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This study of unbounded linear monotone operators T: E — E* for nonreflexive Banach spaces E was
motivated by the (still open) problem of distinguishing between several well-studied classes of maximal
monotone set-valued operators (classes which coincide when F is reflexive). It is shown in Theorem
6.7 that in the unbounded linear case these classes are closely related. They may even be identical, as
was shown by Bauschke and Borwein to be true for the case of bounded linear monotone operators. (A
short new proof of this latter result is given in Section 8.) Earlier sections yield a characterization of
maximality, a characterization of maximal monotone unbounded linear symmetric operators (in terms of
the convex function (T'z,z)) and a number of relevant examples. Section 7 contains a proof that, in the
linear case, Rockafellar’s theorem on the maximality of the sum of two maximal monotone operators is
true even in nonreflexive Banach spaces. It also contains a counterexample in Hilbert space showing that
the hypotheses cannot be substantially weakened.

1. Introduction

Many of the most useful results concerning maximal monotone set-valued operators are
only valid in reflexive Banach spaces. In an effort to extend some of these results to
nonreflexive spaces, various authors have introduced certain natural subclasses of maxi-
mal monotone operators (subclasses which are identical with the entire class of maximal
monotone operators in reflexive spaces). The precise relationships between the various
new classes of operators have remained murky, although it is very clear in a particular
case: Bauschke and Borwein [2, 3] have shown that all of these notions coincide for boun-
ded linear monotone operators. In this note, we consider the next simplest case, namely,
unbounded linear monotone operators. It may be true that the Bauschke-Borwein charac-
terization remains valid for unbounded monotone operators; Theorem 6.7 below strongly
suggests that such is the case. (The simplifications needed to prove these facts about
unbounded operators lead to much simpler proofs of the corresponding portions of [3,
Theorem 4.1] — see Theorem 8.1.)

After some basics in Sections 2 and 3, in Section 4 we look at adjoint operators and
in Section 5 we characterize those linear operators which are subdifferentials of proper
lower semicontinuous convex functions. Section 6 is devoted to those operators which
are in one of the subclasses mentioned above, that is, those which are of type (D), type
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(NI), or locally maximal monotone. In Section 7 it is shown that, in the linear case,
Rockafellar’s theorem on the maximality of the sum of two maximal monotone operators
is true even in nonreflexive Banach spaces; this is followed by a counterexample showing
that the hypotheses cannot be substantially weakened. Section 8 is devoted to the case
of continuous linear operators. In the concluding section, Section 9, we give some open
problems. The first-named author thanks Jeff Eldridge for numerous helpful conversations
on the subject matter of this paper. The second-named author thanks the University of
Toulouse, France for its hospitality during some of his work on this paper. Both authors
would like to thank Heinz Bauschke for reading a previous version of this paper, and
making a number of perceptive comments.

Let E be a real Banach space, D(T) be a linear subspace of £ and T: D(T) — E* a
(possibly unbounded) monotone linear operator with range R(7T') C E*; that is, T is linear
and

(Tz,z) >0 forall ze D(T).

Let G(T) C E x E* denote the graph of T', and notice that it is an example of a monotone
subset; that is, a subset M C E x E* with the property that, for all (z, z*), (y,y*) € M,
we have

(" —y" 2 —y) > 0. (1.1)

We say that T is mazimal monotone if G(T') is maximal (under inclusion) in the family
of all monotone subsets of E' x E*. (As shown in Proposition 3.2(f) below, when D(T) is
dense, this is the same as being maximal in the family of graphs of all linear monotone
operators.) It is immediate that a monotone subset M is maximal monotone provided
(x,2*) € M whenever (x,z*) € E x E* is monotonically related to M; that is, inequality
(1.1) holds for each (y,y*) € M.

2. Which monotone linear operators are maximal monotone?

In Theorem 2.5, we will give a criterion for a monotone linear operator to be maximal
monotone. Before embarking on the analysis leading up to this, we isolate in Lemma 2.1
a result that we will use a number of times in the sequel.

Lemma 2.1. Let a, b and c € R. Then
a2 +b\+c>0 forall NER

iof, and only if,
a>0,c>0 and b < dac.

Definition 2.2. Let T: D(T) — E* be monotone and linear. Write

H(T):={xz € E: there exists M >0 such that, 2.1)
for all y € D(T), (Ty, o —y) < Mz —yll}- .

H(T) stands for the halo of T. It is easy to see that H(T) is closed under multiplication
by scalars and that H(T) is an F,: take M =1, 2, 3,... to get the appropriate closed
sets. The relevance of H(T) stems from Lemma 2.3 below. Before starting on that, we
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recall that if C' is a convex subset of F then a function f: C — R U {oo} is said to be
convez if

z,yeC and 0<A<1l = fQaz+1-Ny) <M(@)+1-Nf(y),

and a function g on C' is said to be concave if —g is convex.

Lemma 2.3. Let T: D(T) — E* be monotone and linear and x € E. Then:

x € HT) <
there exists z* € E* such that (z,z") is monotonically related to G(T).

Proof. (<) If (z,z*) is monotonically related to G(T") then, for all y € D(T),

(Ty,z —y) < (2%, 2 —y) < [|l2"[[[lz — yl-

The required result follows by taking M := ||z*||.

(=) Let z € H(T). It follows easily from the monotonicity of 7" that the function
y — (Ty,z —y) is concave on D(T) (see the proof in Proposition 5.3(a) that the function
y — (Ty,y) is convex). Suppose further that M is as in (2.1), so that,

forall ye D(T), (Ty,z—y) < M|z—y|- (2.2)
Let
X:={(y,\) € ExR: A>M|y—z|}

and
Y:i={(y,A\) e D(T) xR: A< (Ty,z—y)}

X and Y are nonempty convex subsets of E x R, and X has nonempty interior. Further,
it follows from (2.2) that int X N'Y = (. From the Eidelheit separation theorem, there
exist € R and (y*, 1) € E* X R such that

(y", 1) # (0,0), (2:3)
ye€ E and A> M|y —z| imply that (y*,y)+ > «, (2.4)

and
y€ D(T) and A\ < (Ty,x —y) imply that (y*,y)+ A\u <. (2.5)

Setting y = 0 in (2.5), we obtain that Ay < « for all A < 0, so that x> 0. We next show
that g > 0. If we had p = 0 then, from (2.4),

y € E  implies that (y*,y) > a,

hence y* = 0, contradicting (2.3). So, indeed, u > 0. Now set z* := y*/u and = a/p.
Dividing (2.4) by p and setting (y,\) := (z,0), and dividing (2.5) by p and setting
A :=(Ty,x — y), we obtain that

(x*,2) >



306 R.R. Phelps, S. Simons / Unbounded linear monotone operators
and
y € D(T) implies that (z*,y) + (Ty,z — y) < S.
Combining these two inequalities,
forall ye€ D(T), (Ty—z",y—z) >0,
so (z,z*) is monotonically related to G(T'), as required. This gives the required result. [

Remark 2.4. The authors are grateful to the referee for pointing out that Lemma 2.3
can also be deduced from the Moreau-Rockafellar formula for the subdifferential of the
sum of convex functions. Define g: E — R by ¢(y) := M||z —y||, and f: E — RU{oo}
by
Ty,y—x) ifye D(T);
L

o0 otherwise.

Theorem 2.5. Let T: D(T) — E* be monotone and linear. Then T is mazimal mono-
tone if, and only if, D(T) is dense and H(T) = D(T).

Proof. (=) Suppose that T is maximal monotone. We will prove first that
z* € E* and (z*,y)=0 forall y € D(T) imply that z* = 0;

this will establish that D(T') is dense. Let z* € E* and (z*,y) = 0 for all y € D(T). Then
forall y € D(T), (Ty—a",y—0)=(Ty—a"y)=(Ty,y) >0,

thus (0, z*) is monotonically related to G(T'). Since T' is maximal, (0,z*) € G(T) and so
xz* = T0 = 0. This completes the proof that D(T) is dense. If x € D(T) then (z,Tx)
is monotonically related to G(T) hence, from Lemma 2.3(<=), z € H(T). If, on the
other hand, x € H(T) then, from Lemma 2.3(=), there exists z* € E* such that (z,z*)
is monotonically related to G(T'). Since T is maximal monotone, (z,z*) € G(T'), hence
x € D(T). This completes the proof that H(T') = D(T).

