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ABSTRACT

The drift velocity due to capillary-gravity waves in a deep ocean is investigated theoretically. The surface is
covered by an insoluble, inextensible film, and the analysis is based on a Lagrangian description of motion.
Attenuated as well as nondecaying, or permanent waves, are discussed. The strong temporal attenuation due
to the inextensible film is shown to have a profound influence on the drift problem. It causes the induced mean
virtual wave stress at the surface to decay quite rapidly, thereby limiting strongly the growth of the Eulerian
part of the drift current. The drift problem for permanent waves is demonstrated to fall into two different
categories, depending on the boundary conditions to second order: (i) If the mean tangential wind stress vanishes,
our results confirm Craik’s criticism of the analysis by Phillips and (ii) if the mean horizontal wind stress
vanishes, there is an increased shear in the viscous boundary layer at the surface, as suggested by Phillips. Below
the boundary layer the mean flow is essentially that of Stokes. But the surface velocity, and hence the motion
of the film, is in the opposite direction of the waves, Finally, for temporally attenuated waves, it is demonstrated
that the difference between the mean drift velocity at a clean surface and the mean drift velocity at a film-
covered surface depends very much on the wavelength.
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Effect of an Insoluble Surface Film on the Drift Velocity of Capillary-Gravity Waves

1. Introduction

1t is well known that surface films of biogenic origin
cover large areas of the ocean surface. They are partic-
ularly predominant in coastal zones (Barger et al. 1974;
Brockmann et al. 1976). In addition to these natural
films, or slicks, we find pollutant organic slicks from
petroleum spills or municipal effluents. Such films resist
the formation of wind-generated capillary waves. They
also strongly enhance the attenuation of short waves.
This reduces the aerodynamic roughness of the sea
surface, changing its reflectance characteristics. Dy-
namically, the reduction of the surface roughness di-
minishes the wind stress and thereby the wind-induced
drift current. The existence of surface films also affect
the growth of longer waves, since the transfer of wind
momentum to longer waves may depend on the pres-
ence of short waves riding on the backs of the longer
waves (Garrett and Smith 1976; Landahl 1985). In
fact, it has been anticipated since ancient times that
waves in a storm could be calmed by pouring oil onto
the sea (see Scott 1978, for a historical review).

The basic mechanism behind the increased damping
in the presence of a surface film is now well understood
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{Dorrestein 1951 ). Essentially, it is related to the mod-
ification of the tangential stress boundary condition at
the water~film interface. A complete treatment of this
problem also involves the physical and chemical prop-
erties of the film itself. A discussion of this is beyond
the scope of the present paper. There exists, however,
a comprehensive literature on this subject. The inter-
ested reader is referred to Herr and Williams (1986)
for review articles and references.

To the authors’ knowledge published papers that
consider the effect of surface film on the wave-induced
mean current are not numerous. Notable exceptions
are the contributions by Phillips (1977) and Craik
(1982). They both, for simplicity, assume that the film
is incompressible. This corresponds to the inextensible
limit considered by Lamb (1932).

It is a fact that natural films contain both soluble
and insoluble components. This may lead to elastic
hysteresis due to different behavior of the soluble com-
ponent during the compression and dilational phases
of the wave cycle. Ideally such effects should be incor-
porated in a model of nonlinear wave drift. However,
we feel that this approach is too ambitious considering
the present state of the art. Instead, we focus on the
more hydrodynamical aspects of the wave problem,
utilizing an inextensible, insoluble, high surface-pres-
sure film as a substitute for more realistic films. Al-
though being an idealization, this is known to yield
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results for waves that are quite reasonable, see the dis-
cussion by Craik (1982). A more general condition at
the contaminated surface was adopted by Puri and
Pearce (1985). Their results subsume those obtained
by Phillips (1977) in the limiting case of an inextensible
film.

For a deep ocean, where the surface is covered by
an insoluble, incompressible film, Lamb (1932) found
that the temporal attenuation coefficient, 8, for the
waves can be written (in our notation)

kw

B4

(1.1)
Here k and w are the wavenumber and wave frequency,
respectively. Furthermore, vy is an inverse viscous
boundary-layer thickness defined by

@ 1/2
v=(5)

where v is the kinematic viscosity of the fluid. The vis-
cous boundary layer at the surface is always very thin,
i.e.

