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1. Introduction

Through the work of [3, 4, 26, 27] it has become clear that smooth subdifferentials char-
acterize many important generalized derivative concepts such as Clarke’s generalized gra-
dient, Ioffe’s geometric subdifferential and Mordukhovich’es limiting subdifferential. This
renewed interest in smooth subdifferentials has led to many useful results in the calcu-
lus of subdifferentials and their applications. Using a limiting process, results stated in
terms of the smooth subdifferentials can be rephrased in terms of the limiting subdif-
ferential, the singular subderivative and the limiting normal cone in finite dimensional
spaces. In infinite dimensional spaces similar limiting results have also been attacked ei-
ther through a limiting process from corresponding results for smooth subdifferentials or
directly by using various constructions for generalized derivatives or normal cones. How-
ever, these corresponding results in infinite dimensional spaces are always accompanied
by some additional conditions. There are essentially two types of such condition: (a) local
Lipschitz or directional Lipschitz conditions (see e.g. [6, 7, 11, 12]) and (b) compactly
epi-Lipschitzian, partially normal compactness and codirectional compactness conditions
(see e.g. [2, 14, 18, 24, 25]). It is natural to ask whether these limiting results hold
without those additional assumptions. We show below through examples that the answer
is negative in almost all cases. First we recall some related definitions.
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Let X be a Banach space with closed unit ball Bx. We use R to denote the extended real
line RU {+occ} and 2% to denote the collection of all subsets of X. Let f : X — R be a
lower semicontinuous function with f(z) < +o0o. We say f is (Fréchet)-subdifferentiable
and z* is a (Fréchet)-subderivative of f at x if there exists a function g such that ¢ has
continuous Fréchet derivative in a neighborhood of z, Vg(z) = z* and f — g attains
a local minimum at x. We denote the set of all Fréchet subderivatives of f at z by
Dr f(z). For a closed subset C' of X the Fréchet normal cone to C' at x € C is defined
by Np(C,z) := Dpéc(x). Here d¢ is the indicator function of C' defined by d¢(z) = 0
if x € C and éc(z) = +oo otherwise. We turn to the definition of the corresponding
limiting objects. In what follows w*-lim signifies the weak-star sequential limit.

Definition 1.1 ([19, 24]). Let f : X — R be a lower semicontinuous function. Define
Of () = {w" = lim v; 1 v; € Dpf(2), (23, f(2:)) = (2, f(2))},
and
0% f(z) := {w" — im tv; : v; € Dp f(23), t; — 0%, (i, f(2:)) = (2, f(2))}

and call 0f(x) and 0*f(z) the subdifferential and singular subdifferential of f at z
respectively.

Secondly, let C' be a closed subset of X. Define

N(C,z) := {w" — limv; : v; € Np(C,z;), C > z; = z}
11— 00

and call N(C,z) the normal cone of C at z.

Let F': X — 2Y be a multifunction with closed graph and let y € F(z). We say z* € X*
is a coderivative of I at (z,y) corresponding to y* € Y* provided that

(z*, —y*) € N(graph(F), (z,y)).

We denote the collection of all coderivatives of F' at (z, y) corresponding to y* by 0* F(z, y)
(v")-

Remark 1.2. (a) Denote by 0., 0, and 93° the Clarke generalized gradient [7], the regular
and singular geometric subgradient [3, 11], respectively. If X has an equivalent Fréchet
smooth norm then 9.f(z) = cI* co[df(z) + 0% f(z)], ,f(x) = cI"0f(z) and O;°f(x) =
cl* 0% f(x), where cl* signifies the weak-star closure (see e.g. [3]). The subdifferential in
the above definition has the advantage of being the smallest among the sequentially upper
semicontinuous subdifferentials. For this reason we state the finite dimensional positive
results below in terms of this limiting subdifferential.

(b) When f is convex 0, 0, and 0, coincide with the usual subderivative in convex analysis
and 0%, J;° and 97° coincide with the recession subdifferential in convex analysis. There-
fore the convex examples given below also provide examples for the Clarke generalized
gradient and loffe’s geometric subdifferential.

