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ABSTRACT

The domain exterior to an island in a channel with topography is not simply connected and so the circulation
about the island is indeterminate. Rhines shows that, in a rotating flow with a rigid lid, requiring the pressure
to be continuous forces the circulation to be constant in time. It is shown here that the constant-circulation
continuous-pressure solution also conserves energy and, moreover, the circulation associated with scattering of
incident shelf waves is identically zero. The scattering problem is then well posed and a method is given for
constructing the scattered field at arbitrary frequencies.

The problem simplifies greatly in the low frequency limit and an explicit solution for waves scattered by a
thin barrier follows by decomposing the motion into propagating modes and a geostrophic current, following
Hsieh and Buchwald. Explicit values are given for the round-island flux and the distribution of scattered wave
energy for a long, thin island in the center of a channel. It is shown that with increasing island length the round-
island flux decreases rapidly from the value determined by requiring the volume flux to be continuous at the
leading edge of the island towards a solution with little flux between the island and a coastal boundary, as in
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Wilkin and Chapman.

1. Introduction

The problem of the scattering of continental shelf
waves by islands or isolated, finite barriers has received
considerable attention of late in, for example, Hsieh
and Buchwald (1985, denoted by HB herein), Wilkin
and Chapman (1988, denoted by WC herein), and
Buchwald and Hsieh (1988). The domain exterior to
an island is not simply connected and so the circulation
round the island is indeterminate in inviscid flow. It is
the purpose of the present note to show that following
Rhines (1969b) and requiring the pressure to be con-
tinuous round the island forces this circulation to be
constant in time. Moreover, the solution with constant
circulation has the same down-channel energy flux both
before and after the island. Section 2 gives these results,
showing also that the circulation associated with an
incident shelf wave is identically zero and giving a
method for constructing the scattered field at arbitrary
frequencies. Section 3 discusses the considerable sim-
plifications in the low-frequency or long-wave limit of
the problem, pointing out, however, that in general
even vanishingly small viscosity causes a dissipative
boundary layer at the leading edge of an island (John-
son 1989b). This layer, which absorbs energy and
makes a nonzero contribution to the circulation, is ab-
sent if the scattering region about the leading edge of
the island is “conservative” (Johnson 1989c) and in
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particular for the thin island treated by HB and WC.
A solution with a continuous pressure field is thus ob-
tained by forming the linear combination of the HB
and WC expressions that has zero round-island cir-
culation. Section 4 presents explicit results for a barrier
in the center of a channel with rigid walls and expo-
nential topography. The results are discussed briefly in
section 5.

2. Governing equations

The topographic wave equation can be written
(Rhines 1969a)

V(H'VY) +2-[VE X V(f/H)] =0, (21)

where H(x, y) is the local depth, Z a unit vertical vector,
f the Coriolis parameter and ¥ the depth-averaged
streamfunction, giving the horizontal velocity field,
Hu=ZX VYV, (2.2)
The momentum equation corresponding to (2.1) can
be written
HVP=fV¥ —zX V¥, (2.3)
where pP is the departure of the pressure from hydro-
static and p is the constant density. Consider a channel
given by —o0 < x < 00, 0 < y </ containing an island
with boundary C (Fig. 1). Following previous discus-
sion of this geometry by HB and WC, the boundary at
y = [ is supposed to border a flat open ocean region,



- F1G. 1. A plan view of a rectilinear channel containing an island.
There is an impervious coastal boundary at y = 0 and a boundary

to the open ocean at y = /. It is shown in the text that the pressure

or surface elevation is single-valued and the energy flux across any

uninterrupted cross-channel plane (such as those at A and B) is in-

dependent of its position provided the net circulation round the island

vanishes. )

modeled by taking u = 0 there. The condition on ¥ is
then

¥,=0, for y=1. (2.4)

The boundaries at C and y = 0 are solid and so the
conditions on ¥ can be written

¥v=0, for y=0, (2.5)
¥ = o(t) onC. (2.6)

The function «(t) is determined by requiring the
pressure to be continuous, corresponding in flows with
a free surface to requiring the surface elevation to be
continuous. Integrating (2.3) around C and using (2.6)
gives

d f HW,ds=0 2.7

dt Je nds =% (2.7)
where 3, is the normal derivative and s the arc length.
Condition (2.7) determines «(?) and is a restatement
of Kelvin’s theorem that the circulation around a closed
material contour is constant (Rhines 1969b). The flux
round the island is a globally determined quantity, and
varies with the dimensions of the island and the com-
position of the incident flow. Equation (2.1) with con-
ditions (2.4), (2.5), (2.6), (2.7) gives a well-posed
problem with a unique solution.

