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ABSTRACT

We consider the problem of a low-frequency, two-layer, coastal Kelvin wave which impinges on a topographic
ridge or valley at some angle to the coastline, with the aim of bounding the transmission of the Kelvin wave
beyond the topography (or, put alternatively, of bounding the scattering of energy into topographic waves along
the ridge). The width of the topographic feature is assumed to be of order the internal deformation radius. It
is not necessary to solve the very complicated interaction problem near the junction of the ridge and the
coastline. Instead, a simple series of eigenvalue o.d.e.’s must be solved.

The main contribution to loss of energy by the Kelvin wave comes from long waves along the ridge. Whether
this loss is significant depends crucially on whether the topography is high enough to intersect a density surface
(in this case, the interface between the two layers). If the topography remains solely in the lower layer, then
the Kelvin wave continues with negligible loss of energy in the limit of very small frequency.

In a continuously stratified fluid, topography of any height would cut through an infinite number of density
strata, so that a more realistic model would permit the topography to intersect the interface. This case is also
considered, and results in a finite loss of energy from the Kelvin wave to topographic waves along the ridge (as
in the one-layer reduced gravity case considered in an earlier paper). As a rough guide, the amplitude of the
transmitted wave is reduced by an amount approximately equal to the fractional depth of the fluid blocked by
the topography. Thus, models that do not permit topography to break through a density interface give qualitatively
different answers from those which do—which should be considered when second-generation ocean models are
being constructed. :

1t is found that, even using a supercomputer, available numerical resolution cannot adequately represent the
topographically trapped waves, so topographical scattering processes will inevitably be badly misrepresented in
numerical models. The case of a continuously stratified fluid is also briefly considered, although solutions would
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be considerably more complicated to produce.

1. Introduction

Probably the least well-understood feature of ocean
circulation is-its interaction with the ocean floor. Nu-
merical general circulation models handle topography
rather crudely to date (the popular quasi-geostrophic
models do not even permit any large variation in bot-
tom depth). It is becoming clear that topography, and
associated form drag, must play a fundamental role in
the momentum balance of the Antarctic Circumpolar
Current (cf. Johnson and Bryden 1988, for example).
Yet the number of studies of topographic effects re-
mains quite small, even given the experience of at-
mospheric modelers. The difficulties are well known.
The simplest problem involving rotating, stratified flow
and topographic interactions rapidly becomes too
complicated for analytical methods, and recourse must
be taken to numerical solutions.

A previous paper (Killworth 1988, hereafter I)
sought to bridge this gap by posing a problem whose
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analytic difficulties could be by-passed provided one
was prepared to accept bounds on a solution, rather
than the solution itself. Fortunately, in most geophys-
ical situations, this is quite acceptable, since our stock
of exact analytic solutions seldom fits observed ge-
ometries or situations particularly well.

The problem considered was that of a single (low)
frequency coastal Kelvin wave in a one-layer reduced-
gravity model, which impinges on a topographic feature
at some angle to the coastline. Because the frequency
of oscillation is low, wave motions can exist only within
a few deformation radii of the coastline or topography.
It was assumed that the feature does not vary in cross
section normal to some direction extending away from
the coastline. Typically one would consider a ridge at
right angles to the coastline, for example. It was shown
how application of (approximate) mass and (exact)
energy conservation to an area around the intersection
of the coast and topography gave two equations in an
infinite number of unknowns. One of the unknowns
was the amplitude of the transmitted Kelvin wave; the
others were the amplitudes of the long topographic
waves on the ridge. Calculus of variations then yielded
a minimum and a maximum amplitude of the trans-
mitted wave, without solving the complicated inter-
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action problem. Johnson (1989) has used a represen-

tation of topography as a collection of horizontal strips

to give another method for attacking the problem.
The physics of that problem were restricted to permit

simple solutions. The purpose of this paper is to lift -

two of those restrictions. First, we include more wave
modes by having more than one active layer of fluid
(cf. Willmott 1984). This allows rigid-lid barotropic
motions, whose natural length scales (formally infinite)
are much larger than the deformation radius scale rel-
evant to Kelvin and topographic waves. The second
modification is more fundamental. In a continuously
stratified ocean, even very small topographic features
cut through an infinite number of density strata, and
thus block flows confined to those lower strata. (The
difficulty of handling layers of zero depth has long been
a stumbling block in the development of isopycnal
models and actively dynamical layered models.) We
now permit the ridge to be sufficiently high that it in-
tersects the interface between the two layers. This
blocks the lower layer flow quite efficiently, so that
information can be transmitted between the separated
sections of the lower layer, across the blocking topog-
raphy, only via pressure gradients in the upper layer.
(One could formally consider a trough, but there would
be difficulties in deciding whether a third, denser, layer
should be positioned in the trough. The analysis in this
paper shows that a trough entirely occupied by lower
layer fluid would permit total transmission of the wave
in the limit of small frequency. Henceforth, ridges only
are considered.)

It will be shown that whether or not the topography
intersects the interface has a fundamental effect on the
transmission of Kelvin wave energy. If the topography
is confined to the lower layer, then in the limit of van-
ishingly small frequency, all of the Kelvin wave energy
crosses the topography. However, if the topography
intrudes into the upper layer, then a situation similar
to the one-layer case occurs, in which a finite amount
of energy (straightforwardly computed ) is always scat-
tered to the topography.