(c) Many valuable results in terms of the limiting subdifferential, singular subdifferential
and normal cone require the underlying Banach spaces to have certain smoothness prop-
erties, such as to have a Fréchet smooth equivalent norm. The corresponding results in
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terms of Clarke generalized gradient and the geometric subdifferential can be derived in
general Banach spaces. Later when we discuss examples in general Banach spaces we will
use Clarke’s generalized gradient. We recall the definition below.

Let X be a Banach space, let C' be a closed subset of X and let x € C. The Clarke
normal cone of C' at z is defined by

N (C,x) := cone{z* € X*: (z*,h) < limsup dc(z’' +th)/t}

o' —z,t—0t

where dc(z) := inf{[|z — y[| : y € C}, is the (metric) distance function to the set C. For
a lower semicontinuous function f : X — R, the Clarke generalized gradient and singular
generalized gradient are defined by using the normal cone to the epigraph of f as follows:

Of(z) :=={z* € X* : (z",—1) € Ne(epi(f), (z, f(z)))}

and

00X f(x) :={z" € X" : (2,0) € N.(epi(f), (z, f(x)))}-

We emphasis that most of the examples we construct are convex. This has several useful
consequences:

(a) It shows that convex objects are already complicated enough to exhibit most patho-
logical behaviour in infinite dimensional nonsmooth analysis.

(b) The underlying geometric features of the counter-examples are laid bare.

(c) The simple geometric nature of those examples facilitates various manipulations to
create more delicate (nonconvex) examples.

2. Calculus for subdifferentials

The sum rule is the most basic in the subdifferential calculus. In finite dimensional spaces
the following sum rule holds (see e.g. [8, Proposition 1.5], [17, Proposition 5A.4] and [23,
Corollary 4.6]).

Theorem 2.1. Let X be a finite dimensional Banach space and let f; : X = R, i =1,2
be lower semicontinuous functions finite at x with 0% fi(x) N (=0 fo(z)) = {0}. Then

(a)  O(f1 + f2)(z) C Ofi(x) + Ofa(x), and
(b)  0%(fi + f2)(z) C 0*fi(z) + 0% fa(x).

Our first example shows that this sum rule fails in infinite dimensional spaces without
additional assumptions. Here and below we usually construct the examples in (always
infinite dimensional) separable Banach spaces. Moreover, we primarily construct convex
examples. Thus, they are also examples for the Clarke generalized gradient and the
geometric subdifferential. At the end, we will comment on generalizations.

Example 2.2. Let X be a separable Banach space. According to [16, Proposition 1.f.3],
X admits a Markushevich basis (a fundamental and total biorthogonal sequence), i.e.,
there exists a biorthogonal collection {x,, f,}5, such that f, € X*, ||z,|| =1 for all n,
{1zl f2ll 352, bounded and span({z,}5>,) is norm dense in X, and f,(z) = 0 implies
z = 0.
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Define
A={f:f(z)=0,n=1,2,---}
and
B = {f . f($2n+1 _2"1'2”) = O’n: 1’2,}

Then clearly A and B are w*-closed and since the {z}} are densely spanning AN B = 0.
Now consider

ak = fors1, bk = fopr1 — 2 " for
¢k = fort1 — (forst1 — 2_kf2k)

It is easy to check that ay € A and b, € B. Moreover since AN B = 0 the representation
of ¢ is unique from A + B. Thus, since ¢ — 0 while ||ax|| > 1 (by biorthogonality),
we see that A + B is not closed, otherwise the convex Open Mapping Theorem [1] gives
ar — 0.

Finally, since { f} are total, A+ B is w*-dense in X*. So if we let M, := {z € X : (a,2) =
0, Va€ A} and My := {x € X : (b,z) =0, V b € B} we have Mi- + M is w*-dense
in X* but not closed and M{- N Ms- = 0. Define f; := 05, and fo := 0y, + (v, -) where
—v € X*\(Mi + M3). Since M- + M;- w*-dense implies that M; N My = {0}, f1 + fo
attains a minimum at 0. However, it is easy to check that df;(0) = 0®f,(0) = Mj,
0f2(0) = My + v and 9% fo(0) = Ms-. Thus,

0 ¢ 0£1(0) + 9f2(0)

and
9% f1(0) N (=9 f2(0)) = {0}

or equivalently
0 € 0 f1(0) 4+ 0> f»(0)

holds only in the trivial case.