(1.2)

k <1, (1.3)
Y

For future reference, we state the classic result of Stokes
(1847) for wave drift in an irrotational inviscid fluid.
Denoting the vertical coordinate by c € <—oo ,0],and
the wave amplitude by {,, Stokes’ result for the mean
particle velocity us can be written as

Us = {ozwkezk‘. (1.4)

As noted, the presence of an insoluble surface film leads
to increased wave damping. Phillips (1977) and Craik
(1982) argue that this must promote stronger mean
drift currents. Phillips (p. 58 ) suggested that this would
manifest itself as an increased mean velocity difference
across the viscous boundary layer near the surface, not
altering the drift conditions in the interior. This view
was opposed by Craik (1982), who argued that a large
source of mean vorticity proportional to {?wk?*(y/k)
would be generated just below the surface. This would
in turn induce an Eulerian mean velocity in the interior
of the fluid, greatly exceeding the classic Stokes drift
us, given by (1.4). In calculations to illustrate this
point, Craik considered permanent waves. These are
waves that are kept at constant amplitude by the ap-
plication of a suitable stress distribution along the sur-
face (Lamb 1932, p. 629). However, the specific form
of the boundary condition that determines the devel-
opment of the mean drnift depends critically on how
the viscous stress along the wave surface is prescribed.
In particular, for a vanishing mean net horizontal stress
on a fluid element at the surface, we find that the wave
drift below the viscous boundary layer is essentially
unaffected by the presence of a surface film.
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We focus primarily on the mean drift due to waves
which attenuate in time. Then second-order mean vor-
ticity proportional to v/k will diffuse into the interior,
implying an increase of the mean velocity below the
surface layer. However, this vorticity, or equivalently
virtual wave stress (Longuet-Higgins 1969), is pro-
portional to exp(—28t), where 8 is given by (1.1).
Hence this source of momentum will decay in time.
In fact, for short capillary-gravity waves (for which the
inextensible film limit is an acceptable approximation)
this decay is quite rapid. This has a profound effect on
the development of the drift current, as will be dem-
onstrated for various values of the wave parameters.

2. Mathematical formulation

We consider waves on the surface of an incompres-
sible, homogeneous, viscous fluid of density p. The
depth of the fluid is infinite, or more precisely, much
larger than the wavelength. The horizontal extent of
the fluid is unlimited. When undisturbed, the surface
is horizontal. A Cartesian coordinate system is chosen
such that the x, y-axes are situated at the undisturbed
surface, and the z-axis is positive upwards.

Let the wave motion be two-dimensional. In Euler-
ian notation the position of the surface is then given
by z = {(x, t). Here we assume that the surface is
covered by a very thin, insoluble film. The presence of
a surface active material reduces the value of the surface
tension. Let this reduced value be denoted by 7. Fur-
thermore, let the external dynamic stresses, normal and
tangential to the fluid boundary, be denoted by ¢ and
7. Expressing the effect of the surface tension explicitly,
and not as a part of ¢, the dynamic boundary condi-
tions at z = { can be written in the x- and z-directions,
respectively,

T— 0= uw(u; + Wy) +p§x

_ T e §x
— 2uu, & + —“'—'——(1 n §x2)3/2 (2.1)
o+ 78 =—p+ 2uw, — u(u, + wy) {&
T ex (2.2)

- (1 + §x2)3/2 .

Here (u, w) are the velocity components in the x- and
z-directions, respectively, p is the dynamic pressure,
and u the dynamic viscosity coefficient.

To deal properly with nonlinear wave motion in an
Eulerian context, curvilinear coordinates should be
applied (Longuet-Higgins 1953). Alternatively, the
motion may be described by a direct Lagrangian ap-
proach (Pierson 1962; Weber 1983a,b). This proves
to be very convenient and we shall pursue this line
here.

For two-dimensional motion the fluid particles are
labeled with the Lagrangian coordinates (a, ¢). The
displacements (x, z) and the dynamic pressure p are
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written as series expansions after an ordering parameter where

¢ (Pierson 1962):
x=a+exV+2xP+ ...
z=c+eV+ 2P+ ...

=—pgc+ eV +e2p@+ ..., (2.3)

For wave motion with an initial amplitude {p, this pa-
rameter can be written as e = {yw/k (Weber 1983a,b).
The primary wave field is described by the quantities
labeled (1) in (2.3). We assume here that the surface
film is inextensible in the tangential direction. This
means that the tangential particle motion associated
with the waves is halted at the water/film interface.
Accordingly, to O(¢), '

xM=0, ¢c=0 (2.4)

where ¢ = 0 specifies the exact position of the surface
in Lagrangian notation.

Formally, the external normal and tangential stresses
in (2.1)-(2.2) may be written as series exansions in e:

c=ecV+ @D+ ... (2.5)
r=eM+ 2@+ ..., (2.6)
Utilizing (2.4), which implies that x,(*’ = 0 at the sur-
face, together with the O(¢) Lagrangian approximation
of the continuity equation: x,'V + z.(V = 0, the dy-

namic boundary conditions (2.1) and (2.2) to O(e)
and O(e?) may be written in Lagrangian form:

1 1
T(l)=ﬂ(xt(c)+zt(a) , ¢=0
c=0

7@ g, () = p, () 4 T, )
+u(xD +22), ¢=0 (29)

e @ 7 ) = _p® _ 1@
+ w220 = 220 %,V = x 2,V - 2z,

(2.10)

(2.7)

W =~p® — Tz, (2.8)

(1))

b

c=0.

