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Abstract. In this paper, we investigate the relationship between the squared Weil/Tate pairing

and the plain Weil/Tate pairing. Along these lines, we first show that the squared pairing for

arbitrary chosen point can be transformed into a plain pairing for the trace zero point which has

a special form to compute them more efficiently. This transformation requires only a cost of some

Frobenius actions. Additionally, we show that the squared Weil pairing can be computed more

efficiently for trace zero point and derive an explicit formula for the 4th powered Weil pairing

as an optimized version of the Weil pairing.
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1 Introduction

After Boneh and Franklin [6] proposed an identity-based encryption scheme using the Weil

pairing, many cryptographic schemes based on the Weil or Tate pairing have been introduced.

Although these pairings both provide good functionality for use in cryptosystems, pairing

computations are often the bottleneck to realize cryptographic applications practically. So,

fast implementations of these pairings have become a subject of active research areas in elliptic

curve cryptography.

The computation of the Weil/Tate pairing can be performed using an algorithm first pre-

sented by Miller [14]. Recently proposed improvements [11, 2, 8, 1] are based in some manner

on it. Specifically, they make a use of elimination of irrelevant factors and denominators dur-

ing the computation of Tate pairings on supersingular curves which were originally proposed

as a suitable setting for pairing-based schemes. However, recent works have additionally fo-

cused on optimizing pairing computations of certain ordinary curves such as MNT curves [15,

4, 17, 16, 3]. Although there are a number of advantages in using supersingular curves such

? This work was done while the first author was studying in the University of Maryland, USA.
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as distortion maps, a small number of usable curve or doubt of their long term security has

led one to investigate the use of ordinary curves. Especially, Barreto et al. [4] showed how

to select groups in MNT curves where many optimization techniques proposed for supersin-

gular curves [11, 2] have a counterpart. Independently, the notion of the squared pairing was

introduced by Eisenträger et al. [9]. The objective of this notion is to generalize consecutive

computation of plain pairing and squaring on it by unified approach. The authors show that,

when computing the squared pairing, partial factors can be discarded in each step. Addition-

ally, their algorithm is deterministic and does not depend on a random choice of points for

evaluation of the pairing. However, by reason of security, they only considered a general case

where there is no cancelation of denominators.

Our main contribution in this paper is to connect the squared pairing to the plain one. We

show that for a very small cost, the squared pairing for a randomly chosen point R on E(Fq2d)

can be transformed into the plain pairing for a trace zero point Q which has x-coordinate

over a smaller field Fqd . From a practical point of view, our result seems to show that there is

no real advantage in computing the squared pairing directly. At the same time, our result can

be regarded as showing how to compute the squared pairing in a much more efficient fashion

using several optimization techniques in [4]. Especially, we applied these techniques for the

Tate pairing to the squared Weil pairing using the fact that (1 − pd)th power of the Weil

pairing is the same as the squared one.3 Taking a step forward, we can derive an interesting

explicit formula for the 4th powered Weil pairing by adapting several optimization techniques

to compute the squared Weil pairing. This squared or 4th powered Weil pairing is much faster

than the plain one, so it becomes more meaningful with respect to the claim in [13]: the proper

powered Weil pairing (actually it is the squared Weil pairing) can be computed faster than

the Tate pairing at high security levels. Throughout this paper, our main concern is pairings

defined over ordinary curves with suitable embedding degree such as MNT curves. However,

the principles can of course be easily adapted to the cases of supersingular curves.

The paper is organized as follows. After introducing the squared pairing and Eisenträger

et al.’s algorithm briefly in Section 2, we present the connection between the squared Tate

pairing and the plain pairing in Section 3. In Section 4, we show that a similar property holds

for the squared or 4th powered Weil pairing. Finally, we draw our conclusions in Section 5.

3 Our work had almost been done independently before Koblitz and Menezes’s paper [13] came out in public.

They used the method of properly powering the Weil pairing to drop off some redundant factors, which has

turned out to be just the squared Weil pairing through our work.
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2 Preliminaries

In this section, we give a brief summary of several mathematical backgrounds and definitions

of Tate and squared pairings. Additionally, we review Miller’s algorithm for the Tate pairing

computation and Eisenträger et al.’s algorithm for the squared pairing.