A brief discussion of the continuously stratified case
is given, together with the effects of the grid resolution
in numerical models.

-~ 2. The problem and governing equations

We consider a problem similar to that of I, sketched
in side and plan views in Fig. 1. Two immiscible layers
of fluid, of densities p,, p2, lie between a bottom, whose
height above some reference depth is D(x, y), and a
rigid lid at the surface. We shall mainly consider cases
where D) is a function of x only, but the analysis is
identical in other cases provided that contours of D
are parallel to each other. The rigid lid is a design
choice, to avoid including both baroclinic and baro-
tropic deformation radii in the analysis; essentially the
barotropic deformation radius is infinite. The topog-
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FIG. 1. Schematic of the problem, from the side (a, b) and in plan
view (c). The ridge may be at any angle to the coastline, but is shown
normal for simplicity. Two problems are considered. In the first,
Case 1, the topography is confined to the lower layer. In the second,
Case 2, there is a region in which the topography fills the lower layer
and protrudes into the upper layer.

raphy may or may not intersect the interface between
layers.

The undisturbed depths of the upper and lower layers
are H, = sH and H, = H, respectively, where s is the
depth ratio. Pressures in the upper and lower layer are
denoted by ¥, ¢, respectively. The interface elevation
is n. Horizontal velocities in layer i (i = 1, 2) are
(w;, v;). '

Two possible cases are considered: in case 1, the to-
pography is nowhere high enough to break through the
interface between layers; in case 2, there 1s a region in
which the topography does break through the interface.

The area is confined by a rigid wall, or coastline, at
y = 0. The topography D is assumed to be flat more
than a few deformation radii away from x = 0, the axis
of the topography. Far to the west (x = —o0), there
is a monochromatic coastal Kelvin wave, of frequency
w, propagating to the east along the coastline. (It will
be shown below that there is just one such wave.) This
wave impinges on the topography, and scatters some
of its energy as topographic waves. The remainder is
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transmitted as a similar Kelvin wave, but with a change
of both amplitude and phase. The problem is to bound
the amplitude of the outgoing (transmitted ) wave.
We first nondimensionalize the problem. A natural
horizontal length scale is the deformation radius

a={gHs/f*(s+ 1)} 2.1)

where g’ is the reduced gravity g(p; — 1)/ p2, and f
is the Coriolis parameter, assumed constant over the
region of interaction. Lengths are nondimensionalized
on a, velocities on af, (pressures/density) and g'n on
(af)?, frequency w on f, and topographic height D on
H. We assume that all quantities vary with time ¢ as
exp(—iwt). As in I, it will be assumed that

w<kl, (2.2)
i.e., that the wave frequency is low.
The momentum equations then become
—lwl; — V] = — Yy (2.3)
—iwv; + Uy = —y, (2.4)
—iwly — V3 = — @y (2.5)
—iwvy + Uy = —¢,. (2.6)

The hydrostatic relation links the upper and lower layer
pressures through the interface elevation 7:

v=¢—1 2.7)

in regions of the fluid where there are two active fluid
layers (elsewhere ¢, » are undefined).

The divergence equations depend on the number of
active layers. When layers 1 and 2 both exist, (case 1,
and part of case 2)

ion+ (1 +s)Veu; =0 (2.8)
—iwn + {(1 +8)/s}V-{(1 -Duy} =0 (2.9)

whereas when only layer 1 exists (in some areas of case
2)

V-{(s—D+ 1)u;} =0. (2.10)

These equations can be combined. We first solve for
u;, ¥; in terms of the pressures, to leading order in w:

vy =¥ tiwyy,, U=y, tiogx (2.11)

Uy = @x T iwg,, u;=—¢, +iwdx (2.12)

and substitute in the divergence equations. When there
are two layers, this gives

7+ (1 +5)VH =0
(1= D)V~ sn/(s+ 1)
+ iDy(— &, + iwdy)/w =0 (2.14)

where we have assumed D = D(x) only for simplicity.
When there is one active layer only, we have

(s = D+ 1)V + iDy(— ¥, + iwyx)/w = 0. (2.15)

(2.13)
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The system (2.13) to (2.15) needs boundary and
(for case 2) jump conditions. In case 2, we assume that
the depth of the lower layer vanishes (i.e., D = H =1,
nondimensionally) at values of x = x_, x,. Then in
the upper layer, (2.15) shows that both mass and tan-
gential velocity must be continuous at x = x_, x,. The
requirement that the bottom layer be well behaved
means that velocities remain finite there. This gives the
conditions

¥, ¥, are continuous, and (1 — D)¢, =0,

X =XxX_,X¢. (2.16)
At the boundary y = 0, there is no normal velocity
vyy=0,=0, y=0. (2.17)

We require only waves with positive group velocity
northwards as y — oo (i.e., there be no waves ap-
proaching from +co). Finally, when |x| becomes
large, there can only be a Kelvin wave, which is con-
fined to the near-coastal region.