3. The primary wave field

The solution to O(e¢), or the primary wave field, is
obtained by separating the wave field into an irrota-
tional part and a rotational part (Lamb 1932). Utilizing
(2.4), we obtain in complex notation

. 3
x(l) P i’_‘_ (exc . emc)'eixa+nt
n
2 = _..'i(exc__x_emc)eixawzt r (3.1)
n m
P 8K’ Lo
p‘(l) = (nZ + gx)e"c — ee |pixatnt
n m J

(3.2)

Furthermore, we assume that Re(m), Re(«) > 0 so
that the solutions vanish as ¢ = —o0.
Here temporally attenuated waves are obtained when

k=k
n=—iw—4

where the wavenumber k, the wave frequency w and
the decay rate 8 all are assumed to be real.
Spatially attenuated waves are achieved if we take
k=k+ ia}

n=—iw

m?=«2+n/v.

(3.3)

(3.4)

where « is real.
When the viscosity is small, we obtain from (3.2):
' k> k3
m=y1—-i+(1+i)-—+0|{— (3.5)
4y Y
where v is defined by (1.2). This result is based on the
fact that «, 8 ~ O(k/+), which is verified below.
The dispersion relation follows from (2.8). For at-
tenuated waves (o (" = 0), we obtain

k 1/2
w=w0<l -—E;)

where wg = (gk + Tk>/p)'/? is the frequency of inviscid
capillary-gravity waves. For temporal attenuation, the
decay coeflicient becomes ‘

(3.6)

(3.7)

as stated by Lamb (1932). For spatially attenuated
waves, we find for the damping coefficient

- k2w02
* 7 2v(we? + 26°T/p)

We note from (3.7) and (3.8) that the relation a = 8/
¢ (Gaster 1962), where ¢ is the group velocity, also
holds here.

For a suitably arranged external normal stress dis-
tribution ¢ (!’ along the surface, work may be done on
the fluid in such a way that the loss of energy due to
internal friction is exactly compensated for (Lamb
1932). This yields permanent waves, i.e., waves that
propagate without change of amplitude. In the present
context this means that « = 8 = 0. The dispersion
relation is again given by (3.6). The corresponding
normal stress distribution, which somehow must arise
from motions in the air, is then obtained from (2.8):

(3.8)

kwg®
e =25 eltka=en ¢ =,

e (3.9)

One should note that, for attenuated as well as for per-
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manent waves, there is a nonzero periodic tangential
stress 7 ¢! acting on the fluid. This is seen by insertion
of the solutions (3.1) into the boundary condition
(2.7). Accordingly, an equally large and oppositely di-
rected periodic stress —7 () is acting on the film. This
stress is taken up by its lateral stiffness.

Obviously, the effect of rotation on short capillary-
gravity waves can safely be neglected. This is because
the wave frequency is very much larger than the inertial
frequency.

4. Boundary conditions for the mean motion

We are now in the position to calculate the dynamic
boundary conditions for the mean horizontal motion
to O(€?). The mean is defined as an average value over
one wavelength, and will be denoted by an overbar.
For attenuated waves, there is no wind in the problem.
Accordingly, the mean tangential stress to O(e?) must
vanish at the surface. This means 7 = 0 in (2.9).
Since also ¢ ¢! = 0, equation (2.9) reduces to

Pz, + 1202, 4 w(£@ + 22) = 0,

c=0. (4.1)

Furthermore, we assume that there is no net vertical
flow at the surface, i.e.

@ =0, c=0. (4.2)

By insertion from (2.8) into (4.1), we then obtain
x#=0 ¢=0. (4.3)

This constitutes the surface boundary condition for the
mean horizontal drift current induced by temporally
or spatially attenuated waves.

For permanent waves, we may arrive at two different
boundary conditions. If we again assume that there is
no mean tangential stress acting on the surface, (2.9)
yields for the mean motion:

—e Mz = p0zI0 4 ux® =0, (4.4)

Here we have utilized (4.2) and the fact that z{z{"

= (. By insertion from (2.8) into (4.4), we obtain
XP=0, ¢=0 (4.5)

which is the same result as for attenuated waves.

However, since we now may choose the (weak) wind
field at will, it is possible to prescribe a mean tangential
wind stress 7(2) # 0. Since the film is tangentially in-
compressible, it may transfer this mean stress to the
fluid. We choose 72 so that there is no net horizontal
stress on a fluid element at the surface. This means
from (2.9) that

7@ =Wz =0, (4.6)
The boundary condition (2.9) then reduces to
px@ = —pWz, M ¢ =0, 4.7)
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By insertion from (3.1), we find

k3’Y k2
() = - L —_—— =
X, o (1 472) , ¢=0. (438)

The mean tangential wind stress in this case becomes
from (4.6)

(4.9)

It is obvious that the two different boundary conditions
(4.5) and (4.8) lead to very different developments of
the drift current induced by permanent waves. This
will be discussed in some detail in section 7.