Remark 2.3. The subspaces M; and M, in Example 2.2 are w*-closed quasi-comple-
ments. Whether such quasi-complements exist in all Banach spaces remains open.

A main application of the subdifferential sum rule is to derive necessary conditions for
constrained minimization problems. Necessary conditions for constrained minimization
problems with Lipschitz data can be found in [7, 10, 17]. General necessary conditions for
problems with lower semicontinuous and continuous data can be found in [20, Theorem
1(b)] (see also [21, Section 7]) and [5, Corollary 2.3]. We recall this necessary condition
below.

Let C C X and ¢; : X - R, i =0,1,...,N. Consider the following optimization
problem:
minimize go(x)

subject to g;(x) <0, i=1,2,..., M, P)
gi(x) =0, i=M+1,...,N,
zeC.
To simplify notation we introduce the quantities 7;,4 = 0,1,...,N. The 7/s associ-

ated with the inequality constraints and the cost function are always 1, i.e., ; = 1,7 =
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0,1,...,M. This corresponds to nonnegative multipliers. The 7/s associated with the
equality constraints are either 1 or —1, corresponding to multipliers with arbitrary sign,
ie,ne{-1,1},i=M+1,...,N.

Theorem 2.4. Let X be a finite dimensional Banach space, let C be a closed subset of X
and let g; be lower semicontinuous fort=20,1,..., M and continuous fori = M+1,...,N.
Suppose that T is a local solution of problem (P). Then either:

(A1) there erist v® € 0°(7;4:)(Z), @ = 0,1,...,N and v¥,, € N(C,%) such that 0 =
Sico v and 3300 [lofell = 1.
or there exist pu; > 0, j =0, ..., N satisfying Z;.V:O p; = 1 such that
(A2)
0e Y wolrg)@+ D, 0%(rg)(@) +N(C,z).

j€{é:pi>0} jefizni =0}

Remark 2.5. When all the functions in the constraints are Lipschitz the singular subd-
ifferential part in (A2) superfluous. In general, it cannot be eliminated. This is demon-
strated by the following elementary example:

Example 2.6. Consider problem (P) with X = C = R, N = M =1, go(z) = = and
g1(z) = —z'/3. Then 0 is the only solution. We can calculate directly that dg(0) =
{1}, 0°go(0) = {0}, 0g1(0) = 0, 3°¢1(0) = (—o00,0]. It is clear that relation Al is
impossible at 0 and A2 can be satisfied at 0 only if yo = 1 and g; = 0. In that case
0 € 9g0(0) + 0%°¢:1(0) = {1} + (—o0, 0].

Using a standard trick we can convert Example 2.2 to show Theorem 2.4 does not hold
without additional assumptions in infinite dimensional spaces.

Example 2.7. Again let X be a separable Banach space and let M; and M, be closed
subspaces of X such that Mi- N My~ = 0 and M{- + M, w*-dense but not closed. Let
v & X*\(Mi- + My") and go(z) = 6, (z) — (v, z). Consider the problem of minimizing
go(z) subject to x € My. Then 0 is a solution. The normal optimality condition 0 €
0g0(0)+ N (My,0) = Mi-+ M- —v does not hold and the singular condition 0 € 9®gy(0) +
N(Ms,,0) = Mi- + Mj" holds only in the trivial case.

The chain rule is another important calculus rule for subdifferentials. Chain rules with a
Lipschitz condition or other additional assumptions can be found in [7, 17, 21, 23, 28] with
further references and discussions. A chain rule for lower semicontinuous functions and
continuous functions can be deduced from Theorem 2.4 using a method in [29]. Consider
the composition f o g where f: RY — R and g = (g1, ...,gn5) : X — RY. Suppose that f
is nondecreasing in its first M components. Consider a local minimum Z of f o g. Then
(Z,9(Z)) is a local solution of:

minimize f(y)

subject to g;(z) —y; <0, i=1,2,..., M,
gi(z) —y; =0, i=M+1,...,N.