The solution for the Kelvin wave is straightforward.
To leading order we find

x—>—oo: {m ¢, ¥} ={l,s/(s+1),
~1/(s+ 1)} exp(iwx — y) (2.18)
x—>+oo: {n,¢, ¢} =19r{l,s/(s+ 1),

—1/(s+ 1)} exp(iwx — ) (2.19)

where 57 is the unknown amplitude (and phase) of the
transmitted Kelvin wave. As noted above, there are
barotropic motions with length scales much longer than
unity (the deformation radius), but such motions are
restricted by the rigid-lid assumption to being nondi-
vergent and hence cannot occur along the coast as a
wave. A free surface would permit a barotropic Kelvin
wave with a decay scale of the barotropic deformation
radius; over the length scales considered here such a
wave would be independent of position, and therefore
play no role.

3. The case of no topographic breakthrough: Mass/
energy conservation

Consider first case 1, in which the topography re-
mains confined to the lower layer. We proceed, for-
mally, as in 1. First, integrate either of the mass con-
tinuity equations across the region indicated in Fig. 1.
The region is bounded by x = + 4, for some A4 of order
unity, and y = B, where B is also of order unity. The
rationale for the choice of 4 and B needs a little care.
Asin I, 4 and B must be sufficiently large so that the
baroclinic wave fields associated with the topography
have decayed away, and yet not so large so that the
area 2AB becomes of order w™!, which invalidates the
mass conservation argument to be given below.
There are other difficulties, because the barotropic com-
ponent of the pressure fields decays very slowly (as
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exp(—w| x]), for example). However, this gives only
a negligible contribution to the velocity fields being
integrated, as we shall see.

Integrating (2.9), then, gives

[fBuzdyr +f(1 — D)vypdx = O(w) <1 (3.1)
0 -4

under these conditions, where the subscript B denotes
evaluation at y = B. Henceforth, integrals wrt x without
limits denote limits of (—oo, c0) or (—A4, A), and will
usually be obvious. Using (2.18) and (2.19), this can
be rewritten

{s/(s+ D}(nr—1)
+f(1 — D)vypdx = O(w) < 1. (3.2)

and provides one constraint on the solution.

Energy conservation (which is exact) provides an-
other. Adding su? X (2.3), svT X (2.4), s¢/(1 + )
X (2.8)%, (1 — D)us X (2.5), (1 — D3 X (2.6),
and s¢ /(1 + s5) X (2.9)*, where asterisks denote com-
plex conjugate, gives

V- {syu} + (1 — D)¢u3 } = pure imaginary (3.3)
so that integration gives
B
“0 {syul + (1 - D)¢u§}dyr
! -4
+ f {S\I/BUTB + (1 — D)$v3p}dx
= pure imaginary. (3.4)

Use of the Kelvin wave conditions simplifies this to

{s/[2(s + D1} {Inrl*> — 1}
+Ref{s¢3v’1'3+(l — D)¢vig}dx=0. (3.5)

Thus we have two conditions (3.2), (3.5), on the
transmitted coefficient y7.

Note finally that integration of the depth weighted
sum of the two mass continuity equations yields con-
servation of the barotropic flow:

B
“; (su, + uz)dyr

4
+ f(svm + (1 — D)vyp)dx =O(w) <1 (3.6)

and since the inflows and outflows balance baroclini-
cally,

f(wlB + (1 = D)vyp)dx = O(w) <1 (3.7)

a condition which will be used to advantage later.
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4. The case of no topographic breakthrough: Topo-
graphic waves

To proceed, it is necessary to understand the prop-
erties of waves confined by topography. Many features
of these have been known for some time; see the review
by Mysak (1980), or Huthnance (1978), for example.
We pose a wave varying along the topography as
exp(ily), where [ is an (unknown) wavenumber.
Choosing to describe the wave by the lower layer pres-
sure ¢ and the interface elevation 7, we put

‘n=G(x)exp(ily), ¢ =F(x)exp(ily). (4.1)

Substituting into (2.13), (2.14) yields the governing
equations

(1+s)F'—G)=P1+s)F-G)—G
[(1 — D)F'Y
=[I*(1 — D) — ID'/w]F + sG/(s + 1) (4.3)

where a prime denotes differentiation wrt x. These ei-
genvalue equations are to be solved subject to the
boundary condition that F, G vanish as | x| = oo.
We note that, for large enough | x|, D is infinitesimally
small, so that (4.2), (4.3) have the asymptotic solutions

B — G exp(—|x|(1 + 1?)'/?) (4.4)

F— Foexp(—I|x)+sG/(s+ 1), |x| > o.
(4.5)

Here Fy, G are some unknown constants. The form
of these asymptotic solutions is quite important. Here
G decays on a scale at least as fast as the deformation
radius (unity), as befits a baroclinic field. However, F
also possesses a barotropic component, and thus de-
cays like a simple solution of Laplace’s equation.
When [ is small, this decay rate is very slow. [How-
ever, the u field generated by this is also very small,
of order w, and so generates a negligible change to the
balance (3.2).]

The system [(4.2), (4.3)] has three kinds of solu-
tions. The first two are familiar from I, while the third
owes its existence to the finite depth now permitted.