The solutions for scattering by islands in WC and
HB do not satisfy (2.7). Thus the pressure, or free-
surface elevation, is not a single-valued function of po-
sition in their solutions. Integrating round the island
yields a jump in pressure at some point and so un-
physical infinite pressure gradients and infinite accel-
erations there. When (2.7) is satisfied these difficulties
are removed.

Multiplying (2.1) by ¥ gives the energy conservation
relation

E(+V'F=0, (2-8)

- where E = § H™'|Vy/|? is the local energy density and
F the energy flux. Several forms for F, differing from
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each other by quantities whose divergence is zero, are
given in Johnson (1989a). A convenient choice is

F=(V/HVVY,— % V2% X V(f/H). (2.9)

Consider a region bounded by cross-channel planes
lying either side of the island (A and B in Fig. 1).
Integrating (2.8) over this region gives

d f ! B d
— | E = f i —- fhad f -y,
” dxdy [ A F ldy] alt) ? HW,ds,

(2.10)

using the no-flux condition (2.6) on C and noting that
as H is constant on y = / so F - n vanishes there. Con-
dition (2.7) shows the final term in (2.10) to be iden-
tically zero. The circulation condition means there is
no net flux of energy into the region through the
boundary of the island. For periodic motions inte-
grating (2.10) over one temporal period shows that the
time-averaged flux over a cross-channel plane is in-
dependent of the position of the plane and given by

!
[ grm,eiay, e
whether the plane lies before or after the island. It is

only the net flux through C that vanishes: F is, in gen-
eral, nonzero on C, there is a local flux of energy

- through the boundary of the island, and the flux over

planes joining the island to boundaries varies with their
position. A choice for the flux which vanishes on solid
boundaries is HuP and this is indeed independent of
X on planes joining the island to the coast. It does not
however vanish on y = [ for condition (2.4). If instead
the boundary y = / were solid, then both forms of the
flux would coincide away from the island and be in-
dependent of x.

A prototype for a wide class of problems is given by
taking the island to be the finite barrier of zero thick-
ness: :

0<x<2a, y=IL, for O0<L<1 (2.12)

and the topography to be rectilinear [i.e. H = H(y)].
For periodic motion, as associated with wave scat-
tering, write

¥(x, y, t) = Re{¥(x, y)e ™}.  (2.13)
Then (2.1) becomes
WV — GO)(iwdy — ) =0, (2.14)

where G(y) = (logH),. The circulation round the is-
land associated with scattering is time periodic, given
by Re{Te™™"} for the complex constant

2a
T= | H Id(x, L) = Yy(x, IL))dx. (2.15)
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(An additional circulation, constant in time, may be
present representing steady irrotational flow round the
island. This flow plays no part in scattering.) The con-
straints on ¥ are thus (2.4) and (2.5), and from (2.6):

¥ =a, y=IL, (2.16)

where « is a second complex constant, determined by
the circulation condition (2.7), which becomes

r=0. (2.17)

Equations (2.14)-(2.17) can be solved directly with
an appropriate upstream condition, but perhaps sim-
pler conceptually is to find the solutions ¢ (* and ¢ (¥,
of (2.14)-(2.17) for two arbitrary values of ¢, a(®
and « ", and compute the corresponding circulations
about the island, T'“ and 'V, Then the continuous-
pressure zero-circulation solution is given by

for 0<x<2a,

1//=(1‘(1)|P(0)—I‘(O)¢(1))/(F(l)—r(°)), (2.18)
with
a=(I‘“)a(0)—F(o)a“))/(r(l)-—l‘(o)). (2.19)

Each of the subsidiary problems can be solved straight-
forwardly by matching cross-channel modal expansions
at x = 0 and x = 2a. The above ideas are, however,
most clearly illustrated in the low frequency limit.