At infinite depth the mean wave drift is assumed to
vanish, i.e.

P =>0, ¢c—>—oo. (4.10)
This must be valid for attenuated as well as for per-
manent waves.

5. The mean drift due to temporally attenuated waves

It is clear that the concept of permanent short waves
is rather unrealistic in an oceanographic context. This
is because it is practically impossible in a real ocean to
achieve the very special surface stress distribution that
is required to sustain these waves against friction. Un-
less the wave damping is small, the wave-induced drift
due to permanent waves has therefore little practical
interest. However, since this problem is often encoun-
tered in the literature, we shall discuss it briefly in sec-
tion 7.

In a wave tank, it is appropriate to adopt a spatial
description of wave amplitude decay. Here a wave gen-
erator is operating at a given frequency. Due to the
strong damping of short waves, the wave train will be
confined to a relatively small area behind the generator.
In the ocean, waves are generated by the action of wind.
A passing windrow generates short capillary-gravity
waves over a rather large area. When the local wind
forcing has disappeared, the waves in the whole area
attenuate due to friction. When a new windrow comes
along, the process repeats itself. Accordingly, the be-
havior of short waves in the open sea seems to be
most adequately described by temporal attenuation.
Our main attention will therefore be focused on such
waves as far as the mean drift is concerned.

As already mentioned, short waves on a clean surface
are subject to rapid damping. When the surface is cov-
ered with a thin, perhaps monomolecular organic film,
this damping process occurs even more quickly. As an
example we consider a layer of oleyl alcohol, which is
often used for experimental purposes ( Hiihnerfuss et
al. 1981). Such a film meets our requirements of in-
solubility and incompressibility reasonably well. The
air—water surface tension, 7', of a clean surface of about
74 dyn cm ™' may now be reduced to 43 dyn cm ™',
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However, one should keep in mind that for more re-
alistic, natural films the surface tension reduction
probably will be considerably smaller. Values from 0.1-
5 dyn cm ™! may be more appropriate, although very
little data on this subject is available. Anyway, various
choices of the numerical value for the surface tension
reduction do not alter the basic wave drift problem.
Assuming a value of 0.012 cm? s™! for the molecular
viscosity of water, we obtain from (3.7) that waves
with wavelength A = 1 cm are damped within a char-
acteristic time 8! = 0.4 sec. For waves with wavelength
10 cm, the corresponding value of 87 is 8 sec.

The general equation that governs the mean hori-
zontal wave drift to O(e2) can be written (Pierson
1962):

2 _ 5@ =
xtL’L‘ x

1 1
— 2 Py, — 2 5
p P

y (1),.(1) (1),4.(1) (1)4.(1)
+ v[2x;  x,,, + 22, x, )+ 22, X,/

1 1 1 2 1 1 2,(1
+2x, WxD) + x DV, 2xD + x(Vv, 2z(0] (5.1)

where V;% = 32/da? + 9%/dc>. Here we have assumed
that 7, = z,(®) = (, i.e. there is no mean horizontal
pressure gradient in the fluid. This is a reasonable as-
sumption for an ocean of unlimited lateral extent. Fur-
thermore, in (5.1) we have neglected the effect of ro-
tation on the mean flow. This is justified a posteriori
from the results. They show that the mean drift van-
ishes due to friction on a time scale that is very much
smaller than the inertial period.

We introduce a mean drift velocity u = ¢2x,¥, where
e = {ow/k (Weber 1983a,b). Then, insertion of real
parts from (3.1) into (5.1) yields

2
_ Y Y .
v — u = vi’wk’e 2’”[2 % + 4 yE et sinye

+3I:’ 2"°+O(e2’“)+0(ke”’c)]. (5.2)

The boundary conditions (4.3) and (4.10) become
c=0 (5.3)

(54)