An application of Theorem 2.4 yields the following chain rule.
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Theorem 2.8. Let X be a finite dimensional Banach space, let f : RN — Rand g; - X —
R,i=1,... M be lower semicontinuous functions and let g; : X = R,i =M +1,....N
be continuous functions. Suppose that f(g1,...,gn) attains a minimum at T and that f is
nondecreasing in its first M components. Then either:

(A1) there exist v?° € 0°(1;:)(Z), i = 1,..., N such that 0 = Y.~  v® and YN, [|v®°]|
= 1.

or there exist = (p1, ..., un) € 0f(9(Z)) such that
(A2)
0e > wolmg)@+ Y, 0°(r9) @)

je{ipui#0} je{iui=0}

Setting M = N = 2 and f(y1,y2) := y1+¥o in Theorem 2.8 we obtain a special case of the
sum rule of Theorem 2.1 for which Example 2.2 still applies. Thus, Example 2.2 shows
that the chain rule Theorem 2.8 fails in infinite dimensional spaces. Moreover, since the
chain rule follows from Theorem 2.4 for minimization problems with no set constraint, it a
fortiori follows that Theorem 2.4 without a set constraint also fails in infinite dimensional
spaces.

The normal cone relation for the intersection of sets (see e.g. [11, Theorem 5.4] and [24,
Corollary 4.5]) is a useful geometric consequence of the sum rule for subdifferentials. It
asserts that in finite dimensional spaces T € Sy NSy and N(S1,Z) ((—N(S2,z)) = {0}
implies that

N(S1N Sy, T) C N(S1,%) + N(Ss, 7).

In infinite dimensional Asplund spaces this result holds under an additional normal com-
pactness condition (see [24, Corollary 4.5]). This assertion also fails in infinite dimensional
spaces without additional assumptions.

Example 2.9. Let X be a separable Banach space and let M; and M, be closed subspaces
of X such that Mi-NM;- = 0 with M-+ M;- w*-dense but not closed. Then M;NM, = {0}
and

X* = N(M; N M,0) ¢ N(M;,0) + N(Ms,0) = M- + M.

We emphasize that the above phenomenon is due to the behavior of the normal cones of
the sets. Even imposing norm compactness of the sets involved will not help as is shown
by the following example.

Example 2.10. Let X be an infinite dimensional Banach space and {e,}5>, unit in-
dependent vectors in X. Define S; := clco{Z%} and S, := {tv : ¢ € [-1,1]} where
v:=(322,%) € X. Then both S; and S, are norm compact and S; N Sy = {0}.

n=1 n2

However, noting that v € clspan(Si),

X* = N(51N85,0) ¢ N(S1,0) + N(S3,0) = span(S;)" + span(S,) " = span(S;)*

3. Calculus for coderivatives

Since there are standard methods of deducing calculus for subdifferentials from calculus
for coderivatives of multifunctions [25], limiting examples for the calculus of subdifferen-
tials also provide limiting examples for coderivative calculus. However, direct construc-
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tion seems much easier. We provide two such examples below for the sum rule and the
chain rule respectively. First let us state a finite dimensional version of the sum rule for
coderivatives from [23, Theorem 4.1]. Recall that a multifunction G : X — 2Y is lower
semicompact around z if there exists a neighborhood U of z such that for any z € U and
any sequence T — =, there exists a sequence y; € G(z) that contains a norm convergent
subsequence.

Theorem 3.1. Let X and Y be finite dimensional Banach spaces, let F1 and Fy be mul-
tifunctions from X to'Y with closed graphs, and let § € F1(Z) + F»(Z). Assume that the
multifunction

S(z,y) :={(y1,92) : y1 € F1(x),y2 € F2(x),y1 + y2 =y}

is lower semicompact around (Z,7), and that the following condition is fulfilled:

0" Fy(2;41)(0) N (=07 F2(7;92)(0)) = {0}, V(y1, 42) € S(7,9)-

then
FFH+R) ) | [0FR@ )W)+ 0 Fa(z, ) ).