(<=) Let D(T) be dense and H(T') = D(T). Suppose that (z,z*) is monotonically
related to G(T). From Lemma 2.3(<=), x € H(T), hence z € D(T). Now let z € D(T),
and A be an arbitrary real number. Then z + Az € D(T), hence

(x+ X2, Tx 4+ ATz) = (z+ Az, T(z + A\z2)) € G(T).
By hypothesis,
(Tz+ XTz—z*,z+ Xz —x) > 0.

This can be rewritten
M(Tz,z) + MTx —z*,2) > 0.

From Lemma 2.1, (T'z — z*, z) = 0. Since this holds for all z € D(T') and D(T) is dense,
Tx —x* =0 € E*, hence * = Tx. Thus (z,2*) = (z,Tx) € G(T). This completes the
proof that T is maximal monotone. O

Corollary 2.6 is well known. It can be deduced easily from Theorem 2.5 and the fact that
H(T) D D(T) when T is monotone.

Corollary 2.6. LetT: E — E* be monotone and linear. Then T is mazimal monotone.
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3. Other preliminary results

We collect some useful elementary observations in Proposition 3.2. First, we introduce
two important subclasses of linear operators into the dual space:

Definition 3.1. A linear operator 7': D(T) — E* is said to be symmetric (resp. anti-
symmetric) if for every z,y € D(T') we have (T'z,y) = (Ty,x) (resp. (Tz,y) = —(Ty,x)).

Proposition 3.2. Let T: D(T) — E* be linear and monotone.
(a) An element (z,2*) € E x E* is monotonically related to G(T) if and only if

(z*,2) >0 and [(Ty,x) + {z*,y)]* < 4a*, 2)(Ty,y) for all y e D(T). (3.1

(b) IfT is bounded and mazimal, then D(T) = E.

(¢) IfD(T) is densein E and x € D(T) (or R(T) is weak™ dense in E* and x* € R(T))
and (z,z*) € E x E* is monotonically related to G(T), then (x,z*) € G(T).

(d) IfR(T) = E*, then T is mazimal. (In fact, we will prove in Theorem 6.7 that much
more is true.)

(e) If T has dense domain D(T) and is symmetric or anti-symmetric, then G(T) is
closed in D(T) x E* in the topology induced by the weak X weak* topology.

(f) If D(T) is dense in E and T is not mazimal monotone, then T has a mazimal
monotone linear extension.

(g) If T is mazimal monotone, then it has closed graph in E x E* in the product of the
norm topologies.

(h) If D(T)=E, then T is bounded.

(i)  If T is mazimal monotone and one-one, then R(T) is weak™® dense in E*.

) If T is one-one and R(T) = E*, then T™': E* — E is a bounded operator.

Proof. (a) An element (z,z*) is monotonically related to G(T) if and only if for all
y € D(T) and XA € R we have

0 <(T(\y) — 2", Ay — x) = X(Ty,y) = A[(Ty, z) + (2", 9)] + (=", 7).

The result follows from Lemma 2.1.

(b) If T is maximal then, from Theorem 2.5, D(T') is dense in E, hence if T" is bounded,
it has a unique bounded monotone extension to all of £ which, by maximality, must be
equal to T’; that is, D(T') = E.

(c) If x € D(T) and (z,2*) € E x E* is monotonically related to G(T), then for all
z € D(T) and A € R we have

0 < (T(x+A2) — 2", (x+ A2) —x) = A (T2, 2) + M(Tz — 27, 2).
Lemma 2.1 shows that (T'x — z*,z) = 0 for all z € D(T); by the density hypothesis,
x* = Tz. Suppose now that R(T) is weak™ dense in E* and z* € R(T), and that (z,z*)
is monotonically related to G(T'). There exists u € D(T') such that z* = Tu and hence
for all z € D(T) and A € R we have

0 <(T(u4+Az) —a*, (u+A2) —x) = X2 (T2, 2) + \M(Tz,u—z).
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It follows as before that (T'z,u —x) = 0 for all z € D(T) that is, for all Tz € R(T). Since
the latter is weak* dense, we have x = u and therefore z* = Tx.

(d) This is immediate from (c).

(e) Suppose that z, € D(T), that z, — = € D(T) in the weak topology and that
Tz, — z* € E* in the weak™ topology. Then, taking the appropriate sign depending on
whether T is symmetric or anti-symmetric, for all z € D(T),

(Tz,z) =£(Tz,z) = £im(Tz, z,) = lim(Tx,, 2) = (2", 2);

since D(T') is dense, we conclude that z* = Tx.

(f) By Zorn’s lemma we can always find an extension U of T which is maximal among
the linear monotone extensions of 7T, so it suffices to show that if U is not maximal
monotone, then it has a monotone linear proper extension. Suppose that (z,z*) ¢ G(U)
is monotonically related to G(U). Note first that by (c) above, x ¢ D(U), so the subspace
D(U) + Rz properly contains D(U) and one can define S(y + az) = Uy + az* (o € R,
y € D(U)). It follows from (3.1) that the linear extension S is monotone.

(g) Suppose that (x,, Tz,) € G(T') converges to (z,z*) in the norm topology. If y € D(T),
then
(z* =Ty,x —y) = lim (Tx,, — Ty, z, —y) > 0,

n—o0
that is, (x, z*) is monotonically related to the graph of T', hence z* = Tz, by maximality.

(h) If D(T) = E, then by Corollary 2.6, T is maximal monotone, hence by (g), it has
closed graph, hence by the closed graph theorem, it is bounded. Another way of seeing
this is to use the fact that monotone operators are locally bounded.

(i) If there exists z € E such that (T'y,z) = 0 for all y € D(T), it follows that (z,0) €
E x E* satisfies the inequality (3.1), that is, (z,0) is monotonically related to G(T). By
maximality, 0 = T'x; since T is one-one, x = 0, which proves the weak™® density of R(T).
(j) By part (d), T is maximal and by part (g), it has closed graph. Thus, 7! has closed
graph, hence is bounded. O

During the course of this paper, we will introduce several monotone linear operators that
are not symmetric. Nevertheless, such operators always have a property which trivially
holds for symmetric operators; this is brought into evidence by Lemma 3.3 (below). If
F C E, we write

Ft={s*c E*: forall z € F, (z*,2) =0}
If FF C E*, we write
F, :={z € E: forall z* € F, (z",x) =0}.

Finally, we write

N(T) := {z € D(T): Tz =0)}.
Lemma 3.3. Let T: D(T) — E* be linear and monotone and x € D(T). Then:
(a) (Ty,xz)=0 forall ye D(T) < (Tx,z) =0 forall z € D(T).
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(b) z€R(T), < Txe D(T)".
(c) If D(T) is dense then D(T)N R(T), = N(T).

Proof. (a) Let z € D(T) and A € R. Since y := x + Xz € D(T), (T'(x + X\z),z) = 0,
hence
N{Tz,2) + MTx, 2) = (T(x 4+ \2),\z) = (T(x + \z),z + Az) > 0.

Using Lemma 2.1, it follows that (T'z, z) = 0. Conversely, let y € D(T) and A € R. Since
z:=x+ Ay € D(T), (Tz,z + \y) = 0, hence

N(Ty,y) + MTy, ) = (T(\y), « + Ay) = (T(z + Ny), = + Ay) > 0.
Using Lemma 2.1 again, it follows that (T'y,z) = 0. This completes the proof of (a), and
(b) is simply a restatement of (a). (c) follows from (b) since D(T)*+ = {0} when D(T) is
dense. =

The following lemma ties in R(7"), with the “halo” concept introduced in Section 2.

Lemma 3.4. Let T: D(T) — E* be linear and monotone. Then R(T), C H(T).