3. The low-frequency or long-wave limit

Introduce the nondimensional variables
', y") = (x/1, ¥/D), (3.1)

and the slowly varying scale X = wx’. Then (2.14) be-
comes, dropping dashes,

w¥xx + ¥y — G + ix) = 0,

where G(y) is taken to be a smooth function of y of
order unity. Now consider the limit o = 0, a// = o©
such that xo = 2aw/! remains constant. Then the first
term is absent from (3.2), (2.4) is applied on y = 1
and (2.16) on 0 < X < xp, y = L. This system is valid
away from the planes X = 0, x;. Near these planes but
away from y = L, x is order unity and the sole surviving
term of (3.2) in the present limit is

¥x=0, (3.3)

where x = 0~ 'X or w (X — xp). Integrating from —oo
to oo with respect to x gives the condition

0= [V1Z-w = [¥1%0-- (3.4)

The streamfunction is continuous across X = 0, x,. It
remains to consider the equations in the neighborhood
of the points (0, L) and (xp, L). The solution is well
behaved in the neighborhood of the trailing edge, but
at the leading edge ¥(0~, L) will, in general differ from
a. In this region the appropriate scale for x and y is o,

(3.2)
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the scale of short waves in (2.1). The leading order
terms in (3.2) then give

Vg + Yoy — IG(L)Y: = 0, (3.5)

where £ = x/w and n = (y — L)/w. The boundary
conditions on (3.5) are '

v—>¥W0,L) as £—> —oo foreachy, (3.6)
v=a onC. (3.7)

Equation (3.5), with (3.6) and (3.7), defines a
Rossby wave scattering problem on a §8-plane. Short
waves scattered from the island in general carry energy
in the negative £ direction. It is shown, however, in
Johnson (1989b) that in the present low-frequency
limit even vanishingly small viscosity dissipates these
waves and they have no signature outside the neigh-
borhood of (0, L). The energy reflected in the waves
in inviscid flow at nonzero frequencies is destroyed in
this neighborhood. In the present example of an island
of zero width compared to the cross-channel width,
this dissipation is zero to leading order in w and so
energy is conserved to leading order. The thinness of
the island also means that the neighborhood of (0, L)
makes no contribution to the circulation. For wider
islands, of width of order the channel width, the
amount of dissipation and the contribution to the cir-
culation depend on the type of scattering region at the
leading edge of the island. If the scattering region is
“conservative” (Johnson 1989c) then energy is con-
served and there is no contribution to the circulation.
Otherwise an intense boundary layer of finite cross-
stream extent is present, dissipating energy and making
a nonzero contribution to the circulation. Such a dis-
sipative system is discussed at greater length in Johnson
(1989d).

The continuous-pressure zero-circulation low-fre-
quency problem for a narrow island can thus be written

Yy — Gy + iWx) = 0, (3.8)
¢=0 for y=0, ¢,=0 for y=1, (3.93b)
v=a for 0<X<x, y=L, (3.10)

X0
= J; H7'[Y (X, L*) — (X, L7)]dX = 0,
(3.11)

¥ continuous at X = 0, xo
O<y<L,L<y<1). (3.12)