(y1,92)€5(%,7)

Remark 3.2. The results in [23, Theorem 4.1] are derived under the weaker condition
that the multifunction S(z,y) is locally bounded. We stated the theorem with the lower
semicompactness condition because it is more commonly used for results in infinite di-
mensional spaces (see [22, 24, 25]).

We adapt Example 2.2 to provide an example showing the coderivative sum rule may fail
in infinite dimensional spaces.

Example 3.3. Again let X be a separable Banach space and let M; and M, be closed
subspaces of X such that MMMz = 0 and M-+ M- is w*-dense but not closed. Recall
that M + Mj w*-dense implies that M; N M, = {0}. Define multifunctions F, F; :
H — 2% by graph(F;) := M; x R*, i = 1,2. Then graph(F, + F5) = {0} x R*. Consider
0 € F1(0)+F5(0). Theset S(z,y) := {(y1,y2) € R* : y1 € Fi(x),y2 € Fo(x),y1+ys = y} is
{(0,0)} at (z,y) = (0,0) and () elsewhere. It is obviously lower semicompact around (0, 0).
Easy calculation shows that 0% F;(0,0)(0) = M;* fori = 1,2 and 0*(F, +F3)(0,0)(0) = X*.
Thus the regularity condition

0" F1(0,0)(0) N (—0"F>(0,0)(0)) = {0}
holds yet the sum rule
0" (Fy + F»)(0,0)(0) € 9" F1(0,0)(0) + 0" F5(0,0)(0)
fails.

Now we turn to the chain rule. The following is a finite dimensional space version of the
chain rule [23, Theorem 5.1]. Again note that in the finite dimensional result given in [23,
Theorem 5.1] the weaker locally boundedness condition is used for M(z, z).
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Theorem 3.4. Let XY and Z be finite dimensional Banach spaces and let F : X XY —
27 and G : X — 2Y be multifunctions with closed graphs. Assume that the multifunction

M(z,2) =G@)NF '(2)={y€G(x):2€ F(z,y)}

is lower semicompact around (Z,Zz). Assume also that for any §j € M(Z, z) the regularity
condition

(=", y") € 0°F((2,9); 2)(0)& — 2" € "G (z;9) (y")] = 2" =0 & y* =0
holds. Then, for all z* € Z*,
O(FoQ)(%:2)(z") ¢ |J [f+a5:27 € 0°G@:9) "),
FEM(L,%)
(z3,9") € O°F((7,7); 2)(2")]-

Example 3.5. Let the separable Banach space X and its subsets M; and M, be as in
the previous example. Let Y = Z = R. Define multifunctions F' and G by

G(,’E) L Rt =ze€ Ml,
R otherwise

and
+ M +
F(l‘,T’) = R (ZE,T)G. QXR )
0 otherwise.

Then
F(z,G(z)) = {R 7=0

0 otherwise.

When Z = 0 and z = 0 we have M(0,0) = {0} and it is the only value for (z, z) that
makes M(x,z) # (0. Thus, M is lower semicompact around (0,0). Next we check that
the regularity condition is satisfied. In fact, z* and y* satisfying the regularity condition
amounts to

(z*,y%,0) € N(graph(F), (0,0,0)) = M5 x (~R*) x (~R")
and
(—33*, _y*) € N(graph(G)a (07 O)) = MIJ_ X (_R+)‘
This obviously implies that z* = 0 and y* = 0.
Nevertheless, the chain rule does not hold because
0*(F o G)(0;0)(0) = X*
while
7 € 0"G(0;0)(y")

and
(z3,y") € 0"F((0,0);0)(0)

implies that 2} € M{- and 3 € M.