Proof. Let z € R(T),. Then, for all y € D(T), (T'y, ) = 0 hence
(Ty,z —y) = —(Ty,y) < 0=0[z —yl|.
U

We emphasize that the second conclusion of Corollary 3.5 below is that N(7T') is closed in
E (not merely in D(T)).
Corollary 3.5. Let T: D(T) — E* be linear and mazimal monotone. Then

N(T)=R(T), and N(T) is closed in E.
Proof. From Theorem 2.5, D(T) is dense, thus Lemma 3.3(c) implies that D(T)

N
R(T),. = N(T). However, from Lemma 3.4 and Theorem 2.5 (again), R(T), C H(T) =
D(T), hence R(T), = N(T), as required. O

4. The adjoint mapping

For a better understanding of the properties of 7T it is helpful to introduce its adjoint
mapping 7*. As usual with unbounded operators, this requires some care.

Definition 4.1. Let D(T) be dense and T: D(T) — E* be a linear operator. Define
D(T*) C E** to be the set of all z** € E** for which the linear functional

D(T) 5>y — (z*,Ty)

is continuous. Since D(T) is dense, this functional extends uniquely to all of F and is
denoted by T*z** € E*; it is characterized by the identity

(I"z™,y) = (™, Ty), ye€ D(T).

Treating E as a subspace of E**, we define D(T) = E N D(T*) and T = T*|z. More
precisely, writing 7 for the canonical image of z in E**,

Tz :=T% e D(T).
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It is not immediately clear that D(T™) is nontrivial for an arbitrary unbounded operator
T; however, Proposition 4.2 below shows that it is nontrivial for maximal monotone
operators. That the inclusions D(T) C D(T) or D(T) C D(T) fail in general is shown
by Example 4.3 below. The same example shows that it is possible to have D(T*) C E.
The operator T* need not be monotone, even for bounded anti-symmetric 7' [2, Example

5.2], but Proposition 4.2 shows that its restriction T is monotone.

Proposition 4.2. If T is a linear mazimal monotone operator, then D(T*) is weak”

dense in E**. Further, T is monotone.
7

Proof. By the Hahn-Banach theorem, to prove the first assertion it suffices to show that
if y* € E* and (2*,y*) = 0 for all z** € D(T*), then y* = 0. But if y* # 0, then
(0,y*) € E x E* is not in G(T) which, by Proposition 3.2(g), is a closed linear subspace
of E x E*. The dual of this space is E* x E**, under the usual pairing

((u*,u™), (v,0")) = (u*,v) + (W™, v*), (v,v*)€ ExE", (v, u"") e E* x E™.

It follows that there exists an element (z*,z**) € E* x E** which vanishes on G(T') but
not at (0,y*). The latter statement implies that (z**,y*) # 0, and therefore we cannot
have z** € D(T*). But the former statement implies that

(x*,y) + (™, Ty) =0 for ally € D(T).

This shows that the function D(T) 3 y — (z*,Ty) = —(z*,y) is continuous, so that
z** € D(T*) (and —z* = T*(2**)), a contradiction.

To prove the second assertion, we will prove that
y € D(T) implies that (Ty,y) > 0. (4.1)
If y € D(T) N D(T), then
(Ty,y) = (T"F,9) = (5. Ty) = (Ty,y) > 0. (4.2)
If, on the other hand, y € D(T) \ D(T), we define S: [D(T) + Ry] — E* by
Sx+ A y) =Tz —XT"y, z€D(T), AeR

This is clearly a proper linear extension of 7T'; consequently it is not monotone. Thus there
exist € D(T) and A € R such that

0> (S(x+Ny),z+ \y) = (Tx — N[y, z + A\y)
= (Tz,z) + \MTz,y) — NT*7, z) — \{T*F,y)
= (Tz,z) + MTz,y) — X7, Tz) — X*(Ty, y)
= (Tz,z) + Tz, y) = N(Ta,y) — \(Ty,y)
= (Tw,z) — X*(Ty,y).

Consequently )\2<’fy, y) > (Tz,x) > 0, from which (Ty,y) > 0. If we combine this with
(4.2) we obtain (4.1), which completes the proof of Proposition 4.2. O
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Example 4.3. In L'[0, 1], let
D(T)={x € L': z is absolutely continuous, z(0) =0 and z' € L*[0,1]}.

Define T': D(T) — L™ by Tx = z'. Then D(T) is dense, T is monotone, the convex
function f(z) = 3(Tz,z) (z € D) is not lower semicontinuous, and 7 is neither symmetric
nor anti-symmetric. Moreover, R(T) = L*°, so T is maximal monotone. Finally, D(T™)
is contained in the canonical image of L'[0,1] in (L*)*, with

D(T*) ={%z: z€ L', z is absolutely continuous, z(1) =0 and 2z’ € L*[0,1]}, (4.3)
and 7™ is monotone.

Proof. Since D(T) contains, for instance, all the C' functions on [0, 1] which vanish at 0,

it is dense in L'[0,1]. For all z € D(T) we have (Tz,z) = 01 o'z = 3x(1)? so it is clear

that 7" is monotone and that f(z) = 1z(1)% Let zo(¢) =t and choose {z,,} in D(T) such
that z,, — zo in L' norm but z,(1) = 0 for all n; then liminf f(z,) =0 < 1 = f(z), s0
f is not lower semicontinuous. The fact that 7T is neither symmetric nor anti-symmetric
can easily be verified by comparing (T'x,y) with (T'y,z) when z(t) =t and y(t) = 2. If
z* € L*|0, 1], then w(t) := fot x* defines an element w € D(T) such that * = Tw. Thus
R(T) = L*, and it follows from Proposition 3.2(d) that 7 is maximal monotone. To
prove the last assertion in this example, suppose that z** € D(T*) C (L*)*; then since
R(T) = L*, there exists y € D(T) such that T*z** = Ty. It follows (using integration
by parts and the fact that z(0) = y(0) = 0) that, for any z € D(T),

(", Tx) = (T*x* z) = (Ty,z) = fol y'z
=z(1)y(1) — fol Ty = 01 v’z = (Tz,2) = (z,Tz),
where z is the element of L! given by

2(t) =y(1) —y(t) (¢t €][0,1]). (4.4)
Using again the fact that R(T) = L, this shows that z** = Z. Conversely, if for some
y € D(T) we define z as in (4.4) then the functional

D(T)>x — (2, Tz) = (Tx,2) = fol 'z =x(1)y(l) — fol x'ydt = fol zy'dt = (Ty, x)

is clearly continuous, so z € D(T*). This characterization has two interesting conse-
quences: first, it shows that D(T*) can be identified with a subset of L', namely,

D(T*)={%z: ze L', z=y(1) —y forsome y e D(T)},

!

which gives the representation in (4.3), and that 7%z = —z’. The monotonicity of T*
follows since (2, T%2) = (I*2,z) = — [, #'zdt = —12(1)? + 32(0)? = 12(0)*> > 0. (In fact,
once we know that R(T") = L™, it follows from Theorem 6.7 that D(T') is dense, T* is
monotone and that 7" has a number of other desirable properties.) O

The final lemma of this section shows that we can say more about D(T) and T if T is
symmetric or anti-symmetric. It should be emphasized that it remains an open question
whether D(T) is nontrivial when T is neither symmetric nor anti-symmetric.
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Lemma 4.4. Suppose that D(T) is dense and the linear operator T: D(T) — E* is
symmetric (resp. anti-symmetric). Then D(T) C D(T), T|D(T) =T (resp. —=T) and

R(T) € R(T).

Proof. Suppose that € D(T); then, for all y € D(T) we have
(Ty,z) = (Tx,y) (resp. — (Tz,y))

which is continuous in y, so € D(T) and Tz = Tz (resp. —Tz). Thus D(T) ¢ D(T),

and it follows that R(T") C R(T). O

5. Linear subdifferentials and convex functions

The next result shows that symmetric maximal monotone linear operators are easily and
nicely characterized as the subdifferentials of convex lower semicontinuous extended-real-
valued functions.