The time-averaged energy flux over a cross-channel
plane is given by

1
F= fo (H™), 9 dy,

(where the asterisk denotes complex conjugate) and is
independent of X.
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Hsieh and Buchwald (1985) note that (3.8) can be
solved for general H(y) by separation of variables and
that for G # 0 the boundary conditions (3.9) and (3.10)
with « specified give for the cross-stream structure a
Sturm-Liouville problem with a complete set of or-

thogonal eigenfunctions. Solutions satisfying (3.12)°

follow by matching at X = 0, x,. Complete expressions
for the various normalization factors and expansion
coefficients for general H(y) can be found in HB.
Wilkin and Chapman (1988) use the same procedure,
differing from HB solely in the choice of «. Hsieh and
Buchwald choose a = (0, L) giving a continuous-
streamfunction solution and in 0 < X < xp an X-in-
dependent mode and a rapidly converging eigenfunc-
tion expansion. Wilkin and Chapman choose o = 0,
giving a zero-flux solution with the X-independent
mode absent and the expressions for the expansion
coefficients simplified although with the expansion itself
converging more slowly. In neither of these solutions
is the pressure or surface elevation single-valued, but
once the round-island circulation associated with these
solutions is calculated, the continuous-pressure zero-
circulation solution follows using (2.18) and (2.19).

4. Exponential topography
Consider the depth profile given by
H = Hye®, H,, b constants. (4.1)

Full details of the continuous-streamfunction and zero-
flux expressions can be found in HB and WC for ar-
bitrary b, L and cross-channel incident mode number.
The continuous-preéssure zero-circulation solution then
follows as above. To illustrate the nature of the results
consider the simpler problem obtained by taking the
island to be in the center of the channel (L = %42) and
replacing the open ocean boundary condition at y
= | with a rigid wall so y vanishes there. Introduce ®
= exp[—b(y — 2)I¥.
Modes incident on the barrier are given by

& = sinnwy exp[i(n’z? + b?)(X/2b)], X <O.
(4.2)

Modes for even n are odd about y = Y, and the con-
tinuous-streamfunction, zero-flux and continuous-
pressure zero-circulation determinations coincide, each
giving « = 0. The wave is unaffected by the barrier.
Modes for odd » are even about y = Y2 and so therefore
is ®. It is sufficient to consider the half channel 0 < y
< V4. Here

®,, — 2ib®y — b2 = 0, (4.3)
&=0 for y=0, (44)
¢=a for 0<X<Xx, y=%, (4.5a)
&,=0 for X>xp, y= % (4.5b)
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X0
r=2 fo <I>y(X, %)a’X+ 2baxo, (4.6)

® =sinry for X =0, 0<y<%,

(4.7)
where for definiteness the incident mode is taken to be
the fundamental. Denote the solution in 0 < X < x,,
decomposed into waves of amplitude a, by ®*, with

¥ = 3 a,sin2nwy exp(ik,X),

n=1

(4.8)

where k, = (4n*x? + b?)/2b. The corresponding cir-
culation is given by

I™(xo) = 2mi gl (=)' na,lexp(iknXo) — 11/ k.

n=1
(4.9)

The zero-flux solution & ¥ and its circulation T'® are
then given by (4.8)~(4.9) with
_ (0)_2 (_1)n+ln

a, = ay 14 (4.10)

A convenient second solution is that for a unit round-
island flux but zero energy incident from X < 0, i.e.,
satisfying ® = 1 on Cand ® = 0 on X = 0. The solution
and its circulation are

B = sinhby/sinh Lp—er, (a1

TD =2bxe/(1 — e7%) — TV, (4.12)

where " and I'" are given by (4.8)~-(4.9) with coef-
ficients

a, = a,'V = (—1)"*"'47n/ bk,. (4.13)

The value of « in the continuous-pressure zero-circu-
lation solution is given explicitly by

a = —P(O)/F<l),
and the solution itself by

(4.14)

d=a sinhby/sinh % b+d",  (4.15)

where the coefficients in ®* are a, = 4, — aa,".
The a, are in general complex as are the streamfunction
and the round-island flux. Figure 2 shows the variation
in |a|, the round-island flux scaled on the flux incident
on the island, as a function of x, for b = 2. As xp —>
0, a = 1: the streamfunction is continuous for barriers
of length vanishing on the scale w ™', i.e., a € I/ w. As
Xo increases, o rapidly approaches zero, i.e., the flux
becomes close to that given by the zero-flux solution.
The decrease is not monotonic and much high-fre-
quency structure is visible, superposed on a decaying
oscillation of wavelength approximately 0.60. This
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FIG. 2. The round-island volume flux || (scaled on the incident
flux) between a centrally placed long thin island and a channel wali
as a function of the length x, of the island in the low frequency limit
for an incident shelf wave of mode 1. The flux is initially continuous
but drops rapidly towards zero with increasing barrier length. The
logarithmic slope b is 2.