A complete solution of (5.2) can be obtained as a par-
ticular solution u ® of (5.2) plus a solution #* of the
homogeneous version of this equation. Hence the La-
grangian mean velocity u is given by u® + 4”. To
compare with more common ways of dealing with
wave-induced drift, e.g., Longuet-Higgins (1953), or
more recently Craik (1982), we recall that the Lagran-
gian mean velocity can be written as a sum of an Eu-
lerian mean velocity uz plus the Stokes drift ug (for
example, see Phillips 1977, p. 43). The Stokes drift is
obtained from the inviscid irrotational wave field. To
compare with our ab initio Lagrangian approach, we
note that the particular solution % essentially yields
the Stokes drift, but with the important difference that

u. =0,

u—>0, c¢c-—>»—-ow.
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it is modified by friction in the surface boundary layer.
The homogeneous solution #®, which must be added
to ' in cases where u® does not fulfill the surface
boundary condition (5.3), corresponds approximately
to the Eulerian mean velocity 1. It is straightforward
to integrate (5.2) in the vertical. Since k < v, k can be
neglected in the exponent of the second term on the
right-hand side of (5.2). We find

u® = {lwke™> [ e¥¢ — 2™ cosyc

+2e7 4 o(’—‘)] . (5.5)
4 v

Here we have assumed that 2,9, u® - 0, c > — .
The surface boundary condition for the homoge-
neous problem can now be derived from (5.3):

u M = c=0. (5.6)

Calculating u.?? (¢ = 0) from (5.5), the condition
above can be written

u? = L s‘ozwk'ye’zﬂ’[l + O(—]E)] , ¢=0.
2 Y

Hence we find, for temporally damped waves, that
mean secondary vorticity proportional to vy /k will dif-
fuse inwards from the surface into the interior of the
fluid. Apart from the exponential damping, Eq. (5.7)
is equivalent to Craik’s condition (4.12) for the mean
Eulerian velocity gradient in the limit of infinite depth.

As already mentioned, the effect of damping is very
important in the present problem. Analogous to Lon-
guet-Higgins (1969), we may define a virtual wave
stress 7, at the surface:

— uc(p)’

(5.7)

c=0. (5.8)

Initially, this quantity is much larger here than for a
clean surface. However, from the calculated values of
B! in the beginning of this paragraph, we see that 7,,
decays quite rapidly with time. This implies that there
is a limit to the growth of u”, or the Eulerian mean
flow.

We assume that the mean Lagrangian drift equals
the classic Stokes drift, g, at time ¢ = 0, The homo-
geneous version of (5.1) is solved by Laplace trans-
forms. A complete solution of the drift problem u = u®
+ u™ can then be written:

Tw = pvuP,

3
u= ¢ wk[ 2‘”[ e¥ e — 2e" cosyc + 2 e2"c}
1/ w \1/2 [t o28G—)—c/(45)
+ 2\2x 0 g2

Q) [ f+w
* T J:) (81/2(82+w2)

_ 3
4£12 (¢ + 2w)

dt

)e‘*‘ cos(cé”z/v”z)df} . (5.9)
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Here the first integral on the right-hand side stems from
the large, but gradually damped virtual wave stress
(5.8). The second integral arises from our particular
choice of boundary conditions.

It is of interest to compare the magnitude of # from
(5.9) with the surface value of ug given by (1.4). For
future reference we therefore define a dimensionless
drift velocity, u,, by
_u

fozwk '
As an example we let the surface be covered by a film
of oley! alcohol, for which T = 43 dyn cm™!. When A
= | cm, capillarity dominates the dispersion relation

(3.6). For water, with » = 0.012 cm? s™!, we obtain
from (3.6) and (3.7)

w=126rads™!, B=28s"" (5.11)

To get an idea of the vertical length scales involved,
we recall that ug, which we have chosen as the initial
mean velocity distribution of the problem, reaches

Uy (5.10)

down to a depth of about 7 /(2k). This “Stokes depth” -

is here 0.25 cm. Furthermore, we take the outer edge
of the surface boundary layer to be situated atc = —x/
v. The boundary-layer thickness defined in this way
becomes 0.04 cm in the present example. Defining a
nondimensional vertical coordinate c, by

Ccx = —2kc, (5.12)

the dimensionless boundary-layer thickness 6 may be
written

6 = 2wk/y. (5.13)

In Fig. 1 we have plotted the dimensionless wave drift
u, from (5.10) as function of time at ¢, = 0, 8, 1, =.
As mentioned above, the initial dimensionless drift
velocity distribution with depth is given by u,
= exp(—cy ). For the surface velocity this is not easily
. recognized from the figure. This is due to a rapid vari-
ation of the drift velocity during the first few tenths of

ﬁ
0.0 . L

4 )
t(sec)

FIG. 1. Dimensionless wave drift velocity u, from (5.10) as function
of time at various depths. Here » = 0.012cms™, T =43 dyncm !,
and A = [ cm.
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a second. It comes from the imposed initial condition,
and is a result of the evaluation of the second integral
on the right-hand side of (5.9). Very soon, however,
the first integral in (5.9) starts to dominate. As already
mentioned, this term essentially comes from the pres-
ence of a virtual wave stress at the surface. It causes
the drift velocity to exceed ug at any particular depth,
before damping halts the increase and finally takes over.
We note that the position of the maximum drift ve-
locity at larger depths systematically is shifted towards
larger times. This reflects the fact that the mean mo-
mentum is transported downwards by diffusion. Al-
though the drift velocity below the viscous surface
boundary layer tends to exceed ug, it never becomes
very much larger, contrary to the prediction by Craik
(1982). This is due to the strong damping in the present
case.