Theorem 5.1. Suppose that T: D(T) — E* is a linear monotone mapping. Then T is
mazimal monotone and symmetric if and only if there exists a proper lower semicontinuous
function g on E such that D(dg) = D(T), T = dg and for all z € D(T), g(z) = 3(Tz, z).

Proof. Suppose that 7" is maximal monotone and symmetric. For any x € E define

g(z) == sup {(Ty,z)— 5(Ty,y)}. (5.1)

yeD(T)
Clearly, g is convex and lower semicontinuous. If z,y € D(T), then

which shows that, for z € D(T), we have g(z) < 5(Tz,z). On the other hand, taking
y = z in the definition of ¢ shows that g(z) > 3(Tz,z). Thus, g(z) = 3(Tz,z) for all
x € D(T), in particular, g is proper. Moreover, if z € D(T), then for all y € E,

g(z) + (Tx,y—z) = %(T:L‘,.T) + (Tx,y—z)=(Tz,y) — %(Tx,x) < g(y),

so that Tz € dg(x). Since dg is monotone and extends 7', the maximality of the latter
implies that they are equal.

To prove the converse, suppose that for a lower semicontinuous proper convex function g
we have D(T) = D(0g) and T = dg. From Rockafellar’s maximal monotonicity theorem,
T is maximal monotone. If we further assume that g(z) = (Tz, z) whenever z € D(T),
then it follows that 7" is symmetric. Indeed, by definition, Tz € dg(x) implies that

. glz+Xy) —g(2)
T <1
N

for all y € D(T),

and the right hand side can be computed directly to be %[(Tﬂ?, y) + (Ty, )], so
(Tz,y) < 5(T2,y) +(Ty,2)] forall z, y e D(T).
By linearity, we actually have equality:
(Tz,y) = J(Tz,y) + (Ty. )],
hence (Tz,y) = (Ty,z) for all x,y € D(T), i.e., T is symmetric. O
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It is not hard to see that, if T is linear, symmetric and mazimal monotone and g satisfies
the conditions of Theorem 5.1, then dom(g) = F if and only if T is bounded. (dom(g) is
defined to be {z € E: g(x) € R}.) Indeed, if T' is bounded then, from Proposition 3.2(b),
D(T) = E. Since dom(g) D D(dg) = D(T), dom(g) = E. Conversely, if dom(g) = FE,
then (from [10, Proposition 3.3] and the Eidelheit Separation Theorem) dg(z) # 0 for all
x € E, therefore D(T) = D(0g) = E. But ([10, Theorem 2.28]) any monotone operator
is locally bounded on the interior of its domain, so 7" is bounded. If 7" is not symmetric,
then the function g defined by (5.1) can be quite disappointing. This is shown by the
following continuation of Example 4.3.

Example 5.2. In Example 4.3, let g be defined by (5.1). If z € L' is the function

with constant value ¢ then g(z) = 1¢®. If z is not a constant function then g(z) = oo.

Consequently, dom(g) has a trivial intersection both with D(T') and with D(T).

Proof. Suppose first that z € L' has constant value c¢. Then

g(z) = sup [(Ty,z)—5(Ty,y)] = sup [fol y'c— %y(l)Q]
yeD(T) yeD(T)
= sup [ey(1) — 1y(1)?] =sup [eA — IN] = 1%
yeD(T) AER

If, on the other hand, z € L' is not a constant function then there exists z* € L™ such
that (z*,1) = 0 but (z*,z) # 0. Find w € D(T) as in Example 4.3 so that Tw = z*.

Then
w(l) = [ a* = (z*,1) =0,

and consequently (T'w,w) = sw(1)? = 0. Thus
9(z) > sup (T (), z) — 5T (\w), \w)]
€
= sup [MTw,z) — 1N (Tw, w)] = sup MTw, z) = sup A(z*, z) = oo.
AR AR AeR

O

If T is not necessarily symmetric, we consider a different function, f in Proposition 5.3
below. Example 4.3 shows that f need not be lower semicontinuous, even if T is maximal
monotone. On the other hand, the subdifferential of f has a nice characterization; it is
S(T+T).

Proposition 5.3. Suppose that T: D(T) — E* is linear and define

f(z) = {5<Tm,x> if v € D(T);

o0 otherwise.

(a)  f is convex if and only if T is monotone.

(b)  Suppose now that D(T) is dense and T is monotone. Then D(0f) = D(T)ND(T).
Moreover, Of has the following description: If x € D(Jf), then 0f(x) consists of

the single functional %(T + T):r Finally,
{z e D(T): f(z)=0}={z e D(f): df(z) ={0}}.
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Proof. (a) is immediate from the following identity: If 0 < o < 1 and z,y € D(T), then
af(@)+ (1 -a)f(y) = flaz+ (1 - a)y] = a(l - a)5(T(z —y), (= —y)).
(b) If * € 0f(x) then z € dom(f) = D(T) and, for any y € D(T) and A > 0, we have

(o0 < TEFD IO _ir ) 4 4ry, 00 + IMT0).

Letting A — 0%,
(z*,y) < 3[(Tz,y) + (Ty,z)], ye D(T).

Since both sides are linear in y, we have

(z*,y) = 5[(Tz,y) + (Ty,z)], ye D(T).

Moreover, the first two of the three terms in this equality are continuous for y € D(T),
hence so is the third; that is, z € D(T) and (Ty,z) = (Tz,y) for y € D(T). Since the
latter is dense, we conclude that z* = [T + Tz] and that D(8f) € D(T) N D(T).

To prove the reverse inclusion, suppose that x € D(T) N D(T). We will prove that
forall y€ B, flz+y)> f(2)+ (3T +T),y), (5.2)

from which (T + T)z € 0f(x), hence z € D(8f), as required. If y € D(T) then, noting
that (T'z,y) = (Ty,z),

WT(z+y),z+y) — 2{Ta,z) — AT +T)z,y) = 5(Ty,y) >0,

and (5.2) follows on rearranging the terms. If, on the other hand, y € E\ D(T) then (5.2)
follows since f(z +y) = co. This completes the proof of (5.2).

To prove the last assertion, suppose that f(z) = 0; then for all y € E we have 0 <
f(y) — f(z), hence x € D(0f) and 0 € 0f(zx). For the reverse inclusion, if x € D(0f) and
0 € df(z), then 0 = [Tz + Tz], hence (Tz,y) + (Ty,z) = 0 for all y € D(T); taking
y = x shows that 0 = (T'z,x), so f(z) =0. O

Continuing with the assumptions of Proposition 5.3(b) that D(T) is dense and T is
monotone, it is useful at this point to introduce the closure f of f. This is a proper lower
semicontinuous convex function which can be defined in several ways: Its epigraph is the
closure in F x R of the epigraph of f; alternatively, it is the restriction to £ C E** of
the second Fenchel dual f** of f. For our purpose, the following “local” definition will be

most convenient: _
f(z) = lim inf f[B(z;¢) N D(T)], =z € E.

e—0t

It follows that if z € dom(f) then there exists {x,} C dom(f) = D(T) such that z, — z
and f(x,) — f(x) and, (almost) conversely, if there exists {z,} C dom(f) = D(T) such
that z, — 2 and f(x,) — A € R then x € dom(f) and f(x) < A\. If z € D(T), then
f(x) < f(=), while f(z) = f() if and only if f is lower semicontinuous at z. It follows
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easily from the definitions that if x € D(3f), then df(z) = df(z), so D(0f) C D(If).
It is clear that f(Az) = A2f(z) for all z € D(T), A € R, and it then follows from the
definitions that f(Az) = A2f(z) for all z € dom(f), A € R. This implies that dom(f) is
closed under multiplication by scalars so, since it is convex, it is a linear subspace of E.

If, in addition, 7" is anti-symmetric then f = 0 and hence dom(f) = E and f = 0. It is
routine to verify that in Example 4.3 (where 7" is not anti-symmetric), it is still true that
dom(f)=E (= L') and f =0.

