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ABSTRACT

An iterative frequency-time domain finite element tidal circulation model is applied to the Bight of Abaco
in the Bahamas to study the nonlinear interactions that occur between the various astronomical, overtide and
compound-tide constituents. The nonlinear origin of the significant shallow water constituents is determined
by suppressing the various nonlinear terms in the shallow water equations. Furthermore, the extent to which
nonlinear constituents interact with and affect each other is studied in detail by suppressing the interaction of
selected tides within the framework of the iterative frequency~time domain formulation. It is found that secondary
nonlinear interactions between the astronomical tides and the shallow water tides themselves can significantly
affect overtides, compound tides and even astronomical tides. Some important examples include (i) the M,
interaction with Mg which generates the M, tide, (ii) the significant reductions in Ms, M and M,, responses
(respectively by 12%, 15% and 25%) due to the interaction involving the 2MN, and 2MS, constituents, and (iii)
increased responses in the N, and §; constituents (by about 7%) due to interactions with the 2MN, and 2MS,

tides.

1. Introduction

Interest in developing an increasingly more accurate
predictive capability of sea Ievel elevation and circu-
lation in the coastal zone has been spurred on by con-
cerns relating to navigation, shoreline flooding and
pollutant transport. Typically, site specific sea level data
is based on the harmonic analysis of a measured time
history signal which yields harmonic tidal constituents
which are then used to regenerate time history signals
at future times, More recently numerical models have
come into use as predictive tools which are able to
provide more global information.

Harmonic tidal constituents have associated fre-
quencies which relate to the forcings which generate
them and their use has a firm mathematical and his-
torical basis. They are broadly classified as either as-
tronomical constituents, which are generated through
gravitational attraction of the moon and sun, or shallow
water constituents, which are the result of the inter-
actions of the astronomical constituents with each other
or with other shallow water constituents through the
nonlinear processes which govern the flow in the wa-
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terbody. The shallow water constituents gain signifi-
cance in shallow coastal areas, and in order to accu-
rately represent the surface profile and circulation in
these regions it is absolutely essential that these con-
stituents be concisely computed.

It has been a matter of long standing interest as to
which nonlinear mechanisms generate the shallow wa-
ter tides and, furthermore, how these constituents mu-
tually interact and modify each other (Dronkers 1964).
A number of recent studies have given considerable
insight into these questions and have in particular paid
much deserved attention to the nonlinear friction terms
{LeBlond 1978; Kabbaj and Le Provost 1980; Le Pro-
vost and Fornerino 1985; Parker 1986; Walters and
Werner 1988). The present study, through a numerical
investigation of the tides in the shallow Bight of Abaco
in the Bahamas, examines in detail the extent to which
the various nonlinearities generate the shallow water
constituents in addition to the degree to which the var-
ious nonlinear constituents affect each other. We will
focus in particular on the details of the secondary non-
linear interactions which occur between the astronom-
ical constituents and/or the shallow water constituents.

The numerical model used in this study, TEA-NL
(Nonlinear Tidal Embayment Analysis), allows for the
entirely general investigation of these nonlinear tidal
interactions. TEA-NL is a harmonic finite element tidal
prediction model, which solves for the full nonlinear
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form of the shallow water equations (Westerink et al.
1987, 1988). Harmonic tidal models have come into
recent use due to a number of potential advantages
over time stepping models in addition to allowing for
the direct computation of tidal constituents (Kawahara
et al. 1977, Pearson and Winter 1977; Le Provost and
Poncet 1978; Snyder et al. 1979; Le Provost et al. 1981;
Walters 1986, 1988; Lynch and Werner 1987). Model
TEA-NL embodies a variety of unique features which
make it entirely general with respect to being able to
selectively examine tidal constituents of any type (as-
tronomical, overtide and compound tide) and to fully
control the associated nonlinear interactions. These
capabilities result from the use of an iterative fre-
quency-time domain formulation in conjunction with
the least squares harmonic analysis method.