We refer to [15, 24, 25] and the references therein for detailed discussions on calculus for
coderivatives in infinite dimensional spaces.
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4. The extremal principle

The extremal principle can be traced back to Mordukhovich’es work [19] (see also [20, 21]).
In Fréchet smooth Banach spaces this result was established in Kruger and Mordukhovich
[9] while the term “extremal principle” was coined in [23]. It extends the Separation
Theorem for convex sets to nonconvex sets and is useful in many applications. The
following is a finite dimensional form of the extremal principle [23, Theorem 3.2]. We
recall the (equivalent) definition of an extremal point first. Let S; and Sy be closed sets
in a Banach space X. A point 7 is called a local extremal point of (S1,Ss) provided that
T € S1 NSy and there is a neighborhood U of z and a sequence {ax} in X such that
ar — 0 and

Slﬂ(SQ—ak)ﬂU:(b.

Theorem 4.1. Let X be a finite dimensional Banach space, let S and Sy be closed
subsets of X and let T be a local extremal point of (S1,S2). Then

N(S1,2) N (=N(S2, 7)) # {0}.

An easy modification of Example 2.2 give us the following example that shows this ex-
tremal principle does not hold in infinite dimensional space without additional assump-
tions.

Example 4.2. Let X be a separable Banach space and let M; and M, be closed subspaces
of X such that M- N M35 = 0 and M;- + M; dense but not closed. Again note that
M-+ M;- w*-dense implies that M; M, = {0}. Observe that M;+ M, is not X otherwise
M + My is closed. Let v & My + M,. Then, for any sequence of real numbers r, — 0,
ryv & My + M,. That is to say (rpv + M) N My = () so that 0 is an extremal point for
(M1, My). However, N(M;,0) N (—N(M,,0)) = Mi- N (—Ms") = M- n My = {0}.

Here the extremal principle’s failure is also due to the behavior of the normal cones of
the sets. The following example adapted from Example 2.10 shows that the extremal
principle may even fail with two norm compact sets.

Example 4.3. Let X be a separable Banach space and {e,, }°°; unit independent vectors
that densely span X. Define S; := clco{Z2} and S, := {0}. Then both S; and S, are
norm compact. Let v := (37, %) € X. Note that for any sequence of nonzero real

numbers 7, — 0, (rpv + S2) NSy = {rgw} NSy = B. Thus, 0 is an extremal point for
(S1,S). However, the extremal principle does not holds at 0 because N(Si,0) = {0}.

5. The Open Mapping Theorem, metric regularity and the pseudo-lipschitz
property

These are important concepts that lead to many applications and are the focus of much
continuing research. In finite dimensional spaces Morduhovich [22] is a definitive paper
that contains a thorough discussion of the equivalent relations of openness, metric reg-
ularity and Lipschitz properties of multifunctions as well as a complete characterization
of those properties in terms of the limiting coderivatives. In this section we construct
examples showing these characterizations fail in infinite dimensional spaces.
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5.1. Open Mapping Theorem

First recall a finite dimensional form of the Open Mapping Theorem [22, Theorem 3.3].
A multifunction F : X — 2Y is said to have an open covering property with linear rate
around (z,y) € graph(F') provided that there exists a real number a > 0 and open
neighborhood U of z and V of y such that, for any 2’ and r > 0 satisfying 2’ +rBx C U,
we have F(2') NV + arBy C F(2' + rBx).

Theorem 5.1. Let X and Y be finite dimensional Banach spaces and let F : X — 2Y be
locally bounded around x. Then F has an open covering property with linear rate around
(x,y) € graph(F) if and only if

Ker*F(z,y) :={y* € Y*:0€ 0F(z,y)(y*)} = {0}.

Example 5.2. Let X be any separable Banach space and {e, }22 ; unit independent vec-
tors that densely span X. Define Sy := clco{=2} and S, := {tv : t € [—1,1]} where v :=
(>>>° . &) € X. Then both S; and Sy are norm compact and S; NSy = S;N(—S,) = {0}.

n=1 n2

Define

Fz) = z+S;, ifzed,
R otherwise

It is easy to see that (0,0) € graph(F’). Since span(S;) is dense in X we have
N(graph(F), (0,0)) C [{0} x Si]* = X* x {0}.

Therefore, Ker 0* F(0;0) = {0}.