Long waves exist, for which

(4.2)

!l = lyw, for some /y of order unity. (4.6)
Supstituting, we have
F"—G"=-G/(1 +s) (4.7)

[(1-D)F') = —l,D'F+ sG/(s + 1) (4.8)
so that ‘
G'= TG, F'+wlF

= {s/(s + 1)}(G' £ whG), (4.9)

This gives a countable collection of long-wave modes,
a finite number of which occur for any finite frequency
w. Unlike I, however, there is, in addition to the com-

x> *+oo.
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ponent which decays at least as fast as the deformation

radius, a component which decays slowly with x, as

exp(—w]| x|); this will have important consequences.
Short waves exist, for which

I=L/w, forsome /,of order unity. (4.10)
Substituting, .

F=G (4.11)

[(1 = D)F'Y =[L%(1 = D) — LD'}F/w? (4.12)

so that there is zero pressure (F — G) in the upper layer
(motion is thus confined to the lower layer), and the
lower-layer equation (4.12) is identical to the similar
case for a single layer in 1. There, it was shown that
the short waves are confined within a width of order
w'/? to a specific x value, with rapid x-oscillations on
a scale of order w.

A single additional mode, here termed quasi-baro-
tropic (or QB), can occur. This is a very long mode,
with

I = Lw?, forsome /; of order unity. (4.13)
Solutions are found with
F=14+wF+w0’F+ -
G=0G + G+ -+ -. (4.14)
The O(w) terms give, after a little algebra,
(1 +s)(Fi—GY) = -G
(s+1—D)F, - sGy=—-I|D. (4.15)

These combine to give a second-order d.e. for G,
which, together with the easily derived condition G —
0, | x| = oo, determines the eigenvalue /;. Because
F is constant to leading order, the mode varies only
slowly in both x and y [and thus contributes only
a very tiny amount to the (u, v) field]. As s = o0,
this mode tends smoothly to the first one-layer mode
(cf. I). As the wavenumber of the QB mode increases,
so that the mode is no longer very long, the behavior
resembles the other modes.

Figure 2a gives a typical, numerically evaluated, dis-
persion diagram for the case s = 10, and

D = 0.5 sech?(x/2). (4.16)

corresponding to a smooth ridge centered on x = 0.
(The large value of s was chosen to simulate a thin
layer of fluid at the ocean bottom, but all values of s
give similar structures, throughout this paper.) The first
mode is the ultralong QB mode discussed above; the
others shown are all long. If one follows a given mode
as / increases, the mode may be considered long until
the maximum frequency has been achieved, and is then
short. The curve is little different from Fig. 2 in I, which
can be thought of as the limit s = oo . The only (math-
ematical) difference is that for the QB mode, / varies
as w? for very small w, rather than the long-wave limit
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FiG. 2. (a) The dispersion relation for topography (4.16), and s
= 10. There is a second set of modes with wavenumber / replaced
by —I. The QB mode is indicated. Short waves are arduous to find
numerically, since very fine accuracy and resolution are needed, and
50 are not shown. (b) As in (a), but with s = 1.

of O(w) in I. The curves have the same qualitative
character for wide variations of the parameters; cf. Fig.
2b, when the upper-layer depth s is only 1.

Figure 3a shows the spatial structure of some of the
modes in Fig. 2a. When s is large (10 in the example),
(4.2) shows that P == (F — G) is small, of order (1/s),
except when [/ is very small. Thus, the QB mode [Fig.
3a(i)] has a varying upper layer pressure, but the higher
modes [Figs. 3a(ii), (iii}] have very small surface
pressure, and are very similar to the case considered
in I. When s is of order 1 (Fig. 3b), then apart from
the QB mode (for which the interface height is very
small, and the pressure essentially barotropic), the
modes all involve interaction between the two layers.

5. The case of no topographic breakthrough: The
transmission :

We now demonstrate that the transmission, |nr|,
for sufficiently small frequency, is 100%. Two methods
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will be used. The first is not totally rigorous, but dem-
onstrates physically why this is the case. The second,
rather longer, is a fuller mathematical treatment.

We write the solution at y = B in terms of topo-
graphic waves

7 = 2 a,Gn(x) exp(il,B) (5.1)
¢ = 2 a,F,(x) exp(ilnB) (5.2)

the sums being taken over the mode number 7 for the
waves. The unknown coefficients «, are assumed O(1)
for the simple derivation.

Substituting into mass and energy conservation
(3.2), (3.5), and neglecting terms of order w, we have

{s/(s + DYar = 1)+ T s exp(iluB)
X f (1 = DY Fy — wlyF)dx=0 (5.3)
(/0265 + DI (Irl? = D+ 2 lel?
x [ dxls(Ey ~ G 1Py~ G — wh(Fu — G)

+ (1 = D)Fy(Fp — 0hFu)1 + 2 O

xfdx{R,,,,,+R,.m} =0 (54)

where

Qon = Re(amal) expi(lm — ln)y
Ry = S(Fry — Gu)[Fn — G — wly(Fp — Gy)]
+ (1 = DYF,(F,— G,). (5.5b)
Note that the x-integrals will eventually be taken over
the range (—oo0, +00), rather than (—A4, 4). The jus-
tification is as follows. In the mass continuity equation

(5.3), the first term in the integral can be integrated
by parts to yield

(5.5a)

A
D'F,dx

-A
plus contributions at 4. If 4 is large enough for D’
to be negligible there, these can be ignored. Then the
integral in (5.6) can be taken over an infinite range
with no loss of accuracy. The second term’s contri-
bution, outside +4, is at most of order w from (4.5);
terms of that order have already been neglected in de-
riving (5.3). Hence the conversion from finite to in-
finite limits in (5.3) is legitimate. Virtually identical

reasoning holds for (5.4) also.