The study area used for our investigation, the Bight
of Abaco, is ideally suited for our purposes. The shallow
water depths (1 to 9 m) within the embayment cause
an extensive number of shallow water constituents to
be generated. Furthermore, the very large open ocean
depths outside of the bight (1000 to 2000 m) not only
assure that any shallow water species within the bight
are generated there but also significantly simplifies the
setting of the shallow water constituent boundary con-
ditions to zero due to the almost fully out-of-phase
reflective behavior of the open ocean boundary. Thus
the topography and location of the Bight of Abaco allow
the generation and interaction of the shallow water
constituents to be precisely and conveniently exam-
ined. In addition, a comprehensive field investigation
carried out by Filloux and Snyder (1979) has produced
extensive tidal data at 25 locations within the bight for
five major astronomical constituents (M,, N,, S,, O,
and K,) and two major overtide constituents (M4 and
Mg). Finally, previous numerical studies of the bight
(Snyder et al. 1979) overpredicted the Mg constituent
by roughly a factor of two and thus posed some very
interesting questions regarding the validity of the stan-
dard quadratic bottom friction law or the possibility
of other significant dissipative mechanisms existing at
this site.

Our model application to the Bight of Abaco sys-
tematically examines how the nonlinearities generate
the shallow water constituents and to what extent these
constituents interact with each other by selectively
suppressing the interaction of certain overtide and
compound constituents. This not only provides con-
siderable insight into nonlinear shallow water dynamics
but in doing so also demonstrates the versatility and
power of harmonic numerical models.

2. Description of the numerical model TEA-NL
a. Governing equations

Model TEA-NL solves for the well-known shallow
water equations. These equations express continuity
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and conservation of momentum integrated over depth
and are written as

ne T [uth + )l + [+ 9)],=0

(u2 + vZ)l/Z
u,,+gn,x—fv+cf-——(m——

1
u+ (uuy +vuy,)=0

(22)

(uZ + vZ)l/Z

v,+gn,tfu+t chv+ (v, +vv,)=0

(2b)
where

time

cartesian coordinates

depth averaged components of velocity

surface elevation relative to undisturbed sea sur-
face level

depth of undisturbed sea surface level

acceleration due to gravity

Coriolis factor

¢ bottom friction coefficient.
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The nonlinearities are of particular interest since they
cause the coupling and interaction between the tides
in shallow water. These nonlinearities consist of (i) a
finite amplitude component of flux terms in the con-
tinuity equation, (ii) quadratic friction terms which also
include a finite amplitude component in the momen-
tum equation, and (iii) the convective acceleration
terms in the momentum equations. Since the nonlinear
terms will be handled in an iterative fashion, they are
all moved to the right-hand side of the equations. A
linear friction term is now added to both sides of the
momentum equations to provide iterative stability and
improve convergence rates. Thus the governing equa-
tions now appear as

n. + (uh)x + (vh),y = —(un)x — (vn),
U, +gn,—fo+Au

(3

- 2 2y1/2
Py
v+ gn, + fu+

_ 2 22172

where A = linearized friction factor.

Corresponding to the governing equations are a set
of boundary conditions consisting of the prescription
of elevation, n*, on open ocean boundaries and the
prescription of normal flux, @¥, on land and river
boundaries. These boundary conditions are respectively
expressed as

n=1*

Q,, = Q: on FQ.

onT,

(52)
(5b)
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Since we will be reducing the governing equation to
sets of quasi-steady harmonic equations, no initial
conditions are required.

b. Numerical formulation

A Galerkin finite element procedure is used to re-
solve the spatial dependence of the governing equa-
tions. However, standard Galerkin methods typically
result in solutions with severe spurious oscillations with
wavelengths on the order of twice the grid size. Our
formulation tackles this problem by relaxing the treat-
ment of the flux prescribed boundary conditions such
that they are handled as natural boundary conditions
in the weighted residual formulation. Applications of
our formulation -to stringent two-dimensional test
problems have shown that this formulation results in
very good solutions exhibiting low spurious oscillations
without introducing numerical damping (Westerink et
al. 1987, 1988).

Developing our Galerkin weighted residual formu-
lation and applying the finite element method with C°
interpolation results in the following system of differ-
entially time dependent algebraic equations:

(6)

M,n, — DU = —Pi" + po!
MyU, + MU + McU + gDy = Pilgic — Py, (7)
where
7 vector of nodal elevation values
U vector of nodal velocity values (x and y com-
ponents)
M, continuity equation coefficient matrix
M, momentum equation mass matrix
Mz linearized friction distribution matrix
Mc Coriolis matrix
pln load vector for flux prescribed boundaries
p nonlinear load vector for continuity equation
finite amplitude effects
2 ic nonlinear load vector containing the difference
between linearized friction and full nonlin-
ear friction terms, and
P2, nonlinear load vector for convective acceler-

ation effects.