Proposition 5.4. Let D(T) be dense, T be linear and monotone, f and f be as above

and z € dom(f). Then x € D(Of) if and only if there exists a unique element x* € E*
such that

©)  fl@)=3(z*,2) and
(ii)  there exists {x,} C D(T) such that x, — z, f(z,) — f(z) and

(z*,2) = £ lim (T'y, 2) + 3(Tz,x)  for all z € D(T). (5.3)

n—0o0

Proof. Suppose that z € D(9f) and let 2* be any element of df(z). Since z € dom(f),
there exists a sequence {z,} C D(T) such that z,, — = and f(z,) — f(z). Fix z € D(T).
Given g3 € R, let y, = z,, + fz, so that y,, € D(T"). We have

Bla", 2) + (2", 20 — 2) = (@", Y0 — 2) < fya) — f(2) < f(yn) — f(2)
= 5{T(xn + B2), 2 + Bz) — f(2)
= 38T wn, 2) + (T2, 2a)] + 38°(T2, 2) + f(2n) = f(2).
Letting n — 0o, we see that

Blx*, z) < %hg[_l)i;)lfﬂ(T.rn, z) + 18(Tz, x) + 1 6%(Tz, z).

If 3> 0, we can divide by 3 and let 3 — 0% to conclude that

(z*,z) < Lliminf(Txz,, z) + 3(Tz, ).

n—oo
Taking # < 0 and dividing (hence reversing the inequality) leads similarly to

(z*,2) > L limsup(Tzn, 2) + 5(T'z, z).

n—oo

It follows that lim, . (Tx,, z) exists and

(z*,2) = %JL%<Txn, z) + 3(T'z, z).

Since this holds for any z* € df(z) and z in the dense set D(T), the set df(z) is a
singleton. Finally, for all A € R,

N f(z) = Mz, 2) + (2", 2) — f(2)] = f(A2) — f(2) — (", Az — 2) > 0,

since 2* € 0f (x). From Lemma 2.1, (z*, z) < 4f(z)[(z*, z)— f(«)], which can be rewritten
[2f(z) — (z*,2)]*> < 0. Thus f(z) = 5(z*, z), as required.
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To prove the converse, suppose that z € d_om( f) and that there exists z* € E* satisfying

(i) and (ii). Suppose also that z € dom(f). Then there exists a sequence {z,} C D(T)
such that 2, — z and f(z,) — f(2). From the monotonicity of 7', for all m and n,

2f(zm) — (Txn, 2m) — (T2, Tn) + 2f (xr)
= (Tzm, 2m) — (Txn, 2m) — (T2m, Tn) + (T2, Ty)
=Tz —Txpn, 2, — Ty) > 0.

Letting n — oo, using (ii) and dividing by 2,

f(zm) = (&%, 2m) + f(z) > 0.

Letting m — oo,

f(z) = (x*,2) + f(z) > 0.
Thus, using (i),
f(z) = f(z) > {(z",2) — 2f(x) = (z", z — x).
Consequently z* € df(x), and so 2* € D(0f). O

It is natural to ask whether Of is an extension of 7. This needn’t be so: If it were,
then for all z € D(T), we would have x € D(9f) and Tz € df(z). By Proposition
5.4, 0f (z) = {Tz} and f(z) = 3(Tz,z) = f(z). This implies that f would be lower
semicontinuous at each point of D(7T), which — by Example 4.3 above — is not generally

true. It is true that Of is an extension of (T + T), and it might be a linear extension

(see below). Indeed, the domain D(T) N D(T) of the latter is, by Proposition 5.3, the
same as D(0f) C D(0f). Since f is lower semicontinuous at each point of D(9f), it
is equal to f on this set and therefore (Proposition 5.3 again) if z € D(T) N D(T),
then 9f(z) = 0f(z) = (T + T)(z). Thus, the maximal monotone operator df extends

%(T-l—f). If (z,2%) € G(Of) and z € D(T)ND(T) then (with {z,} as in Proposition 5.3)

(z*,2) = £ lim (T'wy, 2) + 5(T2,x) = 5 lim (Tz,z,) + (Tz,x) = %((T +T)z, ).

1 1
5 11
2 nS500 n—00

To check linearity, let (z,z*), (y,y*) € G(9f), A\, p € R, and (Az + uy, w*) € G(0f).

Then, from the above, for all z € D(T) N D(T), we have (z*,z) = %((T + T)z,z),
(y*, z) = %((T + T)z,y) and (w*,z) = %((T + T)z, Az + uy). Consequently, for all

z € D(T)n D(T),
(w*,2) = IM(T + T)z,2) + 2pl(T +T)z,y) = Ma*, 2) + uly*, 2) = \a* + py*, 2).

It follows that Of is a linear extension of 3(T + T) if D(T) N D(T) is dense: for in this
case the equalities above imply that that w* = \z* + py*.

The authors are grateful to Heinz Bauschke for pointing out that if D(T) is dense then
so is D(0f). Indeed, dom(f) D dom(f) = D(T), so dom(f) is dense. However, from the
Brgndsted-Rockafellar theorem (see [10, Theorem 3.17]), D(9f) is dense in dom(f).
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6. Type (D), type (NI) and locally maximal monotone linear operators

We first consider linear monotone operators of type (D). Recall the definition for general

monotone operators [8, 7). (If A C E (resp. A C E x E*), we denote by A its natural
embedding in E** (resp. E** x E*).)

Definition 6.1. A monotone operator T: D(T') — 2F" is said to be of type (D) provided

the following holds: Whenever (z**,z*) € E** x E* is monotonically related to CT(?),
there exists a bounded net (z,,2%) C G(T) C E x E* such that T, — z** in the weak*
topology of E** and ||z — z*|| — 0.

Remark 6.2. It was proved in [8] and [12] that the subdifferential of a proper convex lower
semicontinuous function is always mazimal monotone of type (D) and locally mazimal
monotone. (The definition of “locally maximal monotone” will be given after Example

6.4.) Such subdifferentials have many other properties, which are collected together in
[14].

In what follows, we will be considering a subspace F of E with the property that F=FLL,
Note that this is equivalent to saying that F' is weak* closed in E**, hence is satisfied by
any finite dimensional subspace of E. The special case when F' is one-dimensional turns
out to be very useful in Example 6.4 below.

Lemma 6.3. Let D(T) be dense, T: D(T) — E* be a monotone linear operator and

suppose that there exists a subspace F of D(T) such that F = F'* and R(T) = F*.
Then:

(a) F C N(T).

®) R(T)c R

() N(T7)=

(d) G/(7\1) is a mazimal monotone subset of E** x E*, hence T is of type (D).
(e) If, in addition, T is symmetric or anti-symmetric then

R(T*) = R(T) and D(T*) = D(T).
Proof. (a) Clearly F C F*| = R(T), thus, from Lemma 3.3(c), F C N(T).

(b) Let z* € R(T*) and y € F. We choose z** € D(T*) such that T*z** = z*. From
(a),
(x*,y) = (T*x**,y) = (™, Ty) = (£, 0) = 0.

Thus we have proved that z* € FX = R(T).

(¢) N(T*) = R(T)* = (F+)* = F+4 = F. The authors are grateful to Heinz Bauschke
for supplying them with this proof.

(d) Let (z**,z*) € E** x E* be monotonically related to C?(?), and let y € F. From
(a), y € N(T), that is to say, (¢,0) € CT(?) Consequently, for all A € R,

0 < {(z"™ = Ay, 2" —0) = (™, z") — Mz",y).
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This implies that (z*,y) = 0. Thus we have proved that 2* € F+ = R(T), and so we can

find z € D(T) such that Tz = z*. Then, for every z € D(T') and A € R we have
0<(z™ — (T+M2),Tx — T(x+ A2)) = X(Tz,2) — Ma*™ — 3,Tz).

From Lemma 2.1, (z** — Z,T2) = 0 for all z € D(T) and so z** — 7 € R(T)* = F**.

Since F1L = F, there exists y € F such that z* —3=7. Thus 2 =+ =2 + ¢. On

the other hand, z* = Tz = Tz + 0 = T(z + ), so (z**,2*) = (z + y, T(z + y)) € G(T).