As a second example we consider waves with wave-
length A = 10 cm. Now gravity dominates the disper-
sion relation. Equations (3.6) and (3.7) then yield

w=25rads™, 8=0.12s"" (5.14)

The Stokes depth, n/(2k), and the boundary layer
thickness, =/, in this example become 2.5 and 0.1
cm, respectively. Figure 2 exhibits u, plotted as func-
tion of time for A = 10 cm. Results are displayed at
five different dimensionless depths: 0, §, 2, 1, 7. Qual-
itatively the results are the same as for A = 1 cm. Now
damping is less pronounced. Accordingly, the maxi-
mum mean velocity exceeds us more strongly than be-
fore. At the surface this excess amounts to a factor of
about 2. Again, the local minima in the curves at the
early stages of the time development are due to the
imposed initial conditions.

Finally, we consider waves with wavelength A = 100
cm. According to Lucassen ( 1982) this seems to be as
far as we can stretch the theory for the influence of a
surface active material. If we compute the relative in-
crease in damping coefficients, i.e. the ratio of (1.1) to
the corresponding value of § = 2vk? for a clean surface
(Lamb 1932), we find 8/8 = 72. This will imply a
(perhaps) unrealistically high value of the surface di-
lational modulus, see Lucassen (1982, Fig. 1). Now,
for this gravity wave, we obtain

w=78rads™, f=0007s"" (5.15)

from (3.6) and (3.7). In Fig. 3 we have depicted u,
from (5.10) as function of time for A = 100 ¢m at four
different dimensionless depths: 0, §, Y2, 1. The curves
exhibit the same qualitative behavior as before, with a
further increase of the maximum drift velocity. At the
surface this maximum occurs after about 100 seconds,
exceeding ug by a factor of 5.

The Stokes depth, 7 /(2k), in this example is 25 cm.
One might speculate that at such length scales, one
should perhaps introduce a turbulent eddy viscosity to
account for the downward diffusion of momentum. It
would then be appropriate to assume a depth-increasing
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FIG. 2. As in fig. 1, but now for A = 10 cm.

eddy viscosity. Qualitatively, the effect of turbulent dif-
fusion can be obtained by a depth averaged value. As-
suming a constant eddy viscosity of 1 cm? s~!, which
is two orders of magnitude larger than the molecular
value, the drift velocity becomes considerably reduced.
At the surface one then finds a maximum value of 1.7
occurring after about 15 seconds in this example.

The primary wave field studied here attenuates on
a characteristic time scale 8. It is interesting to note
from Figs. 1-3 that the induced secondary current exists
over a much longer period of time. Even at the surface,
the time required for reducing the induced current to
about ¥ of its maximum value, is much larger than
B7'. When the waves have disappeared, all the original
wave momentum has been transferred to the mean
current. By diffusion, mean momentum is transported
downward, and will gradually be distributed over the
entire water column. At the bottom (infinity) there is
. a sink. Since no additional momentum is supplied at
the surface, the mean current finally will tend to zero
everywhere. The discussion of this problem continues
in section 8.

It is straightforward to assess the importance of ro-
tation on the drift problem. It turns out that this effect
manifests itself through the dimensionless parameter

G= L = 2y . (5.16)
28wk
Rotation is not important if G < 1. This is easily seen
to be the case for the examples considered.

As mentioned earlier in this paragraph, spatial at-
tenuation of short waves is relevant for laboratory ex-
periments. The drift current in this case may be found
from Weber [1987, Eq. (6.5)], by applying the bound-
ary conditions (5.3) and (5.4) of the present paper.

6. Comparison with wave drift at a clean surface

The theory developed in the present paper is valid
for inextensible surface films of horizontal extent much
larger than the wavelength. The mean wave-induced
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surface velocity equals the drift velocity u, of the film.
Nondimensionally this is given by (5.10):

o = uy(0, ). (6.1)

The mean wave-induced surface velocity in the absence
of a film may be obtained from Longuet-Higgins (1960,
1969) for a nonrotating ocean. More directly, the La-
grangian formulation of Weber (1983b) yields in the
limit of vanishing rotation:

(0, 1) = goza,k[e-zﬁ'

172t ,26(6-0)
+2k(5) fo-‘indgfo(’—‘)]. (6.2)

T

Here & is the frequency of waves on a clean surface,
and § = 2vk? is the corresponding attenuation coeffi-
cient. Due to the reduction of the surface tension caused
by a surface active material, short waves at-a given
wavelength will experience a frequency decrease upon
entering an area covered by a film slick. In order to
compare the wave-induced drift in the two cases di-
rectly, we define a dimensionless drift velocity at a clean
surface in accordance w1th (5.10) as

u(O 1)
So’wk

where w is the frequency in the presence of contami-
nation and #(0, ¢) is given by (6.2).