2.1 Elliptic Curves

Let q be a prime or prime power and let Fq denote the finite field with q elements and let p

be a characteristic of Fq. An elliptic curve E defined over Fq can be described as the set of

points (x, y) satisfying the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where ai ∈ Fq. Let x(P ) and y(P ) denote the rational functions mapping P ∈ E to its affine

x- and y-coordinates, respectively. If K is an extension of the field Fq, the set of K-rational

points of E, which we denote by E(K), is the set of points P such that x(P ), y(P ) ∈ K,

together with a special element O, called by point at infinity.

For P,Q ∈ E(K), we can define the sum P + Q according to some simple rule. Explicit

formulas for computing the coordinates of a point P3 = P1 + P2 from the coordinates of P1

and P2 are well known [5]. E(K) is an abelian group under this operation with the identity

element O. It is easy to show that E(Fq) is a subgroup of E(K). The number of points of

E(K) is called its order. The Hasse bound states that #E(Fq) = q + 1− t, where |t| ≤ 2
√
q.

Here t is called the trace of the Frobenius endomorphism stated below. Curves whose trace

t is a multiple of the characteristic p are called supersingular. The order of a point P ∈ E

is the smallest integer r > 0 such that [r]P = O. The set of r-torsion points of E, denoted

E(K)[r], is the set {P ∈ E(K) | [r]P = O}.
Let K = Fqk . Then the q-th power Frobenius endomorphism of E is the mapping

σ : E(Fqk) → E(Fqk), where (x, y) 7→ (xq, yq).

Thus a point P ∈ E(Fqk) is defined over Fqi if and only if σi(P ) = P . Using the Frobenius

map, we can define the trace map

Tr : E(Fqk) → E(Fq) as Tr(R) =
k−1∑
i=0

σi(R),

for any point R ∈ E(Fqk). The characteristic polynomial of the Frobenius map σ is

π(u) = u2 − tu+ q.
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Since π(u) = (u − 1)(u − q) mod r, the eigenvalues are 1 and q. The 1-eigenspace of σ on

E[r] is E(Fq)[r] and the q-eigenspace of σ on E[r] consists of all points R ∈ E[r] satisfying

Tr(R) = O [4, 10]. In fact, it is well known that if r|#E(Fq), there is a basis P,Q for E[r]

such that σ(P ) = P and σ(Q) = [q]Q.

A subgroup G of an elliptic curve E(Fq) is said to have security multiplier k if its order r

divides qk − 1, but does not divide qi − 1 for all 0 < i < k. If E is supersingular, the value of

k is bounded by k ≤ 6. The group E[r] ∼= Zr ×Zr lies in E(Fqk). Let P ∈ E(Fq) be a point of

order r such that 〈P 〉 has security multiplier k. Then E(Fqk) contains a point Q of the same

order r but linearly independent of P .

A divisor on E is a formal sum D =
∑

P∈E(F
qk ) nP (P ) where nP ∈ Z. The set of points

P ∈ E(Fqk) such that nP 6= 0 is called the support of D. The degree of D is the value

deg(D) =
∑

P nP . The zero divisor has all nP = 0. The sum of two divisors D =
∑

P nP (P )

and D′ =
∑

P n
′
P (P ) is the divisor D + D′ =

∑
P (nP + n′P )(P ). Given a nonzero rational

function f : E(Fqk) → Fqk , the divisor of f is the divisor (f) =
∑

P ordP (f)(P ) where

ordP (f) is the multiplicity of f at P . It follows from this definition that (fg) = (f) + (g)

and (f/g) = (f)− (g) for any two nonzero rational functions f and g defined on E; moreover

(f) = 0 if and only if f is a nonzero constant. We say two divisors D and D′ are equivalent,

D′ ∼ D if there exists a function g such that D′ = D+(g). For any function f and any divisor

D =
∑

P nP (P ) of degree zero, we define f(D) =
∏

P f(P )nP .

2.2 Squared Pairings

Let G1, G2 and GT denote finite abelian groups in which the discrete logarithm problem is

hard. By a pairing we shall mean a non-degenerate bilinear map e : G1 × G2 → GT . The

Weil or Tate pairing is one of examples defined on an elliptic curve. Let P,Q ∈ E[r] and

pick two divisors AP and AQ which are equivalent to (P )− (O) and (Q)− (O), respectively,

and such that AP and AQ have disjoint supports. Let fP be the rational function with

divisor (fP ) = r(P ) − r(O) = r · AP . Analogously, let fQ be a function on E whose divisor

(fQ) = r · AQ. Then the Weil pairing ω : E[r]× E[r] → Fqk is defined as

ω(P,Q) :=
fP (AQ)
fQ(AP )

.

