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ABSTRACT

The scattering of shelf waves at simultaneous changes in depth, direction and width is considered. In the low-
frequency limit the scattering is shown to be determined by the connection of f/H contours. The description
“simple” is introduced for regions in which no incident f/H contour terminates and then restarts. An explicit
connection formula is derived for simple regions. It is shown that energy is transported without loss across a
scattering region if no incident f/H contours terminate there. This subclass of simple regions is described as
conservative. Particular examples are given for exponential shelves joined by both simple and nonsimple, con-
servative and nonconservative scattering regions, and for both incident shelf waves and irrotational flows driven
across the region. In the latter case, energy is scattered out of the flow into a transmitted wave field. Finally it
is noted that if the irrotational flow determined by a particular shelf geometry is geostrophic then even at
arbitrary frequencies no scattering of energy occurs from the flow or among shelf waves.

1. Introduction

The effects of obstructions to long barotropic shelf
waves on shelves with parallel isobaths have been dis-
cussed for flows of vanishingly small but nonzero vis-
cosity in Johnson ( 19894, called I herein ). By confining
attention to the low-frequency limit simple direct re-
sults can be obtained for scattering by obstacles of quite
general shape. It is the purpose of the present paper to
extend these results to general changes in shelf depth,
direction and width. The geometry considered is that
of two fixed profile shelves joined by a scattering region
of extent of order the shelf width. Outside the scattering
region the dynamics are governed by the long wave
low-frequency form of the topographic wave equation.
It is shown in section 2 that in the scattering region at
low frequencies the flow is oscillatory and geostrophic,
constrained to follow contours of f/H (here as else-
where the parameter definitions are those of I). The
required value of the streamfunction immediately after
scattering follows from the incident field by tracing
backwards along f/ H contours. The transmitted field
in the low-frequency limit for a general scattering region
is then completely determined. The concept is intro-
duced of a “simple” scattering region, one in which no
f/H contour terminates and then restarts. For a simple
region, the transmitted field is given explicitly in terms
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of the incident field by a connection formula without
detailed consideration of the exact geometry. It is
shown that a scattering region is conservative, incident
shelf-wave energy is transmitted without loss, if all in-
cident f/ H contours extend through the scattering re-
gion but is dissipative, with energy destroyed in sidewall
boundary layers, if incident f/H contours terminate
within the region.

Section 3 gives the form of these results for the par-
ticular example of exponential shelves. This geometry
includes that considered in Middleton and Wright
(1988, denoted MW herein). They, however, consider
changes in shelf depth that are abrupt even on the scale
of the shortest waves and matching across the scattering
region is less direct. Section 4 discusses the difficulties
associated with wall-step junctions noting that the
analysis in Johnson (1985) suggests the presence of
singular regions of infinite energy, not well treated by
mode-matching techniques. Section 5 presents a simple
geometry giving a change in shelf depth that can be
analyzed by mode-matching techniques without re-
quiring the low-frequency limit. The qualitative form
of the solutions is obtained by comparison with solu-
tions for the related geometry of a shelf with a termi-
nating bay zone considered in Stocker and Johnson
(1989). Section 6 briefly discusses the results, extending
to arbitrary frequencies the result obtained for low fre-
quencies in section 2, that many joining regions cause
no scattering. Even at discontinuous changes in shelf
width, isobaths will be such that no scattering occurs
at any frequency if irrotational flow through the region
is geostrophic.
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2. Governing equations

The inviscid topographic wave equation is (Rhines
1969)

V. (H'VE,)+ 2 [V¥ X V(f/H)] =0. (2.1)

Consider an infinite shelf consisting of two semi-infinite
shelves whose directions, widths /; and /,, and cross-
shelf profiles are fixed but arbitrary. Let the shelves be
joined by a scattering region of size of order the shelf
width and bounded by impervious walls at Cy and C;.
Let 0'x'y’ be arbitrary axes and 07,x},y7, and
05x5y5 be axes aligned with the shelves as illustrated
in Fig. 1a. Consider the scattering of a shelf wave of
frequency wf, writing ¥ = Re{e M}, Introduce
nondimensional variables

xy=x1/l, yi=yi/lh, x2=x3/bL, y>=yi/h
(2.2)
and the long scale (for w small)
WXy, if x <0
X= [ _ (2.3)
wXs, if X > 0.

