -Hellman [9] problem was semantically
secure . Its semantic security was related to the Decisional Deffie-Hellmann
problem [9]. However, because of the computational load, this scheme never
became very popular. Some other security notions were non-malleability [8]
and Plaintext-Awareness [2]. Non-malleability means that any attacker can
not modify a ciphertext while keeping any control over the relation between
the resulting plaintext and original one and the Plaintext- Awareness means
that no one can produce a valid ciphertext without knowing the correspond-
ing plaintext.

The speed of the standard RSA cryptosystem was very low and many
attacks [7] on RSA cryptosystem were identified. Hence, to increase the
security and /or efficiency of the standard RSA cryptosystem other variants
of RSA were developed. The standard RSA cryptosystem was not seman-
tically secure but its variants such as [2, 18, 5] were semantically secure
against chosen plaintext attack and chosen ciphertext attack but, not all of
them were more efficient than the ElGamal [10] encryption scheme. It was
David [6] who proposed a new DRSA problem and introduced an efficient
RSA version of ElGamal encryption with some security properties, namely
semantically security against chosen-plaintext attacks. The scheme given by
David was 6 times faster than the ElGamal encryption scheme.

On the other hand, singular cubic curve was first time used by Koyama
for the construction of RSA type public key cryptosystem. Koyama [14]
and Koyama et al [15, 16] have constructed three different PKCs analogue
to RSA based on singular cubic curve. In these schemes, two plaintexts
Mg, My are used to form a point M = (m,, m,) on the singular cubic curve
over Z,, and the ciphertext is a point C' = e X M on the same curve.
Later, Seng et al [21] have shown that all three schemes are equivalent and
become insecure if a linear relation is known between two plaintexts. In
all the schemes proposed by Koyama, the partially known plaintext attack
and linearly related plaintext attack is admissible. The partially known
plaintext and linearly related plaintext attack are possible only when the
ciphertext belongs to the same curve where the plaintext belongs. Also,
Koyama schemes are not semantically secure.

Following the line of Koyama, in this paper, we propose a semantic secure
public key cryptosystem based on singular cubic curve over Z,,. Our scheme
has not only enhanced speed as compare to Koyama and David [6] schemes
but is secured against the partially known plaintext [3] and linearly related
plaintext attack [21] .
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2. SINGULAR CuBic CURVE [12, 20].

In this section we discuss some basic facts about singular cubic curve over
the finite field F}, and the ring Z,, where n is the product of two distinct odd
primes greater then 3.

Consider the congruence equation

y? + azy = 2® + bx’mod p (1)

The set of all solutions (x,y) € F), x F}, to (1) denoted by E,(a,b) is called
singular cubic curve.

2.1 Singular Cubic Curve Over F),

Let F),* be the multiplicative group of F,,. A nonsingular part of singu-
larcubic curve denoted by Cp(a,b) is defined as the set of solutions (z.y) €
F,, x F, to equation (1) excluding a singular point (0,0), but including the
point at infinity, denoted by (). It is well known that the same addition
laws defined by the chord and tangent method in the case of elliptic curve
still holds in the singular cubic curve [20, 17]. For any point P € Cy(a,b).
For the sum P + (), by definition, is equal to P, which is also equal to
O+ P. For P = (x0,y0), we define —P the additive inverse of P as the
point (zg, —yo — axg). The sum of P + (—P) is defined to be (). For
Py = (z1,y1) and Py = (z2,y2) with Py # P the sum P} + P, = (23,y3) is
calculated as follows:

z3 =9 +ay—b—x1—x Y3 = y(r1 —x3) — 1 (2)
where
N = gz;zib’ if ($1, yl) 7& (x27 y2)7
=9\ 322+2bzi— .
W if(z1,91) = (2, y2)-

The existence of such addition law makes Cp(a,b) a finite abelian group.
In fact, the group structure of Cp(a, b) is well known [12, 20]. For any k € F),
the multiplication operation ® is defined as bellow :

E®(x,y) = (z,y) ® (z,y) ® (z,y) © ..... ® (z,y) k times over Cp(a,b)

An isomorphism between Cp(a,b) and F,* is defined in [20, 17] for the
curve (y — ax)(y — Br) = 23 over F,*, where a, 8 € F,*, which is equivalent
to equation (1) with a = —a — fmod p and b = —afmod p. When b =0 we
can put a = 0 and f = —a(#£ 0).