The simple argument is straightforward. We need

(5.6)
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merely show that the integrals muitiplying the o, in
(5.3) are at most O(w). Then we obtain the result

nr= 1 - O(w). (57)
To see this, apply (3.7)—which also applies to each

wave mode-—to write the integral in (5.3) in terms of
the top layer pressure

f (1 = D)(F, ~ wl,Fy)dx = —f (P}, — wip,Py)dx.

(5.8)

The first term vanishes by integration (because the up-
per-layer depth is uniform; the result will be very dif-
ferent for the breakthrough case), and the second, even
-taking the slow decay with x into account, is at most
of order w, for the QB and long modes, and far smaller
for the short modes because of the limited x-extent
involved. Thus (5.7) is proved, albeit nonrigorously.
This approach gives no idea of the sizes of the various
modal components, however; for that we need the rig-
orous approach. .

First, we derive an orthogonality relationship. Mul-
tiply (F,, — G.) by (4.2, with wavenumber /,), and
add F,, X (4.3, with wavenumber /,). From this sub-
tract the same quantity with m and n interchanged.
The result is integrated wrt x over the infinite range,
and divided by (I, — /,,), assumed nonzero. The result
18

f dX[S(l,, + Im)(Fn - Gn)(Fm - Gm)

+ (1 ~ DY, + 1)) F,F,y — D'F,Fp,/w] = 0,

m#n. (59)

Examination of the Q,,, term in (5.4) shows that this
vanishes identically by (5.9) just derived. Thus, as in
I, only the self-interaction quadratic terms survive
in (5.4).

Next, we rewrite (5.3), (5.4) as

nr — 1+ {(S+ 1)/3} 2 an'Yn=0
to leading order (5.10)
|77T|2 -1+ {(S + 1)/3} 2 lanlzﬂ-rﬂ’n =0

to leading order (S.11)
where

Yn = exp(il,B) f (1 = D)(F»— wl;Fn)dx

o= f (1 = D)(F}, — ol Fy)dx

for all but short waves (5.12)

FIG. 3. (a) The spatial structure of the first three modes for topography (4.16), with s = 10 and w = 0.02. (j, ii, iii) show the QB mode
and the first two long modes, respectively; (i) also shows the topography as a dashed line. The upper and lower layer pressures (P, F) and

the interface elevation G are indicated. (b) Asin (a) but fors = 1,
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FIG. 4. The solution of (2.13), (2.14) for topography (4.16) and frequency 0.02, with the
depth ratio s = 10. The modulus and phase of y are shown in (a), (b), respectively; the modulus
and phase of ¢ in (c), (d); and the modulus and phase of 7 in (¢), (f). Contours and cross section
of topography are shown in (g), (h). Contour intervals shown above each diagram. A linear
decay (“glue”) has been inserted for y > 25 in order to remove reflection effects from the northern
boundary. On the western boundary, an incoming Kelvin wave is specified; on the eastern side,

(d) -

a radiation condition is applied. The resolution is 100 X 400.
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(which are unimportant, as in I, since the /, are small)
and

ﬂn’)’nz = f {D'Fnz — 2wl [s(Fn — Gn)2

+ (1 —~ D)F,*1}dx

= f D'F,2dx + O(w) (5.13)

as in I again. The quantities v, u, are readily computed
from (4.2), (4.3) as a simple eigenvalue problem.

Now (5.10), (5.11) possess entirely the same struc-
ture as in section 4 of I, save for the (s + 1)/s factors.
The entire extremum calculation for |g¢| in I thus
proceeds almost unchanged, and only the essential for-
mulae will be quoted. Defining, as before,

o= p (5.14)
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FIG. 5. as in Fig. 4a-f, but for w = 0.01.
we find The relative contributions of each mode to the in-

tegrals is simple to estimate; the arguments are omitted

(1= 4o)/(1 + Ao) < |nr] for brevity. We find that

< {(1 - 4o)/(1 + Ao)} 2. (5.15)
Here O(w), QB mode

A=(s+1)/s . Yn~94 O(w), long mode
has been defined. O(w?), short mode
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while the integrals in (5.13) are

O(w), QB mode
O(1), long mode
O(w'/?), short mode
so that
O(w™), QB mode
Bn ~ 4 O(w™?), long mode
>1, ~ short mode.
Thus
o = O(w)

from the QB contribution. Both minimization and
maximization give values of the coefficients «,, of the
same order. It is found that only the QB mode has a
coefficient of order unity, with all long modes having
a coefficient of order w. (Note that the small energy

TABLE 1. Comparison of numerical and analytical solutions,

s =10, D,, = 0.5.
Transmission
Frequency Numerical Analytical
0.02 0.76 0.55 < |97 < 0.74
0.01 0.83 0.70 < |ny} < 0.84
0.005 not resolved 0.85 < [n7] €0.92

loss, of order w, is produced by both QB and long
modes.) The velocities along the topography (and not
near the coastline) are O(1), while the velocities par-
allel to the coastline remain small.