It remains to show that F' does not have an open covering property with linear rate around
(0,0). In fact, for any r > 0,

FirBx)= |J [v+8)

YE[0,/[v]]]

does not contain any open ball around 0. To see this let u := (377, ) and « be an
arbitrary positive number. Then au € F(rBx) implies that, for some v € [0,7/]|v]|],

au — yv € 57 as can only happen when au = yv = 0.

5.2. Metric regularity

A multifunction F': X — 2V is called locally metrically reqular around (z,y) € graph(F)
if there exist neighborhoods U of 2 and V' of y and constants a, b such that dp—1(,)(z) <
a - dp(y) for any x € U and y € V satistying dp)(y) < b.

By equivalence of metric regularity and openess with linear rate in [22] the same condition
Kero*F(z,y) ={y" € Y*:0€ 0"F(z,y)(y")} = {0}

also characterizes the local metric regularity of F' around (z,y). Example 5.2 then also
give us an example where the above characterization of local metric regularity of F fails
in infinite dimensional spaces.
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Example 5.3. Let X be separable Banach space and define F' as in Example 5.2. We
have already shown that Ker 0*F'(0;0) = {0}. Now we verify that F' is not locally regular
around (0,0). In fact, it is easy to check that F~1(0) = {0}. Consider z := 27%v. Then
dp()(0) > 1277307 1 %||. Therefore,

dr-10)(2) 27lv]| _ o] '
dr@)(0) — l127F 30 Bl 1220 3l

When £ — oo the right hand side of the above inequality diverges to +oc. Thus, the
relation dg-1(0)(z) < @ - dp(4)(0) does not hold for any a.

The equivalence of metric regularity, the open mapping property and the pseudo-Lipschitz
property for the inverse multifunction in [22] then implies that the characterization of the
pseudo-Lipschitz property for multifunctions given in [22, Theorem 5.7] does not hold in
infinite dimensional spaces without additional assumptions.

6. Generalizations

Many examples discussed in the previous sections can be constructed in more general
Banach spaces and can be refined. In this section we briefly discuss some methods to do
so. As promised in Remark 1.2 (c) we will construct examples for the Clarke generalized
gradient.

6.1. Constructing examples in more general Banach spaces

Suppose T is a bounded linear mapping from a Banach space X onto a separable (quo-
tient) Banach space Y. Then 7™ is an isomorphism from Y* into X*. Consider a lower
semicontinuous function f : Y — R. Define g : X — R by g(x) := f(Tx). Then it is easy
to check that, 0.9(x) = T*0.f(Tx) and 0°g(x) = T*0X° f(Tx). Using these relations all
the examples constructed in Y can be lifted to X. We illustrate by embedding Example
2.2 in a Banach space with a separable quotient.

Example 6.1. Let X be a Banach space with a separable quotient Y, i.e., there exists
a linear bounded quotient mapping 7" from X onto a separable Banach space Y. As in
Example 2.2 we construct closed subspaces M; and M, in Y such that M + M3 is w*-
dense in Y* but not closed and M- N M3 = {0}. Define f,(x) := 0, (Tx) and fo(x) :=
O, (T) + (v, Tx) where —v € Y*\ (M + Mj) and, therefore, —T*v € X*\(T*M;- +
T*Mj). Since M; N My, = {0}, fi + fo attains a minimum at * = 0. However, by
an open mapping argument, df;(0) = 0®f1(0) = T*Mj, 8f,(0) = T*Ms- + T*v and
0% fo(0) = T*Mj-. Thus, 0 € 9f1(0)+0f2(0) and 9% f,(0) N (—0> f2(0)) = {0} holds only
in the trivial case.

In particular, all weakly compactly generated Banach spaces, [, and L., have separable
quotients [16] and, therefore, all the examples in the previous sections can be constructed
in them.

6.2. Constructing continuous examples

In Example 2.2 we use the indicator function d57,,7 = 1,2 of the closed subspace M.
These indicator functions are lower semicontinuous extended valued convex functions.
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We will show that we can in fact trade convexity for continuity. The trick is to replace
the indicator function d;; by a power of the distance function, d},(x), for v € (0,1).