An isomorphism mapping from Cp(a,0) to F,* and inverse of that are
given in the following theorem :

Theorem 2.1. The mapping w : Cp(a,0) — F,* defined by

w:O—1and (z,y) — 1+ % = ;—z is a group isomorphism.

The group isomorphism mapping w=! : F,* — C,(a,0) is defined by
wl: 1—>Qandv—>((va_7f)2,ﬁ)
Hence, with this isomorphism, the order of F},(a, 0) is denoted by #F),(a, 0)
=p-—1
2.2 Singular Cubic Curve Over 7,
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Let n be the product of two large primes p and ¢ (> 3). Let Z, =
(1,2,3,.....,n—1) and Z,* be a multiplicative group of Z,. We consider
similarly the congruence

y? + axy = x° + ba? over Z, where a, b€ Z,. (3)

A nonsingular part of a singular cubic curve over Z,, denoted by C),(a,b),
is defined, as the set of solutions (z,y) € Z, X Z, to equation (3) excluding a
singular points which are either congruent to (0,0)modulop or congruent to
(0,0)modulog, but including a point at infinity (). By Chinese Remainder
Theorem, Cy,(a, b) is isomorphic as a group to Cy(a, b) xCy(a,b). An addition
operation on Cj,(a,b) is defined by chord and tangent method.

Although the addition is not always defined, the probability of such a case
is negligible small for large p and g. Since we are taking pand g very large,
there fore the addition operation on Cy(a,b) can be defined.

By using Theorem 1 and Chinese Remainder Theorem, the following the-
orem holds :

Theorem 2.2 : For (z1,y1) and (x;, y;) satisfying (z;,y;) =i ® (z1,y1) over
En(a7 O)a
we have
1+ %% = (14 %) (mod n)
ie. Zi — (ZLYi(mod n) (4)

3. DRSA PROBLEM.

The details about the DRSA problem one can refer the papers [6, 13, 4].
Certain definitions and results of those papers used for the construction of
a new public key cryptosystem are given below .

Definition 3.1.Computational Dependent -RSA (C-DRSA (n,e¢)).
To determine the value of (k+1)¢ mod n for given k& mod n where k
is randomly chosen element of Z,,* is known as C-DRSA problem.
The success probability of an adversary A is denoted by Succ(A) and
defined by,
Succ(A)= Pr [A(k® mod n) = (k+1)° mod nl|k — Z,*].
The decisional version of this problem defined by Decision Dependent
RSA problem (D-DRSA).

Definition 3.2. The Decisional Dependent - RSA (D-DRSA (n, e)).
Distinguish the two distributions
Rand = (a,v) = (k* mod n,r® mod n)|k,r — Z,7,
DRSA = (a,y) = (k¢ mod n,(k+1)° mod n)|k «— Z,x*.
The advantage of a distinguisher A denoted by Adv(A) and defined by :
Adv(A) = |PrranalA(e,y) = 1] — PrprsalA(a,vy) = 1]|.

Definition 3.3. Extraction Dependent -RSA (E-DRSA).
A problem to determine the value k for given k¢ mod n and (k + 1)¢
mod n is known as Extraction Dependent RSA (E-DRSA) problem.
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It can be easily proved that the extraction of e root is easier to solve
than the computational Dependent RSA problem and Extraction Dependent
RSA problem together.

Theorem 3.1. Breaking the RSA problem is computationally equivalent
to the breaking the C-DRSA and E-DRSA problem together both.