In the long-wavelength low-frequency limit (w —> 0),
(2.1) reduces to

Yy — G, +iYx) =0, X#0, (2.4)
where the logarithmic slope is
(logH,),,, X<0O
G={ ety (2.5)
(logH,),,, X>0

(b)

FIG. 1. A plan view of a shelf with an arbitrary change in depth,
direction and width. The impervious boundaries at Cy and C; are
thickened and typical isobaths included. 0’x’y’ is an arbitrary Carte-
sian frame and 0’ x} y| and 05x3y} Cartesian frames relevant to the
rectilinear shelves (a) on the scale of the shelf width and (b) on the
long-wave scale. The scattering occurs across X = 0 and the origins
01, 04 are chosen to coincide.
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for shelf profiles H,(y,) and H,(y;). For definiteness
G is taken to be strictly positive so long waves are in-
cident from X < 0. The variable y represents y, in X
< 0 and y; in X > 0. The origins of (y,, X) and (y,,
X') are arbitrary and so can be chosen to coincide (Fig.
1b). The low-frequency scattering problem for arbitrary
changes in direction, width and depth has been reduced
to scattering at a depth change in a constant width -
rectilinear channel.

The boundary conditions on the impervious walls
can be written

v=0 (on(p), ¥=a (onC)), (2.6)

where a nonzero « gives an oscillatory instantaneous
flux. To complete determination of the scattered field
in X > 0 it is sufficient to know | y—o+. This follows
by considering (2.1) in the low-frequency limit on the
length scale /,. The sole surviving term gives

Vy X V(f/H) =0, (2.7)
i.e., ¥ is constant along contours of f/H. On length
scales of order of the shelf width, the flow is entirely
geostrophic at low frequencies. The required value of
V| x=0+ = ¥|x,= at a given y, follows by tracing back-
wards along the f/H contour until the contour inter-

- sects Cp or C, (and so ¢ takes the value O or «, re-

spectively) or until the contour reaches x; = —co and
the value of ¢ is given by the incident wave. At low
frequencies it is the connection of the isobaths that
determine the flow and not their precise shape. If con-
tours originating at x, = —oo terminate on either Cp
or C) there will generally be a conflict in the value of
¥ given by the incident wave and that from (2.6). It
is shown in I that the presence of vanishingly small
viscosity resolves this conflict in a sidewall boundary
layer of thickness w/; . Short waves satisfying (2.1) with
wavelengths of order w/; occur only within this layer.
It is their absence on the scale /; that leads to the simple

* form (2.7). The boundary layer turns the volume flux
.carried by the incident wave and dissipates incident

wave energy. It is only if all incident f/H contours
emerge from the far side of the scattering region that
dissipative boundary layers are absent and energy flux
is conserved. Such a region is denoted “conservative.”

It is helpful to also distinguish a larger class of scat-
tering regions, denoted herein as “simple,” in which
no incident f/ H contours terminate and then restart.
This precludes neither closed contours, incident con-
tours terminating, contours originating nor contours
which both originate and terminate entirely within the
region (Fig. 2a). All conservative scattering regions are
simple as are some dissipative regions. Isobaths for a
nonsimple region containing a valley are given in Fig.
2b showing incident contours of f/ H terminating and
restarting. This region is equivalent to the headland
treated in I. Volume flux incident on AB is turned in
a boundary layer of thickness w/, on AB’ to emerge
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FIG. 2. (a) A simple scattering region. Although there are present
isolated closed contours, contours starting in the scattering region
and terminating there or extending downstream, and incident con-
tours terminating in the region, no incident contour of f/ H terminates
and restarts in the region. (b) An example of a nonsimple scattering
region. A valley is present in the region and contours of incident f/
H terminate and restart. The matching conditions for such regions
must be derived individually. The discussion of I shows that volume
flux incident on AB is turned in a boundary layer on AB' to emerge
from a source at B’ as a spreading current centered on the isobath
B'B”. (¢) An example of a scattering region across which energy is
conserved. The region is simple and all incident contours emerge on
the far side.

from a source at B’ as a spreading boundary layer of
thickness w!/?]; centered on the isobath B'B”. Dissi-
pative layers are present in any nonsimple connecting
region and no nonsimple region is conservative.

The connections of f/ H contours for different non-
simple regions must be considered individually and no
general formula is possible. It is sufficient, however,
for a region to be simple to determine an explicit,
unique connection formula. The formula is unaffected
by the precise form of the bathymetry. Introduce the
functional inverse y, (H;) of the profile H,(y,) (which
exists as G > 0), so y, is the value of y corresponding
in X < 0 to a depth H,. Then, for a simple scattering
region,
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a, if Hy(y)> Hi(1)
w07, y1(H2(y2))),

if Hy(0) < Ha(y2) < Ha(1)
0, if H,(y,) < H(0).