Figures 4 and 5 show two numerical examples, com-
puted by direct solution of (2.13), (2.14) together with
boundary conditions. The depth ratio s is 10, and the
frequency w is 0.02, 0.01, respectively. The behaviour
predicted here is clearly visible, with long waves

FIG. 6. Part of the dispersion relation for topography (7.10), s
= 5. The topography breaks through into the upper layer for this
case. The long wave limit (mentioned briefly in the text) is shown
dashed. The QB mode is indicated.
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HG. 8. The dependence of the amplitude of the transmitted wave
{77} with maximum topographic height Dy, for the long-wave so-
lution (i.e., vanishingly small frequency), topography (7.10), and
depth ratio s = 5. There is 100% transmission for D, less than
unity. Slight irregularities in the curve are due to cumulative rounding
€rTors.

lengthening, and short waves shortening, as the fre-
quency decreases. The structure of ¢ is almost entirely
governed by the QB mode, and a much wider numer-
ical box would be needed to let ¥ decay satisfactorily
at large values of | x|. The transmissions are given in
Table 1; it is unfortunate that numerical restrictions
prevented the case w = 0.005 for comparison. As in I,
note that the upper bound on ||, which varies as in
(5.7), is in excellent agreement with the computed
transmission coefficient (although this agreement,
while convenient, is of less immediate use than before).
Thus the situation for the case of no topographic
breakthrough is simple; for small enough frequency,
two-layer coastal Kelvin waves can pass across a partial
topographic barrier with negligible loss of energy.

6. The case of topographic breakthrough: Mass /en-
ergy conservation

We now consider case 2, in which the topography
is sufficiently high to outcrop into the surface layer in
the region x_ < x < x;. The governing equations re-
main unchanged. Define the operator

CIA] = U:+Lio])\dx

as the natural definition of an integral across the lower
layer (the integral is well defined because all quantities
are well behaved at x = x_, x, ). Integration of mass
continuity (2.9) then gives

(6.1)

B
UO uzdyr + C[(1 — D)vy] = O(w), (6.2)
-4
1.e., using (2.18), (2.19)

(6.3)
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Note that the incoming lower layer flow must perforce
turn and flow in the positive y-direction along the left
flank of the topography, to conserve mass; the outgoing
lower layer flow is similarly provided for by a net flow
in the negative y-direction along the right flank of the
topography. Integration of the upper-layer flow gives
no more information (but provides useful checks on
numerical evaluation of integrals). This is because the
net barotropic flow away from the coast must be zero,
by integrating the sum of (2.8) and (2.9):

f(s — Dy)vipdx + C[(1 — D)vg] =0 (6.4)

a condition which will be used later.
The energy calculation is similar, yielding

{s/2(s + D{llnrl* - 1]

+ Re” (s — D))y ipdx

+ CI(1 — D)¢sv3‘s]] =0 (6.5)

where D, is the amount of topography extending above
the interface, defined to be zero for D < 1, and equal
to (D — 1) otherwise. Then eqns. (6.3), (6.4) provide
two equations which enable bounds to be placed
on |n7|.

7. The case of topographic breakthrough: Topographic
waves

We proceed as before, defining 5 and ¢ in terms of
wave modes as in (4.1), together with the upper-layer
pressure

¥ = P(x) exp(ily). (7.1)

Where there are two active layers, we have (4.2), (4.3)
again:

L+ )P =P +s)P-G
[(1-D)F'Y ={*(1 —~ D)— ID'/w]F
+sG/(s+ 1) (7.3)

(1.2)

together with the definition

P=F-Q(G. (7.4)
When there is only one active layer,
[((s—D+ V)PV =[P(s—D+1)—ID/w]P.
(7.5)

There are connection formulae

(1 -D)F'=0; P,P continuous at x = x_, X4
(7.6)
and boundary conditions
F,G,P—~>0,

| x| = 0. (7.7)
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The appropriate asymptotic formulae are of course
identical with (4.4), (4.5). .

Again, there are three types of topographic wave
mode: quasi-barotropic, long, and short. The relevant
formulae for the size of the wavenumbers, etc., in sec-
tion 4 continue to apply. The long waves (which will
be relevant for what follows) trivially satisfy

l= low. (78)
Where there are two layers, (4.7), (4.8) hold, and where
there is only one layer,

[(s—=D+ 1)P) =~ D'P. (7.9)

Figure 6 shows the (lower part of) the numerically
obtained dispersion relation for

§=15, D= Dy sech?(x/2), where Dy = 1.3.
(7.10)

The cutoff frequency is much higher than the low
frequencies shown in the diagram, so that the dispersion
curves are close to straight lines. The dashed line shows
the long wave limit, obtained from the above.