Equation (6.2) is valid in a fluid where the surface
is uncontaminated, and where the viscous effect of the
air is neglected. Since the density of the air is so much
smaller than the density of water, this is equivalent to
assuming vacuum above the water. The term “clean
surface” is in the present paper used in this context
only. It should be remembered, however, that the vis-
cous effect of the air may influence the drift velocity
of water waves, as pointed out by Dore (1978a,b). Dore
finds that only for waves with wavelengths of a fraction
of a meter, the effect of the air may be neglected. This
applies to the case studied here. In Fig. 4 we have de-

(6.3)

Up =

Cuz=l

1200 1800 2400 3000

t(sec)

% 600

FIG. 3. As in fig. 1, but now for A'= 100 cm.
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picted u, from (6.1) and &, from (6.3) as functions of
time when A = 1 cm. We note the somewhat surprising
result that the value for a clean surface (broken line)
is always larger than that for a surface film. This means
that for these capillary-dominated waves, a large slick
will move slower than the surrounding water. This is
a consequence of the fact that the initial virtual wave
stresses in these two cases are comparable in magnitude.
Hence the slower decay in the free surface case induces
the largest surface current at subsequent times. At larger
wavelengths the situation changes somewhat. In Fig. 5
we have plotted the surface drift when A = 10 cm. Now
the virtual wave stress at the film covered surface ini-
tially is about a factor of ten larger than that at a clean
surface. Accordingly, in the early stages of the devel-
opment of the surface velocity, the largest velocity oc-
curs in the presence of a film (solid line). At larger
times, however, the effect of the smaller damping of
the virtual wave stress in the clean surface case tends
to take over, so the clean surface velocity (broken line)
becomes the largest. The areas under the curves in Fig.
5 represent the length of two trajectories from the same
starting point. Obviously, a particle at a clean surface
will move the longest distance in this example.

At even longer wavelengths the tendency towards
higher velocities for a film covered surface is strength-
ened. This is evident from Fig. 6, where u, from (6.1)
(solid line) and #, from (6.3) (broken line) are depicted
for A = 100 cm.

7. The mean drift due to permanent waves

Although permanent waves require a very special
surface wind-stress distribution to exist, they have often
been used as a substitute for more realistic wave con-
ditions when the wave-induced drift is concerned. In-
serting from the real parts of (3.1) with « = 8 = O into
(5.1), we obtain for permanent waves

" 1 ]
0 10 20
t(sec)

0.0

FIG. 4. Dimensionless surface drift velocity as function of time.
Solid line: Film covered surface (6.1). Broken line: Clean surface
(6.3). Furthermore, » = 0.012cm?s™!, T=43dyncm ', and A = 1
cm.
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t(sec)
FiG. 5. As in Fig. 4, but now for A = 10 cm.

4 .
VU, — U, = vigiwk?| 4e?c — % e r(cosye
. 4 2 . 3 2
— sinyc) + -Z—z e sinye + -IZ—Z ez“"] (7.1)

where again u = 2%,

As discussed in section 4, the boundary condition
for the mean drift depends on how the wind stress is
specified. For a vanishing mean tangential wind stress
to O(e?), we find from (4.5)

u.=0, c=0. (7.2a)
The condition for a vanishing mean horizontal stress
to O(e?)is given by (4.8). In terms of the drift velocity
u, it becomes

_ 1 2 kz
uc——ig'owk‘y 1 ——1, =0. (7.2b)

4y

Concerning the mean drift equation (7.1), it has been
necessary to compute the right-hand side to a greater
accuracy in the parameter vy/k than for attenuated
waves [cf. (5.2)]. This is done in order to match the
boundary condition (7.2b).

It is straightforward to find a particular solution u®
of (7.1). Again k < v, so k can be neglected in the
exponent of the second term on the right-hand side of
(7.1), which is the smallest of the boundary-layer terms.
This cannot be done in the third term, however, since
we then will lose a term of order unity in the velocity
gradient at the surface. By a series expansion of the
expression for 1. after k/+ as a small parameter, we
find

2 .
u, P = g-OZwkZ[ 2e%k¢ — 27 cosyc + —Z— e (sinyc

——cos'yc)+3—7e2"‘+0 k . (1.3)
2k %
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FIG. 6. As in Fig. 4, but now for A = 100 cm.
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By further integration, we obtain

u® = fozwk[ez’“ — 2e" cosyc + ‘—?; e + O(,]y—c)] ..