Yo", y2) =

(2.8)

Equations (2.4), (2.6) and (2.8) uniquely determine
the transmitted wave field and general H>, ¢ can be
found by separating variables and expanding in cross-
stream modes. The required normalizations and or-
thogonality relations are given in Hsieh and Buchwald
(1985).

As shown in I, the time-averaged flux of wave energy
over a cross-channel plane is a constant in each of the
separate regions X < 0 and X > 0. The flux may, how-
ever, alter across X = 0. If an oscillatory flux is present
(a # 0) energy is scattered into the shelf wave field. If
the incident ficld comprises only shelf waves (a = 0)
then the relation between the fluxes follows from (2.8)
as

1
f 0 % (H2‘—])y2¢2'x>0dy2

-
- [, letr, 29

where the second integral is evaluated over those values
of y, corresponding to isobaths continuing through the
scattering region. Energy is conserved if and only if all
incident isobaths emerge from the far side of the scat-
tering region (Fig. 2c).

If H,(1) < H,(0), i.e., the maximum depth in X
> 0 is smaller than the minimum in X < 0, no f/H
contours extend through the scattering region and (2.8)
gives

Ww0*,»)=0, Oy, <1 (2.10)

In the absence of an oscillatory current (a = 0) all
incident shelf wave energy is dissipated in the scattering
region and the transmitted wave field is absent. If an
oscillatory current is present (a # 0) this crosses X
= ( in a singularity on C;, acting as an oscillatory
source as discussed in Johnson (1985). Energy from
the current is scattered into transmitted shelf waves as
in Johnson (1989a,b). A specific example is given in
the following section.

If H,(0) = H,(1) so the minimum depth in X > 0
is greater than the maximum in X < 0, then (2.8) gives

w07, y2) = a, (2.11)

Once again in the absence of a current (o = 0) there
is no transmitted field and if a current is present (a
# 0) flow crosses X = 0 in a singularity on the bound-
ary, in this case on C,.

If H,(0) < H;(0) and H,(1) = H,(1) then all f/H
contours from X < 0 extend into X > 0, all incident

0<y2S1.
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information contributes to the transmitted field, and
if @ = 0 energy flux is conserved.

Any incident field can be expressed as a set of in-
cident shelf waves with, for « # 0, a superposed oscil-
latory current given by

v, X)

'y 1
) afon(n)dn/fo Hi(m)dn, X<0

S |
« | Hz(n)dn/ [ Haman, x>0,
(2.12)

The current is geostrophic, running parallel to isobaths
and uniform with constant speed

U=-H"'Y,=a/A, (2.13)

where A is the cross-sectional area of the shelf. Since
the velocity is constant the flow is trivially irrotational.
As ¢ satisfies the inhomogeneous conditions on C|,
writing ¢ = ¢ + " leaves a standard scattering prob-
lem for the wavefield ¥* governed by the connection
formulae for y.

This decomposition is also possible at arbitrary fre-
quencies. A useful form for the oscillatory current, since
it remains valid in the absence of either rotation or
topography, is the irrotational flow satisfying the
boundary conditions (2.6) with vanishing vorticity, i.e.,
with

V-(H-'Vy°% =0. (2.14)

Again the decomposition ¢ = ¢° + {” leaves a standard
scattering problem for the wave field ¢", but with a
forcing term in any region where ¢° violates (2.7), i.e.,
anywhere irrotational flow is not geostrophic. If ¢ is
not geostrophic then energy is scattered from the cur-
rent into shelf waves, even in the absence of an incident
shelf wave. Section 3 gives an example in the low-fre-
quency limit.

If 0 is geostrophic then it takes no part in the scat-
tering and the problems for y° and y* decouple com-
pletely. No energy is scattered into the wave field from
the irrotational flow. Further, (2.7) implies that H!
= R'(y°) for some differentiable function R. From
(2.14) R(¢°) is harmonic in (x, y) and from (2.6) it
is constant on C, and C,. Thus R(Y°) defines a con-
formal mapping of the shelf onto a rectilinear channel.
Since (2.1) is invariant under conformal mappings
(Davis 1983; Johnson 1987) and no energy scatters
between shelf wave modes in a rectilinear channel there
is no scattering on the shelf. This argument shows that
if irrotational flow through a scattering region is geo-
strophic then there is no scattering of either the flow
or incident shelf waves at any frequency.