Example 6.2. Asin Example 2.2 let X be a separable Banach space and let M; and M,
be closed subspaces with Mi-N M3 = {0} and Mi- + M3 w*-dense in X* but not closed.
Define f; := d}, and fo :=d}, — (v,-) where v € X*\(Mj- + Mj") and v € (0,1). Then
the restriction of f; + f; on any finite dimensional subspaces L of X attains a minimum
of 0 at x = 0. In fact, assume the contrary that there exists a sequence z,, € L converges
to 0 with fi(z,) + fo(7n) <0, ie., 0 < dy; (7n) + d}y, (Tn) < (v,25). Since dy, i = 1,2
are y-homogeneous we can rewrite this inequality as

T

"zl

T T
0 < diy, (7—7) + dag, (7)<l 7w
Ml 2l

).

The right hand side of the inequality goes to 0 as n — oo. However,

Ty

[

)+ ), (-2 > inf{d], (u) + dl, (u) s u € L, |Jul| = 1} > 0.

dy (
. [l

This is absurd. The g-subdifferential characterization of the Clarke generalized gradient
[3, 11] then yields 0 € 0.(f1 + f2)(0).

Observing that d}, (z) < dp;(z) we have epi(da;) C epi(dy, ). Therefore N(epi(dy,,),
(0,0)) € M x (—R+). Thus, 8.£,(0) € M-, 3% f,(0) € M, 8.f2(0) € M; — v and
02 fo(0) C Mj-. As in Example 2.2 we can see that the sum rule does not hold.

Remark 6.3. In fact the relation between 0.d}, (0) and N (M;,0) that we used in the
above example is a special case of the following more general result which is interesting
in itself.

Lemma 6.4 (Nonconvex penalization). Let X be a Banach space, let C be a closed
subset of X and x € C. Then, for any v € (0,1),

0cdl(z) = 0°d)(x) = N.(C, z).

Proof. For any A > 0 there exists a neighborhood U of x such that, for all y €
U, Mc(y) < di(y) < 6c(y), ie., epi(donr) C epi(diny) C epi(Adeny). Therefore,
N.(epi(Adc), (2,0)) C N.(epi(d}), (x,0)) C N.(epi(dc),(x,0)). Since A is arbitrary we
obtain N(epi(d}), (z,0)) = Nc(epi(dc), (z,0)) = N.(C,z) x (—R"), which completes the
proof. O

We use the following concrete example to illustrate the construction discussed in Example
6.2.

Example 6.5. Let H := ¢, and denote the unit vectors by {u,}. Suppose {a,} is a

sequence of positive real numbers with 1 > «, > /1 — n—12 Set e, = uop_1, fn =

Qplon—1 + /1 — &2ug,. Define

M := clspan{ey, ey, ... }and My := clspan{fi, fo,... }.
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Then, for any z = Y7 | z,u, € H, the partial sum

N N

2N
Ton Oy Ton
DL TS o R L R S TREF PSS VAN VA
n=1 n=1 1- OJ% n=1 1—- (X%

Therefore, M; + M, is dense in H. This implies that M- N Ms- = {0}. Noting that
Mt = cl span{hy, hy,...} and My = ¢l span{gi, go,...} where h, = uy, and g, =
/1 — a@2ug, 1 — gy, we can show by a similar argument that M;- + M;" is dense in H
which implies that M; N My = 0. It remains to show that M; + My # H. Consider

vi= N 1 — a2ugy,.
d Vi-a

n=1

Ifv=y+zwithy € M and z € M, then y = > > ye, and z = > o2 | z,f, because
{en} and {f,} are orthonormal basis for M; and M respectively. Then we must have
z, = 1 and y, = z,, = a, — 1 which is impossible.

Fix 0 < 7 < 1. For arbitrary z = Y . | z,u, € H, the explicit form of the functions in
Example 6.2 is

o0

fi(z) = [Z$§n]7/2
n=1
and
foz) = [Z(\/l — 02Top_1 — ApT2y)’] " _ Z V1 —aizy,.
n=1 n=1

By picking v arbitrarily close to 1, we obtain examples that are Holder continuous of any
desired modulus less than one, but of course not Lipschitz (modulus one). This method
also applies to Example 2.7.
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