(e) By (b) and Lemma 4.4, R(T*) C R(T) and R(T) C R(T) C R(T*), from which

R(T*) = R(T), as required. It is clear from Lemma 4.4 that D(T) C D(T*), so it only

—

remains to prove that D(T*) C D(T). Let z** € D(T*). Then T*(z**) € R(T*) and,
from (b), there exists £ € D(T) such that Tz = T*z**. Using Lemma 4.4, we have

Tx = +Tx = +T*7, thus T*z* = +T*7. Consequently, T*(z** + Z) = 0, that is to
say, z* F 7T € N(T*). From (c), there exists y € F such that ¥ = z* FZ. But then

o =§+7=y+z e D). 0
Example 6.4. In L'[0,1] let

D(T) = {x € L': z is absolutely continuous , 2’ € L*[0,1] and (0) = z(1)}.
Define T: D(T) — L*® by Tz = z'. Then:
(a) D(T) is dense in E; T is linear and anti-symmetric (hence monotone).
(b) R(T*) = R(T) and D(T*) = D(T).
(c) G{(?) is a maximal monotone subset of E** x E*, hence T is of type (D).
Proof. (a) It is easily verified that D(T") is dense. The first assertion about 7" is obvious
and the second follows from integration by parts.
(b,c) First, note that 2* € L™ is in R(T) if and only if fol x* = 0; indeed, if z* € R(T),
then z* = 2’ for some z € D(T) and hence fol z* = z(1) — 2(0) = 0. On the other hand,

if fol x* =0, then z* = Tz, where z(t) = Otx* (t € [0,1]) defines a member of D(T'). To
sum up: R(T) = {z* € L*: (z*,1) = 0}. Thus we can apply Lemma 6.3 with F' the
one-dimensional subspace of L' consisting of the constant functions. (b) now follows from
Lemma 6.3(e), and (c) from Lemma 6.3(d). O

We now introduce the two other classes of operators that we will consider in this section,
the operators of type (NI) (see [13]) and the locally maximal monotone operators (see
[6]). For multivalued operators, their definitions read as follows:

Definition 6.5. Let 7' : E — 2" be monotone. We say that T is of type (NI) if

for all (z™,2%) € E™ x E*, inf (y—a™,y"—2") <N0.
( ) (y,y*)eG(T)<y Y )

We say that T is locally mazimal monotone provided the following holds: For any open
convex subset U of E* such that U N R(T) # 0, if (z,2*) € E x U is such that

y € D(T) and y* € TyNnU imply that (z* —y*, 0 —17y) >0

then z* € Tx.
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Our main result on these three classes of operators is going to be Theorem 6.7. As
a prelude to this, we introduce in Lemma 6.6 a technical result in which we assume
relatively few continuity conditions; precisely, T is not assumed to be continuous and
g is not assumed to be lower semicontinuous. Lemma 6.6 replaces the Fenchel Duality
Theorem used in [2] and [3]. We do not know whether the decomposition technique of
[2] and [3] can be used in this case. This decomposition technique uses the symmetric

operator P = %(T+T) and the anti-symmetric operator S = (T — T). When D(T) = E

then D(T) = FE also, so D(P) = D(S) = E. However, in the situation that we are

considering, D(P) = D(S) = D(T) N D(T), and there does not seem to be any prima
facie reason why this set should contain anything other than 0 (though we do not have

an example in which D(T') N D(T') is not dense in E).

Lemma 6.6. Let T: D(T) — E* be linear, g: E — R U {oo} be conver and U be a
convex open subset of E* such that (dom(g) x U) N G(T) # 0. Let C be the nonempty
convez subset D(T) Ndom(g) of E. Then

inf * Tr_ )= inf .
Jmax - nf lg(z) + (2™, Tz — z")] e 9(z)

Proof. Let m := infycc, moer g(z). If y € C and Ty € U then, for all z** € E** (setting
x =y and z* =Tx),

9(y) =g(y) + (&, Ty —Ty) > :cecin;cf*ey [g(z) + (=™, Tz — x™)].

Taking the infimum over y, m > inf,cc, »ocv [9(z) + (z**, Tz — 2*)]. Thus it remains to
prove that

there exists z™ € E** such that inf  [g(z) + (™, Tz — x*)] > m. (6.1)
zeC, €U
This is obvious if m = —o0, so we can and will assume that m € R. Let

X ={(Tz,\): z€C, NeR, g(z) <A} and Y :=U X (—o0, m].

X and Y are nonempty convex subsets of E* X R, and Y has nonempty interior. Further,
we can derive from the definition of m that X NintY = (). From the Eidelheit separation
theorem, there exist o € R and (y**, u) € E** x R such that

(™, 1) # (0,0), (6.2)
z€C and A > g(z) imply that (y**,Tx)+ \u> a, (6.3)

and
¥ €U and A <m imply that (y™,z") 4+ Au < a. (6.4)

Fix (z, 2*) € (dom(g) x U) N G(T). From (6.4),

A <m implies that Au < a— (y™,z"),
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and so p > 0. We next show that g > 0. If we had p = 0 then, from (6.3) and (6.4),
(x € C implies that (y™,Tz) > «) and (2" € U implies that (y*,2z") < ).
Now z € C and z* = T’z thus, combining the above two implications,
z* € U implies that (y**,z") < (y*, 2%).

Since z* € U and U is open, this would imply that y** = 0, contradicting (6.2). So,
indeed, u > 0. Now set z** := y*/u and 3 := «/p. Dividing (6.3) by p and setting
A = g(z), and dividing (6.4) by u and setting A = m, we obtain

z € C implies that (2™, Tx) + g(x) >
and

z* € U implies that (2™, 2*) + m < §.
Consequently,

z€C and z" €U imply that (2™, Tz)+ g(x) > (=™, z") + m,
that is to say,
z€C and z* €U imply that g¢(z)+ (", Tx —z*) > m.

This gives (6.1), and completes the proof of Lemma 6.6. O
Theorem 6.7. Let T : D(T) — E* be linear and monotone. Then (a) = (b) = (c)
= (d) = () = (f) :
(a) R(T)= E*.
b G'/(?) 15 a mazimal monotone subset of E** x E*.
T is mazimal monotone of type (D).

T is mazimal monotone of type (NI).
T 1is locally mazimal monotone.

o
~

NN N N S
IR =Y
~— = =

T* 18 monotone.

—

Proof. ((a) = (b)) Let (z**,2*) € E** x E* be monotonically related to G(T'). From
(a), we can find x € D(T) such that Tx = z*. Then, for every z € D(T) and A € R we
have

0< (@™ —(T+X\2), Tz —T(x+X2)) = \(Tz,2) — Mz** —2,T2).

From Lemma 2.1, (z** — Z,T2) = 0 for all z € D(T). Since R(T) = E*, this implies

that z** = Z. Thus (2**,2*) = (Z,Tx) € G(T), giving (b). (This implication can also be
obtained from Lemma 6.3 with F' := {0} since, from Proposition 3.2 and Theorem 2.5,
D(T) is dense.)