3. Exponential topography

As an illustration of the results of the previous sec-
tion, consider the exponential shelves given by
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Hy(y,) = hy exp(2b,y-),
3.1)

H\(y:) = hy exp(2b,y,),

SO
vi(Hy) = (1/2b,) log(H,/hy)
y2(H) = (1/2b;) log(H,/ hy), (3.2)
with f constant and the scattering region simple. Con-
sider first the case H,(0) < H;(0) and H>(1) = H,(1)

so that all isobaths from X < 0 extend into X > 0 and
the region is conservative (Fig. 2¢). Introduce

d = y(Hy(0)) = (1/2b;) log(hi/z), (3.3)

so d = 0 measures the displacement from C; of inci-
dent information in passing from X < 0 to X > 0. Intro-
duce also 8 = b,/ b, the ratio of the logarithmic slopes.
Then d+ 87! < 1 and the connection formula (2.8 ) be-
comes .

a, d+B87'<sy, <1 (3.4a)

WO0~,B(y—d), d<y,<d+p™"
\0(0+, y2) = ’ (3.4b)

0, O0<y,<d. (3.4¢c)

Incident information is displaced by 4 and contracted
by a factor 8 = 1. For an incident mode m shelf wave,
a =0 and

¥ = hy/'? exp(byy,) sinmry, exp {i(b?® -

+ m?x?)(X/2b))}, X<0. (3.5)
The transmitted wave field can then be written
¥¥ = hy'2 exp(b2y2) 2 ansinnzy,
n=1
X exp{i(b? + n*x?)(X/2b,)}, X>0, (3.6)

where the mode amplitudes depend on the topography
solely through the parameters 8 and 4 and are given
by

-f; mB{(—1)" sin[nwx(d + 7))

n — sinnwd}/(n* — 8*m?), if n#pBm

B! cos(mnBd), if n=Bm.
(3.7)

The time-averaged energy flux associated with any
mode, normalized on the flux of the incident wave, is
given by Ba,?, and the sum over all modes is unity.
The conditions (3.4) are precisely those for a shelf of
width 87! < 1 widening to width unity by simultaneous
steps of —don Coand 1 — d — 87! on C,. The present
analysis includes I as the special case d + 8! = 1 with
L of I given by
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L=—d/(1-d)y=1-8, (d+87"'=1), (3.8)
as can be verified by direct substitution in (3.7). This
special case corresponds also to the “nearshore jump”
in MW. Figure 3a and 3b of I thus gives the distribution
of energy flux among the transmitted modes normal-
ized on the incident flux as a function of the fractional
change in slope @ where the ordinate L =1 — < 0.
For 8 = 1, L = 0 and no scattering occurs. Thus, pro-
vided a region is simple and the profiles of the shelves
before and after the region are the same, low frequency
waves are transmitted without scattering. The extension
of this result to arbitrary frequencies is discussed in
section 6. As f increases, the shelf in X > 0 becomes
steeper, L becomes more negative, and transmitted en-
ergy is initially confined closer to C; and carried in
progressively higher modes. The total normalized
transmitted flux is unity; incident energy is transmitted
without loss. The relationship of this result to that in
MW is discussed in more detail in the following section.
The region is no longer conservative if any isobaths
terminated in the scattering region. For topography
(3.1) this occurs if H>(0) > H;(0) (d < 0) or Hy(1)
< H(1) (d + 7! > 1). In the latter case (3.4a) is
absent and (3.4b) holds for d < y, < 1. There is a
dissipation layer of length of order of the channel width
along C, where incident wave energy is destroyed and
volume flux turned to emerge at X = 0%, y, = 1. In
the former case (3.4c) is absent, (3.4b) holds for 0 <
y2 < d + B7}, there is a dissipation layer along C, and
volume flux emerges at X = 0%, y, = 0. If bothd < 0
and d + 87! > 1, there are dissipation layers and vol-
ume flux sources on both Cy and C; and (3.4b) applies
for 0 < y, < 1. The transmitted wave field for an in-
cident mode m shelf wave (a = 0) is given by (3.6)
with
.

% {(—1)"mB sin[n=(d + B7")]

— nsinmwxBd}/(n? — B?m?),

ap = if n#pm
(d + B7") cosmnBd — sinmnBd/mnp,
if n=8m

| if d<0 and d+8-'<1. (39a)
( %{(—1)"“;1 sin[mm(1 — d)]

— m@ sinnwd}/(n* — B2m?),

if n#Bm
= (1 — d) cosmnBd — sinmn
X (1 — d) cosmnf/mn,
if n=Bm,
\ if d=0 and d+B87'=1. (3.9b)
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r

%(—1)"+‘n{sin[m7rﬂ(1 - d)]

+ sinmnBd}/(n? — B*m?),

a, = « if n+#Bm
cosmwf3d — cosmn (1 — d) sinmn 8/ m=g,

if n=8m

L if d<0 and d+87'=1. (3.9¢)