Figure 7 shows the spatial variation of the first three
modes for w = 0.02 for this geometry. In all cases, the
upper-layer pressure P varies smoothly with x. With
increasing mode number, the lower-layer pressure F
not only oscillates more—as with any modal set—but
also the length scale over which F varies drops rapidly,
especially near x_ (the numerical roughness is a feature
of the plotting frequency, not of the numerical solu-
tion). This indicates that finite-difference general cir-
culation models are likely to have resolution problems
in such locations, even assuming that a satisfactory
numerical scheme exists to handle vanishing layer
depths.

8. The case of topographic breakthrough: The trans-
mission

The intersection of the topography with the upper
layer will now be shown to modify the transmission of
the Kelvin wave, in contrast with the case of no to-
pographic breakthrough. As in section 5, we write 7
and ¢ as (5.1), (5.2), together with

¥(x, B) = 2 a,Py(x)exp(il,B).  (8.1)
Substitution into (6.3), (6.4) gives two equations for
Inr| as before. It is easily shown that orthogonality
occurs, with appropriate replacement of some integrals
by C[-], etc., just as in section 5; the algebra will not
be given here. We thus have

{s/(s + D}(nr— 1) + C[(1 — D)vy)
={s/(s+ D}(nr—1)
+ 3 a,C[Fu(D' — wl,F,)] =0 (8.2)
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FIG. 9. An approximate numerical solution for topography (7.10), and « = 0.02. See Fig.
4 for details. The topographic breakthrough is indicated by cross-hatching where relevant.
Note that this solution varies with resolution, box size, and linear damping, and should thus
merely be regarded as indicative of the type of solution. The resolution (100 X 400) is not
sufficiently good to give an accurate answer.

+ C[(1 — D)F,(F}, — wl,.Fn)]] =0. (8.3)

It is straightforward to show that, as usual, the short
waves give negligible contributions to both expressions.
The terms, apparently O(w) in (8.3), turn out to be
so and can be neglected against what will shortly be
shown to be O(1) terms. However, numerical evalu-
ation of the terms which are apparently O(w) in (8.2)
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is more complicated, as we saw in section 5, because
of the slow decay at infinity. By using (6.4) to rewrite
the expression in terms of the upper-layer pressure,
(8.2) can be rewritten

{s/(s+ D}nr—1)

+ 2> a,,[wl,,sC[P,,] - f D’P,,dx} =0. (84)

Now the first term in the sum is truly O(w) and can
be neglected, while the second term is O(1). Thus (8.4)
simplifies to

{s/(s+ D}(ar—1)
+ > a,,[—f D’P,,dx] =0, (8.5)
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while (8.3), after removal of the O(w) terms, gives
after some integration by parts

{s/(s+ D}(Inr|> = 1)

+2 lanlz[f D'Pldx + C[D,Fnz]] =0. (8.6)
If we now redefine

Yn = —f D'P,dx (8.7)

(d)
FIG. 10. As in Fig. 9, but for w = 0.01. The same comments about accuracy apply.

PnYn® = f D'P,2dx + C[D'F,?)

VOLUME 19

(8.8)

then the algebraic problem reduces precisely to (5.10),
(5.11), which have already been solved for |9r| in
(5.14). It turns out numerically that the u, are positive
for the long waves and the QB mode. The latter’s ug
varies as w ' as in the case of no topographic break-
through, but the long waves all have u, tending to con-
stant nonzero values as w = 0. Thus the formula (5.14)
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predicts a finite energy loss by the Kelvin wave as it
passes the topography.

The difference between this case and that of no
breakthrough is fairly simpie to understand. In both
cases, the v field in the upper layer is predominantly
geostrophic (for long waves). The integration of the
mass flux along the topography involves a multipli-
cation by the local upper-layer fluid depth. When there
is no breakthrough, this depth is uniform, and the x-
integral of the mass flux gives a cancellation to leading
order through the geostrophic balance. Since there is
no barotropic flow, there is no net mass flux along the
topography in the lower layer either; hence the Kelvin
wave continues at the same amplitude.

When there is breakthrough, however, the upper-
layer fluid depth varies in the region (x_, x, ), and the
x-integral does not lead to total cancellation (just as
in I, when there was only one layer). Then a finite
amount of mass can be transported (oscillatorily) along
the topography; these fluxes lead to the finite energy
loss by the wave.

A numerical example gives an indication of this loss.
Taking the case (7.10), we find that the first three long
modes all have high u (2615, 497, and 111, respectively,
in the long wave limit). Most of the energy reduction
is achieved by mode 4, with a p of 12.4. Higher modes
see rather higher p’s again: 63.4, 581, etc. (This is atyp-
ical: for higher topography, the first few modes are re-
sponsible for loss of transmission, as in I.) Substitution
into (5.14) shows that the transmitted amplitude is at
most 87%. The accuracy of the long-wave approxi-
mation can be gauged from the solution for w = 0.01,

with g of 2510, 510, 115, 11.1, 62.8, etc. (and a pre-
dicted maximum transmission of 87% again).