The Tate pairing is also defined based on fP (AQ). Let P ∈ E(Fq)[r] and Q ∈ E(Fqk) be

linearly independent points. Then the (reduced) Tate pairing τ(P,Q) ∈ Fqk on E(Fq)[r] ×
E(Fqk) is defined as

τ(P,Q) := fP (AQ)
qk−1

r .
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But it can be easily computed by

τ(P,Q) = fP (Q)
qk−1

r ,

as proven in [4]. It means that the function fP is now evaluated on a point rather than on

a divisor. Furthermore, it makes the Miller’s algorithm deterministic. If E is supersingular,

this definition can be modified via a distorsion map φ : E(Fq) → E(Fqk). It means that the

group G2 can be selected in E(Fq) instead of a non-optimal choice E(Fqk).

The squared Weil pairing is defined by

ψ(P,Q) = (−1)r fP (Q) · fQ(−P )
fP (−Q) · fQ(P )

,

for r-torsion points P, Q on E with neither being the identity and P 6= ±Q. Additionally, the

squared Tate pairing v is defined by

v(P,Q) :=

(
fP (Q)
fP (−Q)

)(qk−1)/r

.

Then it was shown in [9] that ψ(P,Q) = ω(P,Q)2 and v(P,Q) = τ(P,Q)2.

2.3 Miller’s algorithm

An essential part in computing the Weil/Tate pairing is the evaluation of fP . Miller showed

how to compute fP iteratively, using the divisors of the lines drawn by the secant-and-tangent

addition rule [14]. Throughout this paper, we define gU,V : E(Fqk) → Fqk to be the line through

points U, V ∈ E. The shorthand gU stands for gU,−U which is the vertical line passing through

U . If U = (u, v) and Q = (x, y), then gU (Q) = x− u.

It is well known that there exists a rational function fc,P on E with divisor (fc,P ) = c(P )−
([c]P ) − (c − 1)(O), c ∈ Z [9]. Since rP = O, Miller’s algorithm computes fP (Q) = fr,P (Q),

Q 6= O by coupling the above formulas with the double-and-add method to calculate rP .

Theorem 1. Let P be a point on E(Fq) and fc,P be a rational function with divisor (fc,P ) =

c(P )− ([c]P )− (c− 1)(O), c ∈ Z. For all i, j ∈ Z,

fi+j,P (Q) = fi,P (Q) · fj,P (Q) · g[i]P,[j]P (Q)/g[i+j]P (Q).

2.4 Eisenträger et al.’s algorithm

In [9], Eisenträger et al. proposed an algorithm to compute the squared Weil/Tate pairing. At

first, we introduce the algorithm for ψ(P,Q) where P and Q are r-torsion points on E. This
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algorithm is based on Miller’s formula with an addition-subtraction chain for r. For each j in

the chain, form a tuple tj =
[
[j]P, [j]Q,nj , dj

]
such that

nj

dj
=
fj,P (Q) · fj,Q(−P )
fj,P (−Q) · fj,Q(P )

.

The squared pairing needs nr/dr. The recurrence formula is

ni+j

di+j
=
ni

di
· nj

dj
·
g[i]P,[j]P (Q)
g[i]P,[j]P (−Q)

·
g[i+j]P (−Q)
g[i+j]P (Q)

·
g[i]Q,[j]Q(−P )
g[i]Q,[j]Q(P )

·
g[i+j]Q(P )
g[i+j]Q(−P )

, (1)

and begins with t1 = [P,Q, 1, 1]. But there is no need to compute all value in the recurrence

formula. The vertical lines through [i + j]P and [i + j]Q do not appear in the formulae for

ni+j and di+j , because the contributions from Q and −Q (or from P and −P ) are equal.

For the squared Tate pairing computation v(P,Q) with P ∈ E(Fq)[r] and Q ∈ E(Fqk),

above algorithm can be simplified because

nj

dj
=

fj,P (Q)
fj,P (−Q)

.

So the recurrence formula is

ni+j

di+j
=
ni

di
· nj

dj
·
g[i]P,[j]P (Q)
g[i]P,[j]P (−Q)

(2)

and begins with t1 = [P, 1, 1]. Given ti and tj , ti+j or ti−j can be obtained as the case of the

squared Weil pairing without changing Q.