Case (3.9a) corresponds to a shelf of width 87! being
offset by a simultaneous narrowing of —d > 0 on C,
and widening of d + 8! — 1 on Cy; (3.9b) corresponds
to an offset by a simultaneous narrowing of d + 8!
< 0 on C; and widening of 4 on Cy; and (3.9¢) cor-
responds to a narrowing shelf with simultaneous inward
steps of d + 37! — 1 on C; and ~d on C,. Once again
the present analysis includes I as a special case of (3.9a)
or (3.9c) withd + 87! = 1 and L given by (3.8), a
“nearshore drop.” Figure 3a and 3b of I gives the dis-
tribution of transmitted energy flux, for incident mode
1 and mode 2 waves, as a function of the fractional
change in slope 8 with ordinate L — 1 = 8 = 0. As
expected energy is dissipated in the scattering region
with the transmitted field vanishing for 8 < 0. For gen-
eral d and 87!, the fractions of incident flux dissipated
in the scattering region corresponding to the three cases
(3.9) are '

sin2mnBd/2mn — Bd, (3.10a)
sin2mwB(1 —d)/2mnr — B+ Bd + 1, (3.10b)
sinmnfB(1 — d) coomnB/m=xB — 8+ 1, (3.10c)

becoming unity in any case when no incident isobaths
extend into X > 0.

As an example of a scattering region that is not sim-
ple, consider a nearshore trough between two shelves
of the same profile (h; = hy, b, = b,, Fig. 2b). Depth
is constant along C; and has a'maximum Ay > A, on
C,. Isobath connections give

w07, »2),
O, 0< Yy < L,

L<y2<1

Y(O0*, y2) = [ (3.11)

where L = (1b,)log(ho/h;) > 0. These conditions are
precisely those for a headland of fractional length L
treated in section 6 of I. Expressions for the mode am-
plitudes are given there and Fig. 8 of I gives the dis-
tribution among modes of the transmitted energy flux
for incident shelf waves of modes 1 and 2. As the region
is not simple it is not conservative and energy is dis-
sipated. For L = | the trough is sufficiently deep that
no incident isobath extends into X > 0 and no incident
shelf wave effects the flow in X > 0, although as shown

! For 8 < 0 the direction of the long-wave propagation is reversed
in X > 0; no mechanism exists to carry energy away from the scattering
region and so it is dissipated entirely there.
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below there is a scattered field if an oscillatory current
is present (a # 0).

If o # O forcing fluid columns to cross isobaths scat-
ters energy into shelf wave modes. Introducing the ir-
rotational flow (2.12) allows the incident field to be
split into an incident shelf wave field treated as above
and a current with no shelf wave component, given by

¥ = a exp[ba(y; — 1)] sinhb, y,/sinhb;, X <O.
(3.12)

The field in X > 0 can be written
¥ = aexp[b2(y2 — 1)]{sinhb,y,/sinhb,

— 2 apsinnwy; exp[i(b? + n’x?)(X/2b,)]1},

n=1

(3.13)

where the shelf wave amplitudes in the various cases
follow from the connection formulae as for incident
shelf waves. It is shown in I that the time-averaged
energy flux carried over a cross-shelf plane by the
transmitted waves is independent of the position of the
plane, and is given by

1
[ 3 urmaiviza,

balal(f/h)e 3 a2 (3.14)

n=1

1
2

A convenient normalization that removes the para-
metric dependent on « and A, is given by f times the
time-averaged Kinetic energy per unit length of the as-
sociated irrotational flow

1
L[ 12y = bal di*imye - 1),
0
(3.15)

The results presented in section 4 of I again correspond
to the special case d + 87! = 1 [with L given by (3.8)]
of a nearshore jump (for L < 0, i.e.,, 8 > 1) or drop
(for L > 0, i.e., B < 1), where

" 2b, sinnwd/(n*x? + by?) sinhby(1 — d),
g>1
2n= sinhb,d(n*c? + by?) sinhb,(1 — d),

g <1,
(3.16)

a, =

Unlike the scattering amplitudes and fluxes when «
= 0, the amplitudes a, and their associated fluxes de-
pend explicitly on the logarithmic slope parameter b,.
Figure 3 gives the distribution of fluxes in (3.14) nor-
malized on (3.15), as a function of the isobath dis-
placement d for b, = 1, showing the wave field to be
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FIG. 3. The distribution of energy flux among the transmitted
modes for a scattering region equivalent to a nearshore jump or drop
when the incident flow is irrotational. The fluxes are given as a func-
tion of d, the displacement of the A4, isobath in X > 0, and are nor-
malized on f times the local energy per unit length of the transmitted
irrotational flow. b, = 1.

significantly more energetic, exceeding a quarter the.
energy associated with the irrotational flow, for a drop
rather than for a jump where the wave energy ap-
proaches only 4% of the irrotational energy.