It is obvious that (b)==-(c), and it was proved in [13, Lemma 15| that (c) = (d) (even
in the general set-valued case).
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——

((d) = (c)) Let (z**,2*) € E* x E* be monotonically related to G(T"). We first prove
that,

for all y*™* € D(T"), (y**,z%) = («, T"y""). (6.5)
To this end, let y** € D(T™*). Let A be an arbitrary real number and write
= A2 y™, Ty + Ao, Ty — (™, 2],
One can verify by direct computation that, for all x € D(T),
a=T—2"Te—2") — (T — (& + M\y™), Tz — (2" — XT"y™)).
It follows that

a= sup (T -2 Tz —z*) — (T — (™ + \y™), Tz — (2" — \T*y*™))]

z€D(T)
—wSBm(x ™, Tz — z7) welg(T)@ (@™ +\y™), Tz — (2 y™))

—_——

The first infimum is > 0 since (z**,z*) is monotonically related to G(T'), and the second
is < 0 since T is of type (NI). Consequently, & > 0 — 0 = 0. Thus we have proved that,
for all A € R,

/\Q(y**,T*y**> + A[(x**,T*y**) - (y**,:r*)] 2 0,
and (6.5) now follows from Lemma 2.1. Now write M := ||z**|| and let (y*,y**) be an
arbitrary element of E* x D(T*). From (6.5),

< M|ly* + T y™||
= sup (" + Ty, x),
2eD(T), ||z]|<M

the last equality following from the density of D(T’). Thus, for all (y*, y**) € E* x D(T*),

@y + e < sup - [(Zy7) + (v, Ta)l. (6.6)
2€D(T), |lall<M

In fact, (6.6) is true for all (y*, y**) € E* x E**, for if y** € E**\ D(T*) and M > 0 then

sup — [(Z,y") + (", Tx)] > sup  [{y™, Tx) — Mlly*|]] = oo.
2eD(T), |lal| <M z€D(T), |zl <M

Since E* x E** is the dual of E** x E* with respect to w(E**, E*) x || ||, we obtain from
this and the bipolar theorem that (z**,z*) is in the w(E**, E*) x || ||-closure of the convex
set {(z,Tz): = € D(T), ||z|| < M}. Thus we can find the net specified in the definition
of “type (D)”, which completes the proof of (¢). (The net {Tz,} can be taken to be
bounded since it can be made to converge to z* in norm.)

((d) = (e)) Let U be a convex open subset of E* such that U N R(T) # (. Suppose
also that (y,y*) € E x U and

inf Tz —y*,z—y) > 0.
ze€D(T), TzeU
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Our aim is to prove that

(y,y") € G(T). (6.7)

From Lemma 6.6, with

9(z) == {(Tm -yt z—y) ifze D(T),

o0 otherwise,

(so C = D(T)) there exists z** € E** such that

‘f T _ *’ _ **’T _ * >0’
oy 77 =957~ 0+ 7 T =] 2

that is to say,

inf T—7+ **,T—*— **’*_* > 0.
mED(%I;, z*elU [<33 yre vy > <33 o 4 >] -

This can be rewritten:

inf (x—y+a", Tz —y*) > sup (™, 2" — y*). (6.8)
z€D(T) z*eU

Since T is of type (NI),

inf ~_ (5 **,T—* <0,
xgmﬁx Y —a"),Te—y")] <

that is to say,

inf (7 -7+, Te—y*)] <0,
alcelg(T)[<m yt+e Ty >] -

Consequently, from (6.8), supg.cy (™, 2* — y*) < 0. Since y* € U and U is open, we
derive from this that ** = 0. Substituting this back in (6.8), we obtain

inf (Z—7.Tz—y")] > 0.
@&#@ y, Tz —y*)) >

that is to say,

inf [((Tx —vy*, xz— > 0.
acEIB(T)K T-yhr-y)l2

(6.7) now follows from the maximal monotonicity of 7.

((e) = (f)) Suppose that (f) fails, so there exists 2** € D(T*) such that
(", Trz™) < 0. (6.9)
This implies that
T 5™ 0. (6.10)
Since D(T) is dense, there exists y € D(T) such that (T*z**,y) < 0, hence

(™, Ty) < 0. (6.11)
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Now write U for the convex open set {z* € E*: (z**,z*) < 0}. It follows from (6.9) and
(6.11) that T*z** € U and Ty € U. In particular, U N R(T) # (. Now

inf  (Tz—-T'2",2—-0)= inf (Tx —T*z™, x)

z€D(T), TzeU zeD(T), TzeU

= inf  [(Tz,z) — (2", Tz)] >
sepf, MTw,2) = {2, T2)] 2 0,

since (T'z,z) > 0 for x € D(T) and (z*,Tz) < 0 for Tz € U. It now follows from
the locally maximal monotonicity of 7" that (0,7*2**) € G(T'), hence T*2** = 0. This
contradiction of (6.10) establishes (f), and completes the proof of Theorem 6.7. O

Remark 6.8. Gossez has noted in [9] that the bipolar theorem and a technique of Brézis
can be used to establish the implication (¢) => (f) of Theorem 6.7.

We also point out that if T is monotone, one-one and R(T) = E*, then G(T*) is a
mazximal monotone subset of E** x E*. We know already from the result above that
G(T*) is a monotone subset of E** x E*. From Proposition 3.2(j), there exists a bounded
linear operator S from E* into E such that, for all y € D(T'), S(Ty) = y. Then, for all
r* e B,
(572%, Ty) = (", S(Ty)) = (2", y)

and so S*z* € D(T*) and T*(S*z*) = z*. This shows that R(T*) = E*. The maximality
then follows from an argument parallel to that in Proposition 3.2(d).

In Example 6.9 below, we give an example in which 6.7(f) is satisfied but 6.7(b) is not.
Since T is continuous in this case, it will follow from Theorem 8.1 that in fact 6.7(c) is
satisfied (but 6.7(b) is not).

Example 6.9. Define T: ¢! — /> by
T(xy, T2, %3, %y, ...) = (—T2,T1, —T4, T3, ... ).
T is bounded, linear and anti-symmetric, hence maximal monotone. Further, 7™ is anti-
symmetric but G{(?) is not a maximal monotone subset of (£%°)* x £°°.
Proof. Write ¢ for the canonical map from ¢y into £*°. We first show that
T* = —T". (6.12)

In order to do this, let x and x** be arbitrary elements of E = ¢! and E** = ({*°)*,
respectively. Since R(T) = £' C ¢(cy) C £, there exists y € ¢y such that Tz = py. But
then

* k%

(T2, z) = (&, Tx) = (2, py) = ("2, y) = (py, ¢"z"") = (Tz, p"z™").
However, from Lemma 4.4, Tx = —T*Z, thus
(T*0™ 7y = —(T"3, "™ = —(3, Te*s™) = —(To"z™, a),
which establishes the validity of (6.12). It follows from two applications of (6.12) that
— (T z™, 0" 2™ = (T(0*T™), o"z™) = 0.
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Thus T* is anti-symmetric, as required. Now let z** € R(T)*\ {0} C (¢°)* (for instance,
we could take z** to be a “Banach limit”). Since T is anti-symmetric, for all z € £*,

(T —a™,Tx —0) =(z,Tz) — (&, Tx) = (Tx,x) — (™, Tz) =0—0=0.

So (z**,0) is monotonically related to GT(F) If we had 2 € /L then there would exist
z € {' C > such that ™ = 7; so (z**,z) = (Z,z) > 0. Since z € R(T), this would

contradict z** € R(T)*+. Consequently, z** ¢ Zl, from which (z**,0) ¢ CJ/(B Thus CT(?)
is not a maximal monotone subset of (£%°)* x . O

Remark 6.10. Example 6.9 and Proposition 4.2 might lead one to suspect that if ¢ is
the canonical map from ¢y into £, T: ¢* — ¢* is monotone and R(T) C ¢(c) then
T is monotone. The following example shows that this suspicion is false. Define T by
(Tz)n = > k>n k- We leave it to the reader to check that 7' is monotone and R(T) C
©(co). Let e := (1,1,1,...) € £~ and eV := (1,0,0,...) € £, and fix z** € ¢(cy)* so

that (z**,e) = —2. Since z** vanishes on ¢(cp), ¢*2** = 0. Then, exactly as in Example
6.9, for all x € F/, there exists y € ¢y such that

—

so T*z** = 0. Further, by direct computation, T*e(!) = e. Thus

—~ —~ —~

() +27, T (e +27)) = (el +2™,¢) =1 -2 <0,

and so 7™ is not monotone.

7. The sum problem

A fundamental and pervasive problem concerning maximal monotone operators is to de-
termine precisely when the sum S+ 7 of two such operators (which is trivially monotone)
is maximal. (We recall that the domain of the sum is by definition the intersection
D(S)N D(T).) Early work on this question culminated with Rockafellar’s 1970 theorem
[11] that in a reflexive Banach space, S+7 is maximal under the “constraint qualification”

int D(S) N D(T) # 0. (7.1)

A different proof of this was given by Brezis, Crandall and Pazy [4]. Recently, Attouch,
Riahi and Thera [1] and Chu [5] have weakened this condition further. It follows from
the results in [1] that we need only assume that

U AID(S) - D(T)] = E. (7.2)

A>0

In fact, it is shown in [15] that the constraint qualifications of [1] and [5] are equivalent.
It still remains an open problem whether, even with (7.1), the sum theorem is valid for
nonlinear operators in nonreflexive Banach spaces.