3 Squared Tate pairing

Suppose the security multiplier k to be even, and let d = k/2. As stated above, the objective

of [4] is to generate the group G2 in MNT curves that makes computation of the Tate pairing

more efficient, and so they use the twist of the curve E(Fqd) to generate G2. It allows the

denominator elimination optimization established for certain supersingular curves [2]. But

in our case, we fix G2 as E(Fqk) in advance, and suppose that an arbitrary base points in

G2 is given. Hence we use an alternative way to pick a generator on the fly that makes

the same optimization possible. For any R ∈ E(Fqk), the point Q := R − σd(R) satisfies

σd(Q) = σd(R)−R = −Q. This means x(Q)qd−1 = 1 and y(Q)qd−1 = −1.

Theorem 2. For any R ∈ E(Fqk), let Q = R− σd(R). Then we have τ(P,R)1−qd
= τ(P,Q)

where P ∈ E(Fq). Furthermore, v(P,R) = τ(P,Q).
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Proof. By Galois invariance of [10, Chap.I, Thm.1.7], we have τ(σ(P ), σ(Q)) = τ(P,Q)q.

Since P ∈ E(Fq), τ(P,R)qd
= τ(σd(P ), σd(R)) = τ(P, σd(R)). This implies

τ(P,Q) = τ(P,R− σd(R)) = τ(P,R)τ(P, σd(R))−1 = τ(P,R)τ(P,R)−qd
= τ(P,R)1−qd

.

Since qd ≡ −1 (mod r), 1− qd ≡ 2 (mod r) holds, and so we obtain τ(P,R)2 = τ(P,Q),

which implies v(P,R) = τ(P,Q). ut

Theorem 2 shows that computation of the squared pairing for a random point R ∈ E(Fqk)

can be reduced to evaluate the Tate pairing for the trace zero point Q = R− σd(R).

Lemma 1. For P ∈ E(Fq)[r] and Q ∈ E(Fqk) with x(Q) ∈ Fqd . Let g[a]P (X) be the vertical

line through [a]P . Then g[a]P (Q)qd−1 = 1.

Proof. Since [a]P has coordinate in Fq, g[a]P (X) = x(X) − x([a]P ) ∈ Fq[x]. Because of

x(Q) ∈ Fqd , g[a]P (Q) = x(Q)− x([a]P ) is contained in Fqd . This implies g[a]P (Q)qd−1 = 1. ut

From Lemma 1, the denominators in the Tate pairing evaluation can disappear. This makes

our method for general base points to have competitive efficiency with specific point which

lies in a proper subfield Fqd at the cost of a few Frobenius actions.

4 Squared and 4th Powered Weil pairings

In this section we first show that the observations of the previous section about the relation

between the squared and plain Tate pairings hold in the Weil pairing.

Theorem 3. Let P,R ∈ E[r] be linearly independent and furthermore, P ∈ E(Fq) and R ∈
E(Fqk). Let Q := R− σd(R), then we have

ψ(P,R) = ω(P,Q).

Proof. Since [r]Q = [r](R − σd(R)) = [r]R − σd([r]R) = O by [18], Q ∈ E[r]. Further-

more, it is clear that ω(P,Q) = ω(P,R − σd(R)) = ω(P,R) · ω(P, σd(R))−1. By [14, Def.1],

ω(σ(P ), σ(R)) = ω(P,R)q, and since P ∈ E(Fq), ω(P, σd(R)) = ω(σd(P ), σd(R)) = ω(P,R)qd
.

So ω(P,Q) = ω(P,R)1−qd
= ω(P,R)2 = ψ(P,R) due to the fact 1− qd ≡ 2 (mod r). ut

Theorem 3 shows that computation of the squared Weil pairing for arbitrary random point is

transformed into that of the original Weil pairing for trace zero point. But the squared Weil

pairing can be computed more efficiently for trace zero points as opposed to the original one.
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Assume that P,Q ∈ E[r] be linearly independent and furthermore, P ∈ E(Fq) and Q ∈
E(Fqk). Let S and T be points on E such that the divisor AP := (P + S) − (S) and AQ :=

(Q+ T )− (T ) have disjoint support. Then it is shown in [9] that

ω(P,Q) =
fP ((Q+ T )− (T ))
fQ((P + S)− (S))

=
fP (Q+ T − S)
fP (T − S)

·
fQ(S − T )

fQ(P + S − T )
.