compares with the long-channel wavelength, k; ~ 0.58,
of the lowest mode between the island and the coast
and represents the resonance present in the geometry
for the particular incident wave frequency. In the limit
of a semi-infinite barrier (xp = o), a = 0: the round-
barrier volume flux vanishes. This is the determination
used by WC, and their Fig. 2 can be reinterpreted as
giving the distribution of energy flux among modes
propagating beside a semi-infinite island.

The solution in X > x, follows by matching across
X = X, giving
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® = % (—1)™'d,, sin[(2m — 1) =y]
m=1
X exp{i[(2m — 1272 + b2 [(X — x0)/2b1},
(4.16)

where only the odd modes appear as ® is even about
y = Y2, and the coefficients d,, are given by

d, = 4ab coth%b/[(Zm - 1)%x% + b?)

n 2
(4.17)

The time-averaged energy flux associated with mode
2m — 1 is given as a fraction of the incident flux by
d.»d¥ . Figure 3 shows for b = 2, as a function of x,
and scaled on the incident flux, the individual contri-
butions of the first three nonzero modes (m = 1, 2, 3)
and the total time-averaged flux. The contributions are
once again strongly modulated by geometric resonance.
The total flux is unity as required.

2 S nt+l - 2 1 2
tr > (—=1)™'na, exp(iknXo) [ | n* — | m — _) )
=1

5. Discussion

It has been shown, in the context of the scattering
of continental shelf waves, that requiring the pressure
to be single-valued ( or the surface elevation in a model
with a free surface) forces an otherwise arbitrary cir-
culation about any island to vanish. This condition
then implies the constancy of the net energy flux down
the channel. Solutions of a given problem follow most
straightforwardly by solving for two arbitrary values of
the round-island volume flux and then forming the
linear combination with zero circulation.

Transmitted energy flux

mode 1

e 2.25 5.5 ©.75

1

N
)
;JI-
N
(]
N

Isiand length

FG. 3. Time-averaged energy fluxes downstream of the island as a function of the island length
Xp for an incident mode one wave with unit flux. The total flux is unity as required by energy
conservation for a thin island. The logarithmic slope b is 2. .
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This construction can be shown most straightfor-
wardly in the low-frequency limit. In general, in this
limit even vanishingly small.viscosity dissipates energy
in a boundary layer at the leading edge of obstacle
(Johnson 1989b). If the scattering region is conser-
vative (Johnson 1989c) or the island occupies a neg-
ligible fraction of the shelf-width, however, then this
boundary layer is absent and energy is conserved. Such
an example is the thin barrier in a channel with rec-
tilinear topography, discussed in the low frequency
limit by HB and WC, and a continuous-pressure zero-
circulation solution can be constructed from a linear
combination of their results. A particular example has
been given for exponential topography in a channel
with rigid walls and a central island. The round-island
flux of the geostrophic current is shown to decrease
rapidly from that forced by the oncoming flow (for
barriers with @ < //w) to near zero with increasing
barrier length. Both the volume flux and the energy
flux of the scattered field exhibit fluctuations caused
by resonances in the domain bounded by the island
and the coastal boundary.

In the limit of a semi-infinite barrier, aw/l = o,
the present results agree with those obtained from ra-
diation conditions on free surface flows. If the surface
is free, two Kelvin waves are supported by a semi-in-
finite barrier—one incident from x = +oo supported
by the side y = /L~ and the other generated at the
origin and propagating to x = +oo supported by the
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side y = [L*, The radiation condition for scattering of
a long shelf wave incident from x = —oo requires that
the amplitude of the Kelvin wave incident from x
= +00 vanishes. In the rigid-lid limit this is equivalent
to requiring the round-island volume flux to vanish,
i.e., « = 0, precisely the result obtained from the present
analysis in the limit x; = 0.
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