In this case no incident f/ H contours penetrate into
X > 0 only if 8 < 0, when no transmitted shelf-wave
field is possible. The field in X > 0 is then simply the
irrotational current with the requisite flux, matched to
that in X > 0 by a dissipative cross-channel boundary
layer. To give an example in which no f/H contours
penetrate into X > 0 but energy is scattered into the
shelf wave field consider the case when d > 1 so H,(0)
> H,(1), i.e., the maximum depth in X > O is less
than the minimum depth in X < 0. The boundary
conditions on the flow in X > 0 are (2.6) and (2.10)
and so

ay = (—1)"2nx/(n*x? + b?). (3.17)

The flow in X > 0 is determined entirely by the loga-
rithmic slope b, and the flux through the singularity at
X = 0%, y, = 1, and is independent of any shelf-wave
component of the incident flow. Figure 4 gives, as a
function of b,, the distribution of the fluxes in (3.14)
normalized on (3.15). The shelf-wave flux achieves its
maximum relative to the local kinetic energy for slopes
of order unity. The field given by (3.13) and (3.17) is
precisely the scattered field due to a source constructed
in Johnson (1989b) in discussing the oscillatory flow
forced round an island by an incident shelf wave.



SEPTEMBER 1989

mod
. et
3
>
=g
@ mo
c
Y
kel
Q
E
£
1723
c
8
= BAf
mode1
% 2.5 1 75 2 7.5

Logarithmic slope, b,

FIG. 4. The distribution of energy flux amongst the transmitted
modes for a scattering region in which no incident f/H contours
extend into X > 0 and the incident flow is irrotational with nonzero
flux. The fluxes, normalized on f times the local energy per unit
length of the transmitted irrotational flow, depend solely on b,, the
logarithmic slope in X > 0.

4. Vertical steps

The changes in shelf geometry considered in the
previous sections are abrupt on the long-wave scale,
taking place over scales of order of the shelf width. The
analysis applies equally to even faster changes provided
solely that the topography is smooth on the short-wave
scale w/; so the dissipative boundary layer discussion
of I is valid. Steeper topography, vertical even on the
scale of the shortest waves, has been considered by MW.
As they note, this choice is not optimal, as precisely
vertical escarpments are rare on continental shelves
and difficulties can arise in mode-matching techniques.
For vertical steps on shelves of constant-signed slope
(i.e., G > 0), wall-step junctions are present at one or
both walls. Take polar coordinates (r, ) centered on
a wall-step junction. Then for r < 1 the sole surviving
term in (2.1) is the first. Sufficiently close to the junc-
tion, the streamfunction is harmonic and the step of
constant height. This is precisely the geometry consid-
ered in Johnson (1985), where topographic waves are
shown to propagate unidirectionally along the step with
shallow water to their right (for f > 0). They have the
form

¥ = cos(wt + k logr) sinh[kl()l - % w] , (4.1).

where the step is taken to be at § = 0 and the wall at
0 = +Y,w. The wavenumber k is given by the dispersion
relation

(4.2)

i _ hy — hy
tanhzrk— (hl+h2)w.
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For each nonzero subinertial w there is a free topo-
graphic wave with Y bounded but infinite energy. Cross-
shelf modal expansions cannot be expected to capture
this behavior well. The difficulty of establishing energy
conservation and matching at nonzero w is remarked
on by MW.

The particular case w = 0 is treated in detail in John-
son (1985) where it corresponds to a steady forced
flow over a step. It is shown that if the geometry is
such that topographic waves propagating along the step
carry energy towards the wall, a singularity forms at
the junction as no incident energy can be reflected. If
the step is in the opposite sense, however, energy is
carried away from the wall and the solution is well
behaved in the neighborhood of the junction. Thus the
sole case where waves of the form (4.1) are absent and
energy is finite at the wall-step junction is when the
low frequency limit is taken; there is no depth change
along one wall, and the step is such that topographic
waves travel away from the other wall. This is con-
firmed by the examples of MW, who mention diffi-
culties in all other cases.

The matching condition at a cross-channel step can
be written in general (Johnson 1985) as

[¥]=0, (4.3)
[H™'¥.] + [f/H]Y, =0, (4.4)

where brackets denote the jump in the enclosed quan-
tity across the step. Substitution of a sine series for ¥
introduces both sine and cosine series in (4.4) leading
to a matrix equation with coefficients which decrease
only slowly with increasing order. This difficulty is
avoided in Johnson (1985) by conformally mapping
the flow domain into one in which the singularity is at
infinity. If the surface is free, Kelvin waves are possible.
The sole modification on shelf scales or smaller at low
frequencies is to add a term representing free-surface
deformation to the field equation, leaving the jump
conditions unaltered. Incoming waves still carry energy
towards the wall-step junction, and sufficiently close
to the wall free-surface deformation becomes negligi-
ble—the solution rapidly approaching that for a rigid
lid. Johnson and Davey (1989) obtain numerical so-
lutions for the development of a singularity in low fre-
quency free-surface flow by introducing a coordinate
system stretched in the neighborhood of the wall-step
junction.