We will show in Theorem 7.2 that, even in nonreflexive Banach spaces, S + T is maxi-
mal monotone in the linear case under condition (7.1). We do not know if the same is
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true under condition (7.2). However, we will show in Example 7.4 that, even for linear
operators in the space £y, we cannot weaken (7.2) further to the condition

D(T) — D(S) is dense.

We start off with a simple preliminary lemma.

Lemma 7.1. LetT: D(T) — E* be mazimal monotone and linear and (x,u*) € E x E*.
Then

inf [(Ty—u*.y—xz)] <0.
yelg(T)K y—u,y—x)) <

Proof. If (z,u*) € G(T) the result is immediate by taking y := z. If (z,u*) & G(T), it
follows (with strict inequality) from the definition of maximal monotonicity. O

We point out that if (7.1) is satisfied then int D(S) # @ hence, since D(S) is a subspace of
E, D(S) = E. Consequently, Theorem 7.2 implies that if S and T are maximal monotone
and linear and (7.1) is satisfied then S + T is maximal monotone, as advertised above.

Theorem 7.2. Let S: E — E* be monotone and linear and T: D(T) — E* be mazimal
monotone and linear. Then S+T: D(T) — E* is mazimal monotone.

Proof. Let (z,z*) be monotonically related to G(S + T'). Then

forall y€ D(T), (Sy—z"y—2)—(Ty,s—y)=(S+T)y—2"y—=z)>0. (7.3)

We now proceed as in Lemma 2.3, replacing the continuous convex function y — M ||z —yl|
by the continuous convex function y — (Sy — 2*,y — x), and obtain z* € E* such that

y€FE and A > (Sy—z",y—x) imply that (z*,y)+ \> [, (7.4)
and
y€ D(T) and A < (Ty,x—y) imply that (z*,y)+ X <p. (7.5)
Consequently
y € E  implies that (2", y) +(Sy—=z",y—z) >
and

y € D(T) implies that (z*,y) + (Ty,z —y) < S.
Subtracting (z*,x) from these inequalities and setting v := § — (z*, x), we derive that:

inf (Sy — (2" —2%),y —x) > d inf Ty—z"y—2x)>—y. 7.6

inf(Sy— (" —a"),y—w) 27 an yGIB(T)< y—aty—1z) >~y (7.6)
Now T is given to be maximal monotone, and it follows from Corollary 2.6 that S is
maximal monotone. Thus, from two applications of Lemma 7.1, v < 0 and —v < 0, from
which v = 0. Substituting back in (7.6),

inf (Sy — (2" —2%),y—2) >0 and inf (Ty—z",y—1)>0
inf(Sy = (z" =27),y —2) 20 and  inf (Ty-—2",y—1z)

Since S and T are maximal monotone, (z,z* — z*) € G(S) and (z,2*) € G(T). Conse-
quently, (z,z*) = (z, (2* — z*) +z*) € G(S + T). This completes the proof that S+ T is
maximal monotone. O
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Remark 7.3. The authors are grateful to the referee for pointing out that Theorem 7.2
can also be deduced from the Moreau-Rockafellar formula for the subdifferential of the
sum of convex functions. (See the remark following Lemma 2.1.)

We now define continuous linear operators V, W: £y — {5 by

Vi := (21,22 — 21,23 — Xa,...) and Wz := (21 — T2, Ty — T3,T3 — Tg,...)
for x = (z,) € f5. Both V and W are injective, so we can define unbounded linear
operators S and T by S := V! (with D(S) = R(V)) and T := W~ (with D(T) = R(W)).

Example 7.4. The operators S and T are maximal monotone of type (D) and D(S) N
D(T) is dense in ¢5 (a necessary condition for maximality of their sum) but S + T is not
maximal, even though D(S) — D(T) is dense in /5.

Proof. For all z € /5,
(Va,z) = (Wz,x) = %||Vas||2 >0,

hence V and W are monotone. It follows from this and Theorem 6.7 that S and T are
both maximal monotone of type (D). Consider the set D of all finitely non-zero sequences
x = (z,) in ¢ such that > 2y = 0. If z € D then x = Vy and z = Wz, where
(Yn), (2n) € ¢y are given by

ynzzxk and zn:Za:k, n=1,2,3,....

k<n k>n

So D C R(V)NR(W) = D(S)N D(T). On the other hand, D is dense in ¢, — to see
this, it is sufficient to show that it is dense in the set of all finitely non-zero sequences.
If y = (y1,%2,- -+ Ym,0,0,...) is one of the latter, with s = >y, then for any n > 1
consider

(Y1,Y2y« -+ s Ymy =S/ —S /0y ..., —5/1,0,0,...) (n terms of the form — s/n).

Clearly this is in D and of distance |s|/y/n from y. So D is dense in /s, and consequently
so also is the larger set D(S) N D(T). If z € D(S) N D(T), then 7, x5 = 0, so

(S+T)(z), = Zxk + 1z, = T,.
k=1

Thus S+ T has a proper monotone extension from D(S)N D(T) C 45 to the identity map
on /5. Consequently, S + T is not maximal monotone. O

Remark 7.5. Our use of the operators S and T' was motivated by [2, Remark 4.4], who
used the corresponding (bounded) operators from ¢; t0 f.-

8. The continuous case

We now consider the case when D(T) = E and T is continuous, and obtain a new proof
of the equivalence of (i), (ii), (iv) and (v) in [3, Theorem 4.1].
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Theorem 8.1. Let T be continuous and linear. Then the conditions (a), (b), (¢) and (d)
are equivalent.

(a) T is (mazimal) monotone of type (D).
(b) T is (mazimal) monotone of type (NI).
(c) T is locally mazimal monotone.

(d) T* is monotone.

Proof. From Theorem 6.7, we only have to prove that (d) = (b). Let (z**,2*) €
E** x E*. From (d), T is monotone and, further, for all z € E, (¥ — z**, T*(x — 2**)) > 0.
Consequently, for all x € F,

(T—a"Tex—2") < (T —a"Te—z")+ (T — 2™, T"(T — ™))

=T -2 Tx+ T — (x¥ +T*z™)).

However, the map x — Tx + T*7 is the subdifferential of the continuous convex function
x — (Tz,z). From [8] and [13, Lemma 15] it is of type (NI). It follows that

in]g(’x\ — " T+ T — (2" +T*z™)) <0,
zE

and consequently

inf[(z — 2™, Tz — ") <0.
TEE

This completes the proof of (b). O

9. Open Problems

e As we have noted earlier: it remains an open question whether D(T’) is nontrivial
when T’ is neither symmetric nor anti-symmetric. If this is the case, does it necessarily
follow that D(T) N D(T) is nontrivial? If so, must it be dense in E? If Proposition
3.2(g) could be strengthened to show that G(T) is closed in the product of the norm
and weak™ topologies, then a proof similar to that of Proposition 4.2 would show that
D(T) is dense in E.

e The analysis of Section 8 brings to mind the obvious question whether there are any
converse results in Theorem 6.7. For instance, if 7* is monotone, is T of type (D)?

e It follows from Theorem 2.5 that if 7' is maximal monotone then D(T') is a dense
F,. Is it the domain of some naturally defined proper convex lower semicontinuous
function?

e  Our proof of Theorem 8.1 appeals to [8] and [13]. Now [8] uses some quite sophisti-
cated functional analysis. Is there a more elementary proof of Theorem 8.17

o IfS: D(S)— E*and T: D(T) — E* are linear and maximal monotone and

D(S)—D(T)=E

(i.e., (7.2) is satisfied) is S + T necessarily maximal monotone?
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