Two limits may be briefly noted. The first is 5 —
00, 1.€., the upper layer becoming very deep. It is natural
to expect that the limit would be that of the one-layer
fluid considered in I. However, there are problems

‘about interchanging the order in which limits are taken.

Instead, letting s become large in (4.7), (4.8) and (7.9)
and pursuing some simple algebra shows that the u,
tend to infinity like s2. The transmission formula (5.14)
then demonstrates that there is no loss of energy, just
as in the case of no breakthrough. (The reason is
straightforward: the mass integral discussed above once
more reduces approximately to an x-derivative and so
cannot contribute to an energy loss.)

The second limit is when the topography approaches
the upper boundary closely. Numerical solutions for
the u, then show that, as expected, the transmitted en-
ergy approaches zero as the topography nears the upper
boundary. In other words, the narrow gap through
which fluid may pass acts as a rigid wall in the limit,
and blocks all throughflow.

If the maximum topographic height D,,, is permit-
ted to vary in (7.10), a graph of transmission versus
topographic height can be obtained (Fig. 8). For Dy,
less than 1, there is complete transmission since the
topography does not break into the upper layer. The
initial decay from 100% transmission is gradual, and
then the dependence of transmission on D, is roughly
linear, as in I, except for a very rapid drop just before
Dpax reaches 5 (the depth of the upper layer, corre-
sponding to complete blocking as mentioned above).
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The rule of thumb thus remains that the transmitted
amplitude roughly varies as the fractional depth above
the highest point of the topography.

Attempts to confirm these results by direct numerical
solution of the governing equations proved to stretch
numerical resources to their limits. It has been impos-
sible to show whether the predicted upper bound is
attained, as in all previous calculations. Figures 9 and
10 show two numerical examples of such attempts, for
the case (7.10), with w = 0.02, 0.01 respectively. The
resolution in x and y was 0.2, 0.075 deformation radii,
respectively. Although the phase variation of the so-
lution on the upslope (negative x) is very gradual, since
the waves are long, the rapid change in x for the so-
lutions near the topographic breakthrough (shown in
Fig. 5) makes it difficult to resolve the solution ade-
quately. The short waves, for positive x, are still more
difficult to resolve. The predicted transmissions are in
error, and vary nonuniformly with resolution and fre-
quency. There is also a strong dependence on box size,
and the type of damping used at the northern
boundary.

Many cases were run, varying box sizes, damping
schemes, and damping coeflicients. Computed trans-
missions for the interface displacement (which has no
slow spatial decay terms like the two pressures, which
tends to mask their true transmission values) varied
from 13% to 145%, with most under 50%. It should be
stressed that all solutions appeared visually plausible.

We are thus forced to conclude that it is impossible
to resolve and reproduce correct numerical solutions
for the two-layer breakthrough problem, even using a
supercomputer. Thus, use of ocean general circulation
models, whose resolution is far worse than used here,
must inevitably lead to erroneous transmission of
coastal waves within the models. (It was shown in I
that the addition of dissipative terms did not alter this
result, even though short waves, the poorest resolved,
are filtered out.)

9. Discussion

This paper has considered the natural extension of
Kiliworth (1988) to two active fluid layers. There are
no formal reasons why this extension process cannot
continue, to three, four, or many layers, and indeed it
is clear that the formalism developed here will continue
without difficulty. In fact, it is perfectly straightforward
to pose the problem for a continuously stratified fluid,
using density coordinates to mimic the layered model
approach used here. Only a few details will be given
here for brevity; the author can supply more infor-
mation on request.

Almost all of the qualitative findings in this paper
carry over to the continuous case. There are an infinite
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number of mass conservation equations, one for each
density stratum, and a single energy conservation
equation. There are again three types of topographic
mode, many details of which have been explored by
Huthnance (1978 ) for a continental slope topography.
(For strong stratification, one can identify in this ter-
minology the quasi-barotropic mode, long and short
waves; the short waves are both bottom-trapped in the
vertical and restricted in the horizontal dimension; as
the stratification weakens, the distinction blurs.) Or-
thogonality of the modes continues in the energetic
calculation. ) .

The difference occurs because an infinite number of
transmitted Kelvin wave modes is now possible (a
similar feature occurs, plus backscattering, if one uses
this formalism to examine scattering of shelf waves by
topography). Thus the maximization/minimization
arguments must now specify that one seeks an extre-
mum of the transmitted amplitude of the mode spec-
ified as incoming. Of course, the result, even if calcul-
able—very many topographic modes would have to be
computed, each a lengthy calculation as Huthnance
(1978) showed—could have less immediate use than
the one- and two-layer calculations. This is because
there does not appear any way to compute transmis-
sions directly as a check on the calculations, so that it
is not known whether the predicted upper bound serves
as an accurate estimate of the actual transmission.

It now seems fairly clear, however, that the break-
through of one or more density strata by topography
plays a key role in governing wave transmission at low
frequencies. Thus layered models which restrict to-
pography to their lowest layer, and those with only
small-amplitude topography, are likely to give erro-
neous answers in the regimes considered here. The
same is true of most numerical models, which cannot
adequately resolve the wide range of wave scales gen-
erated by the topography at low frequencies.

Acknowledgments. My thanks as ever to Jeff Blundell
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