5. Arbitrary frequencies

Results in Wilkin and Chapman (1987) and MW
suggest that results in the previous sections obtained
in the limit w — 0 are accurate for frequencies as high
as 0.1f. At higher frequencies reflected short waves
become important in (2.1) and for inviscid flow carry
(in the negative X direction) the energy dissipated in
their absence in wall layers. A shelf profile that enables
these effects to be investigated without the difficulties
associated with a vertical step is given by
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h exp(2by), x<0
H(y)=<{ hexp(2by + 2¢x), 0<x<a (5.1)
hexp(2by + 2ac), a<x,

for constants 2 > 0, b > 0 and c. This depth profile
has been discussed in an infinite domain by MW and
in a semi-infinite shelf geometry in Stocker and John-
son (1989), where a wall is placed at x = ¢ and the
problem of a shelf in x < 0 terminating at a bay zone
at 0 < x < ais considered. It is shown that the boundary
conditions on ¥ at the junctions of the regions are the
continuity of ¥ and its normal derivative. Writing ¢
= H'/2® reduces the governing equation to a Helm-
holtz equation for & with piecewise constant wave-
number. Solutions follow directly by mode-matching.
It is shown that energy is conserved at the region junc-
tions. Moreover since the scattering region in isolation
supports trapped modes, the region plus shelf supports
trapped modes at isolated frequencies above the shelf
cutoff and exhibits resonances at isolated frequencies
below cutoff. These results and methods apply directly
to the present case. Detailed results of the numerical
computations will be presented in a separate paper,
but for completeness the low-frequency results are
given here.

The scattering region is simple, and so, matching
conditions in the limit w — O are given by the con-
nection formula (2.8). Consider first the case ¢ = 0.
Typical isobaths are sketched in Fig. 5. Energy incident
on AB is destroyed in the boundary layer AB’ on C
and volume flux incident on AB emerges at B’. Infor-
mation incident on BD is transferred to B'D’, and the
field on D’E is determined by its (constant) value on
C,. As noted in I, the boundary layer on AB’ is of
thickness wl; with velocities of order ™' » 1. It is here
that nonlinear effects and rectification first become im-
portant with increasing wave amplitude. The flux
emerging at B’ spreads parabolically in a layer of thick-
ness w'/?/; on the scale /, to cover the whole channel

over the long-wave scale /,/w. The present scattering -

region is the special case of that treated in section 3

FIG. 5. Isobaths for a simple scattering region with continuous
decrease in depth. Volume flux incident on AB is turned by a bound-
ary layer, shown dotted, on AB’ to emerge through a source at B’
and form a spreading boundary current against C,. Information on
BD is carried to B’D’ without change. Information on D’E is derived
from DE. This particular geometry can be analyzed simply by mode-
matching techniques following Stocker and Johnson (1989).
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with logarithmic slope ratio unity (8 = 1) and dis-
placement d = —ac/b. The transmitted mode ampli-
tudes are thus given by setting 8 = 1 in (3.9a) for ¢
2 0. For ¢ < 0 the coefficients are given by setting 8
=1 in (3.9b) and differ from those for ¢ = 0 in sign
alone. The energy carried by a given mode depends on
| d|, the size of the depth changes and is independent
of whether the change is up or down. This reflects the
symmetry about y, = %2 of the problem for ®. If | d|
> | noincident isobaths extend into X > 0, all incident
energy is dissipated in sidewall boundary layers and
(for o = 0) there is no motion in X > 0. Figure 6 gives
the distribution of flux among the transmitted modes
normalized on the incident flux as a function of the
displacement d for incident wave modes m = 1 and m
= 2. The total transmitted energy is

sin2mnd/2mw + 1 — d, - (5.2)

precisely that for the problem of a headland on a shelf
discussed in I, although the distribution among the
modes is different. This follows directly from the con-
nection formulae for the two cases. '

6. Discussion

It has been shown that in the low-frequency limit a
scattering region of order of the shelf width is geo-
strophic. Matching conditions across the region follow
immediately by tracing contours of f/H. Energy is
transported without loss if no f/ H contour terminates
in the region and if no contour terminates and restarts
then the region is simple and an explicit connection
formula exists.