Concerning the Extraction Dependent RSA problem and the theorem 3.1,
one can then state the following theorem :

Theorem 3.2. There exists a reduction form the RSA problem to the
Computational Dependent RSA problem in O(|n|?, e x |e|?) time.

4. PrRoOPOSED PuBLIC KEY CRYPTOSYSTEM.

Now we propose a new D-RSA type scheme over singular cubic curve
E,(a,0) with the massage dependent variable a similar to that of Koama
scheme [14]. The security of the proposed scheme is based on the D-RSA
problem, more precisely on the difficulty of factoring n, which is product
of two large primes p and ¢. Let a plaintext (m,,m,) be an integer pair,
where mg, my € Z,* and m3, # mZ(mod n). We first transform the plaintext
(mg,my) to Z,*, and then encrypt the isomorphic image of (m,, m,) i.e. %%
4.1.Key Generation.

To generate the keys, receiver R chooses two large prime p and ¢ and
computes n = p.q . Let N = lem(p — 1,q — 1). Receiver determines an
integer e less then and relatively prime to N. He then computes an integers
dp and d, such that d, = e *mod (p—1) and d, = e 'mod (¢—1). He made
the keys (e,n) publicly available and keep secret to the keys (dp,dy, p, q).

4.2.Encryption.

To encrypt the message (mg, my) € Z,* x Z,* sender S, first chooses a
random integer k with k 4+ 1 € Z,* and sends the ciphertext (C7,Cs,b) to
the receiver R with the receiver’s public key (e,n). where

1. C1 = k°mod n,
2. Cy=(k+ l)ezzzmod n,

Yy

3 2
m. —m
3. a=—"=2—Ymod n.
lx I‘y

4. b= (a+ k*)mod n
4.3.Decryption.

The receiver R computes the original plaintext by using his/her secrete
after getting the ciphertext (C1,Ca,a) as follows :

1. R first computes k, = Cfpmodp and k, = C’fqmod q. By the pair
(kp, kq) and via Chinese Remainder theorem, R computes the value of k.
2. R then computes a = (b — k?)mod n
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3
3. m = "2mod n = 7%2-mod n. Now by using the isomorphism map-
mg (k+1)

ping defined above s/he then computes the original plaintext (mg,m,) as
follows : , ,
My = ﬁmod n and my = ﬁmod n

5. EFFICIENCY AND SECURITY ANALYSIS.

3
m
moc2 un-
y

der modulo n is computed during the encryption process. Where as, in
our proposed scheme, the triples like (k®mod n, (k + 1)°mod n, k*>mod n)
are computed well in advance. Because of this pre-computation, the en-
cryption process requires only one multiplication and one addition. This
feature makes the encryption process more efficient than the scheme given
by Koyama. Although, our decryption process remains about as efficient as
the scheme given by Koyama [14].Following the analysis given by Koyama,
let, x and y the coordinates of 2 logn-bit plaintext are transformed to a
logn-bit plaintext by isomorphic mapping. This massage of logn bit length
is than encrypted using said encryption process. The obtained ciphertext
is then decrypted using decryption key over Z,* which is the transformed
massage. Next, using the inverse transformation, we get the original 2 logn
bit length massage. If we exclude the transformation than the number of
modulo multiplication is approximately same as the DRSA scheme in de-
cryption process. Hence, the decryption speed of the proposed scheme is
2 times faster than that of D-RSA scheme [6] for a K bit long message if

(lolg(J is even.

5.1. Efficiency. In the scheme given by Koyama, e* power of

5.2. Security Analysis. The semantic security (indistinguishability of en-
cryption) is defined by Goldwasser & Micali [11]. According to them an
attacker is seen as a two-stage ("find and guess”) Turing machine, which
first chooses two messages, during the ”find”-stage. In the second stage,
the ”guess”-stage, she receives a challenge, which is the encryption of one
of the both chosen messages, and has to guess which one is the correspond-
ing plaintext. In other words, if the ciphertext does not leak any useful
information about the corresponding plaintext, then the system is called
semantically secure.