If any 2-torsion point U 6= O is contained in E(Fqd), we can pick T and S such that

T − S = U . Suppose E(Fq) does not contain a 2-torsion point (6= O). It implies t odd, where

#E(Fq) = q+1− t. Since #E(Fq3) = q3 +1− t3 +3qt by using Weil’s Theorem, it is even and

so a 2-torsion point U exists in E(Fq3). Hence this condition is quite acceptable under the

circumstances where security multiplier k divisible by 3 is chosen.4 In addition since orders

of Q+ U and P − U are 2r, the functions fP , fQ do not have zeros and poles at Q+ U and

P − U . Thus it is unnecessary to be concerned about the case where ω(P,Q) is not defined.

Theorem 4. Let U ∈ E(Fqd)[2], P ∈ E(Fq)[r]. Given r torsion point Q ∈ E(Fqk) whose

trace is zero, then

ψ(P,Q) = (−1)r

(
fQ(P − U)
fP (Q+ U)

)qd−1

. (3)

Furthermore, x(Q), x(P ), x(Q+U) and x(P −U) are contained in Fqd. As a result, denomi-

nator elimination technique can be applicable to compute both of fQ(P − U) and fP (Q+ U).

Proof. Suppose the characteristic of Fq is larger than 3 and let E have the Weierstass equation

y2 = x3 + ax+ b. The Weil pairing is defined as follows:

ω(P,Q) =
fP (Q+ U)
fP (U)

·
fQ(−U)
fQ(P − U)

=

(
fP (U)

fP (Q+ U)
·
fQ(P − U)
fQ(−U)

)−1

.

Raise both sides to (1− qd)-th power. The left hand side is

ω(P,Q)1−qd
= ω(P,Q)2,

since ω(P,Q) is a r-th root of unity and since 1− qd ≡ 2 (mod r).

For the right side, it is clear that fP (U)qd−1 = 1 because of P,U ∈ E(Fqd). Let V,W be

elements of the group 〈Q〉 in E(Fqk). Then

σd(V ) = −V and σd(W ) = −W

hold, because Q generates q-eigenspace of σ. Since −V = (x(V ),−y(V )), it follows that

x(V )qd
= x(V ), y(V )qd

= −y(V ) and

x(W )qd
= x(W ), y(W )qd

= −y(W ).

4 In [13] a 2-torsion point U ∈ E(Fq) is taken by assuming the order of E(Fq) to be even. We can just adapt

their assumption without much loss of cases.
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Let

γ :=


3x(V )2+a

2y(V ) if V=W,

y(V )−y(W )
x(V )−x(W ) otherwise.

Then we have
gV,W (−U) = y(V )− y(−U) + γ(x(V )− x(−U))

gV,W (−U)qd
= −y(V )− y(−U)− γ(x(V )− x(−U)).

Since y-coordinate of 2-torsion point U is zero, we have gV,W (−U)qd−1 = −1. In addition,

gV (−U)qd−1 = (x(V ) − x(−U))qd−1 = 1 because x(V ), x(−U) lie in Fqd . Since fQ(−U) is

written as proper compositions of gV,W and gV , we can easily reduce fQ(−U)qd−1 = (−1)r.

Hence the right side of (3) is obtained.

It is obvious that x(Q), x(P ) and x(P − U) lie in Fqd . In addition, since y(U) = 0 and

since

x(Q+ U) =

(
y(Q)− y(U)
x(Q)− x(U)

)2

− x(Q)− x(U),

we have x(Q+ U)qd−1 = 1 which implies x(Q+ U) ∈ Fqd . This completes the proof. ut

Remark 1. Although we proved Theorem 4 only for p > 3, this result can be extended to

other cases except supersingular curves in binary fields.

Combining these two results, additionally, we can derive an explicit formula for the 4th

powered Weil pairing.

Corollary 1. For randomly chosen R ∈ E(Fqk)[r] and a 2-torsion point U ∈ E(Fqd), we

have

ω(P,R)4 = ψ(P,R)2 = ω(P,Q)2 = ψ(P,Q) = (−1)r

(
fQ(P − U)
fP (Q+ U)

)qd−1

,

where Q := R− σd(R).

Proof. It is clear by combining Theorem 3 with Theorem 4. ut

5 Conclusion

In this paper, we investigated the relationship between squared pairings and plain pairings.

First, we showed that the squared Weil/Tate pairing for arbitrary chosen point is equal to the

plain Weil/Tate pairing for the trace zero point which has a special form to compute them

more efficiently. Using this relation for the Weil pairing, we derived an explicit formula for the

4th powered Weil pairings represented as the optimized Weil pairing. Our observations can

bring more meaningful insight into the possibility of switching to the proper powered Weil

pairing at high security levels.
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