(74)

This is just the same expression as (5.5), if we put §
= 0. The surface boundary conditions for the solution
1" of the homogeneous equation may be written from
(7.2a), (7.2b) and (7.3), respectively:

- 2

u M = % {ozwk'y[l + O(k

:Y—z)] , ¢=0 (7:5a)

u M ~ §ozwk20(§) , c=0. (7.5b)
The first condition here is equivalent to that given by
Craik [his Eq. (4.12)] in the limit of infinite depth).
It implies a large constant virtual wave stress at the
surface. This will in turn yield infinitely large drift ve-
locities in the fluid, when time tends to infinity. The
complete solution in this case is simply obtained by
putting 8 = 0 in (5.9).

When (7.5b) applies, the virtual wave stress is small
and can be neglected. Hence the particular solution
(7.4) represents the complete solution as time tends to
infinity. We note that u from (7.4) coincides with the
classic inviscid Stokes drift, us, below the viscous sur-
face layer. However, at the surface the value of the drift
current equals —us(0)/4. Hence the film in this case
will move in opposite direction of the waves. This is
related to the presence of a constant mean tangential
stress, 7 3). Here this stress has to be imposed to ensure
that there is no net horizontal stress on a fluid element
at the surface. From (4.9) we note that this stress is
directed in the negative x-direction.

For gravity waves on a clean surface Weber (1983a)

has studied a similar problem. Here the effect of friction -

in the surface layer is smaller. Consequently, the surface
drift velocity only differs from Stokes classic result by
a term of order k/~.
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Formally, to avoid the infinite drift velocities ob-
tained from the solution of (7.1) and (7.2a) as t —
oo, rotation must be included in the problem, see
Madsen (1978) and Weber (1983a,b). Then the bal-
ance between the viscous stress and the Coriolis force
will imply finite drift velocities everywhere. The pro-
cedure is straightforward. However, this requires that
the waves persist on a time scale comparable to the

" inertial period. For short capillary-gravity waves in the

presence of a surface film, this is highly unlikely. We
will therefore not pursue this problem here.

8. Discussion

In an infinitely deep ocean the mean drift velocity
as well as the viscous stress tend to vanish as ¢ > —oo.
With no external forcing at the surface, it follows from
the basic principles that the total mean momentum
for the entire water column must be conserved, i.e.,

dU 0

dt (8.1)

where U = f(_)m udc.

This is also confirmed by our approximate analysis
in the limit of small viscosity. By integrating (5.2),
utilizing (5.3) and assuming that #, = 0 as ¢ > —o0,
we find that the mean total momentum obtained in
that way satisfies (8.1). Accordingly, U is entirely de-
termined by the initial distribution of the mean veloc-
ity. This is also verified by integrating the drift solution
(5.9) (Jenkins, private communication, 1989).

One should perhaps intuitively think that stronger
viscous damping of the waves would be associated with
larger mean drift currents in the fluid. This is not nec-
essarily so, as seen fror Figs. 1-3 for nondimensional
drift in a film covered ocean. Here the viscosity de-
pendence of the virtual wave stress is the same in all
three examples (7, ~ v!/?). The initial value of .,
increases as the wavelength decreases. As a result, the
early time development of the drift current shows a
more rapid increase for short waves. On the other hand,
the larger damping of short waves more effectively lim-
its the growth of the current. This yields a lower max-
imum value for the dimensionless drift current in the
case of larger damping.

The comparison between the drift current obtained
for a film covered surface and that obtained for a clean
surface is interesting. In the latter case the frictional
influence is smaller (7, ~ v) and the damping is less
pronounced. But for high frequency (capillary) waves,
the virtual wave stresses in these two cases are com-
parable in magnitude. The slower damping in the free
surface case then leads to a larger surface velocity, as
seen from Fig. 4. S

It would be of interest to apply the present theory
to the wave-induced drift of large oil slicks in a fully
developed sea. But in such a sea state most of the energy
will be concentrated at lower frequencies. These fre-
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quencies fall outside the range for which the inexten-
sible film limit seems to be an acceptable approxima-
tion. Therefore, for a fully developed sea, the theory
presented here should only be considered in a quali-
tative sense.

As already mentioned, our analysis neglects entirely
the influence of the air on the drift velocity of water
waves. For laminar flow and an uncontaminated sur-
face, Dore (1978a,b) concludes that this is only correct
when the wavelength is much less than a metre. This
is the range of waves we are considering here (the results
displayed for A = 1 m are done merely to show the
trend for longer waves). In the light of the present re-
sults, however, it appears that the water wave problem
with an uncontaminated surface should be studied
afresh. The effect of the air resembles that of a film,
although weaker. It increases the shear near the air-
water interface, and thereby enhances the dissipation.
Nonlinearly, the source terms for the induced second
order mean motion are increased initially, but are then
subject to stronger damping as time progresses. This
yields a tendency towards stronger drift currents at
short times and weaker drift currents at larger times as
compared to the free surface case. A more thorough
study of this problem is now in progress.
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