An intuitive argument that proposed cryptosystem is semantically secure
against chosen plaintext attack in the D-DRSA problem is as follows. In
order to determine any information about the plaintext m from the cipher-
text, attacker need to have some information about (k4 1)¢(mod n), where
k is randomly chosen element in Z,*. The only way to ascertain any in-
formation about the value of (k + 1)¢(mod n) is to first compute k (it is
not sufficient to compute some partial information about k; it is necessary
to have complete information about k in order to obtain any information
about (k + 1)¢(mod n), as k is randomly chosen). It is not possible without
knowing the secret key d or solving the DRSA problem.
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Also, in the Koyama scheme, the message dependent variable a gives some
information about the plaintext but, in the proposed scheme we keep it secret
which is known by the authorized receiver only. Without knowing the value
a attacker can neither use the Theorem 2.1 nor the addition operation over
the exact singular cubic curve. Thus following the Theorem 9 of David [6]
we state and prove the semantic security of proposed scheme as below.
Theorem 5.1The scheme based on DRSA problem over singular cubic curve
is semantically secure against chosen plaintext attack relative to the Decision
Dependent RSA problem.

Proof.Let us consider an attacker A(A;, As) who can break the semantic
security of this scheme within a time [ and an advantage in the ”guess”
stage, greater than e.

Now we construct a D-DRSA adversary; B, who is able to break the De-
cisional DRSA problem for the given public key (N, e) with an advantage
greater than €/2 and similar running time. (The advantage of B in dis-
tinguishing the DRSA and Rand Distribution is Adv(B) = Adv(A)/2 and
therefore greater than €/2).

B(a,7):

Run A;(pk)

Get my, m1, s

Randomly Choose b € 0,1

Cy = a,Cy = my.y(mod n)

Run As(s,me, m1, (C1,C2))

Get ¢

If c =0 Return 1

else Return o
Note that my = mib / mzb is isomorphic image of the plaintext pair (mp, mys)

Getting either of one is isomorphically equivalent to the other by the
theorem?2.1. Since semantic security = D-DRSA problem is trivially, so we
have nothing to prove. On the one hand, we have to study the probability
for As to answer ¢ = b when the pair («, ) comes from random distribution.
But in this case, one can see that the pair (C1,C2) € (1€, mps®)|r, s € Z,* is
uniformly distributed in the product space Z,* x Z,* hence independently
of b. Then

PTRand[B(avfy) = 1] = PTRand[C = b] = %

On the other hand; when the pair («a,7) comes from the DRSA distri-
bution, one can remark that (C,Cs) is valid ciphertext of my, following a

uniform distribution among the possible ciphertexts. Then
def

PrprsalB(a,vy) = 1] = Prprsalc = b]|Pry[Aa(s,mg, m1,e(B)) = b] =
1 Adv(A)
2T 73

It is well known that Blichenbacher [3] and Seng et al [21] attacks are
possible when the ciphertexts belong to the same cubic curve, which contains
the corresponding plaintexts. In our proposed scheme, the ciphertext Co

form (Cq,C4,a) is not isomorphic image of any point on the elliptic curve.
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In other words in our scheme, the ciphertexts does not belong to the same
cubic curve which contain corresponding plaintexts. As result, said attacks
are not possible in our scheme.

From the analysis discussed in above paras it is clear that proposed public
key cryptosystem is more efficient than the David’s scheme and the scheme
given by Koyama. Also, the partially known plaintext attacks and the lin-
early related plaintext attacks are not admissible in our scheme.

6. CONCLUSION

The analysis discussed in above paras are evidence of the fact that pro-
posed public key cryptosystem is more efficient than the David’s scheme and
the scheme given by Koyama.
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