It was noted that provided a scattering region is sim-
ple and the profiles of the shelves before and after the
region are the same, low frequency waves are trans-
mitted without scattering. Thus scattering is absent for
a wide class of changes in depth, direction and width.
Such a class exists also for waves at arbitrary frequen-
cies. In fact, given any shape for C and C| a scattering
region always exists that can join the rectilinear shelves
so that no scattering occurs. This is an immediate con-
sequence of the invariance of Eq. (2.1) under confor-
mal mappings and the Riemann mapping theorem,
and is exploited in Johnson (1987) to obtain explicit
solutions for shelf waves in corners and waves in elon-
gated lakes. As noted there, the scattering region merges
with the shelves exponentially fast. Thus, knowledge
of the shape of the shelf boundaries is not sufficient to
determine whether scattering will occur. Even at a dis-
continuous change in width isobaths can be such as to
allow waves to pass without change of form. A physical
criterion can be given. If the irrotational flow through
a scattering region is geostrophic then no scattering of
either the flow or incident shelf waves occurs. If irro-
tational flow cuts contours of f/ H then energy is scat-
tered from the flow into shelf waves and among shelf:
waves.
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FIG. 6. The distribution among transmitted modes of energy flux
for incident shelf waves of modes 1 and 2 normalized on the incident
flux, as a function of the displacement d, of the A, isobath; (a) mode
1 incident and (b) mode 2 incident.

The results have been presented for shelves bounded
by impermeable walls at C, and C;. The analysis is
however unaltered if either of these boundaries borders
a constant depth ocean. Suppose first that C, remains
the impermeable coast and C; borders the ocean. Then
C, is an isobath and Fig. 7a gives typical isobaths for
rectilinear shelves joined by a scattering region. In the
ocean (2.1) reduces to Laplace’s equation
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Vi =0, (6.1)

showing the flow there to be irrotational, but in the
low-frequency limit, (2.7) and the standard connection
formulae apply with the additional constraint that since
C, is an isobath so

v=c¢c on(C, (6.2)

for some complex constant ¢. Equation (6.1) with (6.2)
and the requirement that the solution is bounded at
infinity imply that ¢ is identically equal to ¢ over the
whole ocean region. In the low-frequency limit the
ocean is stagnant to leading order over scales of order
of the shelf-width. On the long-wave scale, (6.1) reduces
to

¥y =0, X¥0, y>1. (6.3)

The solution of (6.3) that is continuous and has con-
tinuous velocity across y = 1 is given by

UX, ) =¢X, 1), y=1, (6.4)

where Y(X, 17) is the solution of (2.4) with boundary
conditions

‘PY = 09 (65)

Note that (6.4) joins smoothly onto the shelf-scale open
ocean solution with

c=¥07,17) =07, 17). (6.6)

Condition (6.5) is the open ocean conditions intro-
duced by Buchwald and Adams (1968). Since C, is an
isobath no singular regions or boundary layers occur
there although they can still occur at the coast.-

For an escarpment where C, and C| are both isobaths
bordering constant depth ocean regions (Fig. 7b), with
C, deeper than C, in the orientation chosen here,
boundary condition (6.5) applies on both y = 0 and
y = 1 in the low frequency limit and the ocean regions

on y=1.

G

Ocean

(a}

C

Deep ocean

-Shallow ocean

F1G. 7. (a) Isobaths for a scattering region on a shelf bounded by
an impermeable coast at Cy and a constant depth ocean at C,. (b)
Isobaths for a scattering region on an otherwise rectilinear escarpment
between a constant depth shallow ocean at C; and a deeper constant
depth ocean at C;.
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are once again stagnant on the shelf scale. The con-
nection formulae and classifications of section 2 apply
but no singular regions or boundary layers occur on
Co or C, as they are isobaths. Thus for a smooth es-
carpment, any scattering region containing no interior
vertical steps is simple and conservative. For profiles
(3.1) requiring Cy and C; to be isobaths forces, A,
= h, and b, = b,. The scaled profiles are identical and
there is no scattering across X = 0. Such profiles have
been described as shelf-similar by Hsueh (1980) in the
different context of topography varying only on the
long scale.

Although the results have been obtained in the con-
text of equation (2.1) which takes the surface to be
rigid, they extend straightforwardly to free-surface
flows. The surface displacement is constant along iso-
baths in the low-frequency limit on the scale of the
shelf-width and the same connection formulae apply.
The oscillatory irrotational flow becomes a long Kelvin
wave present even when the outer shelf boundary is
taken to abut a constant-depth open ocean (Johnson,
1989c¢).
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