TEA-NL has been implemented with equal order linear
interpolation over triangular elements for elevation,
velocity, depths and friction factors (Westerink et al.
1987, 1988).

To resolve the time dependence in (6) and (7) we
assume that response as well as linear and nonlinear
load vectors may be expressed as harmonic series of
the form:

Moo
A = Re{g A;ee}, ®)
=
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where

representative vector for the time history of the
responses 1 and U and any of the load vectors
A; complex amplitude of the jth harmonic con-
stituent of A(f)—both magnitude and phase
shift are represented
i (_ l)l 12
w;  jth frequency of the spectrum, and
number of frequencies required to adequately
represent the significant constituents of the
tidal spectrum.

A(D)

Substituting the harmonic series representation for the
responses and load vectors into (6) and (7) leads to j
= 1, Nysets of time independent systems of equations
of the form:

iw;M,#%; — DU; = —Plin 4 p! )
iijuﬁj + M[:ﬁj + Mcﬁj + gDT‘;)j
= f)lal—fﬁcj - IA)l(-:lcl.'nvj-; (10)

Each system of equations is coupled to the other (N
— 1) systems of equations through the right-hand side
nonlinear load vectors. This nonlinear coupling be-
tween harmonics is handled using an iterative solution
strategy which iteratively updates these right-hand side
load vectors and thus linearizes each system of equa-
tions at each cycle of the iteration.

The iterative solution starts with the assumption that
all the harmonic right-hand side nonlinear load vectors
are equal to zero. Harmonic responses in elevation and

. velocity are then computed by solving (9) and (10) for

N, frequencies with nonzero boundary forcings. Time
histories of elevation and velocity responses, 7(f) and
U(?), are now generated using (8) and the computed
harmonic response amplitudes, 7; and U}, j = 1, N,.
Next, time histories for each of the nonlinear load vec-
tors, P,"(t), Pa 4i.(?) and P2, (¢), are generated using
the response time histories. These nonlinear load time
histories are now spectrally decomposed, using the least
squares harmonic analysis procedure into harmonic
nonlinear load vectors, P:‘;, Py A-fric; and Pconv , for a set
of Nysignificant frequencies. Now responses are com-
puted for frequencies with nonzero boundary forcings
in addition to frequencies with significant harmonic
nonlinear forcings by solving (9) and (10) for this larger
set of frequencies. The procedure is now repeated by
again updating the time and harmonic load vectors
and recomputing responses until a specified threshold
of convergence is achieved (Westerink et al. 1987,
1988).

To improve convergence rates and ensure iterative
stability we included a linearized friction factor on both
sides of the momentum equations. This linearized fric-
tion factor is locally optimized prior to starting the
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nonlinear iteration just described. This optimization
is based on the assumption that a dominant tide such
as the M, exists and is implemented by iteratively
computing linear responses for the dominant tide alone
and then updating local A values using the specified
values of ¢y, the updated local velocity amplitude of
the dominant tide, in addition to a coefficient found
by Fourier expanding the nonlinear friction term.
Typically after about five of these linear cycles, A values
have converged sufficiently. These final values of A are
then relaxed by multiplying them by a factor of 1.5
(Westerink et al. 1988).

¢. Least squares harmonic analysis method

We have selected the least squares (L.SQ) harmonic
analysis method in order to harmonically decompose
the time histories of the nonlinear load vectors in our
iterative solution. This procedure simply consists of a
standard least squares error minimization process
which uses a harmonic series as the fitting function. A
LSQ matrix results which must be solved.

The LSQ method is ideally suited for the analysis of
tidal data since it is highly frequency selective and the
number of required time history sampling points is
theoretically related only to the number of frequencies
in the spectrum and not the frequency resolution.
These features make the LSQ method very attractive
for tidal data analysis since tidal records have very ir-
regular frequency distributions consisting of widely
spaced clusters within which harmonics are very closely
spaced (Horn 1959; Van Ette and Schoemaker 1967,
Godin 1970).

The LSQ method is commonly used to harmonically
analyze field measured tidal elevation records. The
method is even better qualified for the harmonic anal-
ysis of our analytically generated nonlinear load vectors
for a variety of reasons. First of all, these analytically
generated signals do not include any nontidal noise
and the frequency content is precisely known. Second,
the time sampling point distribution can be precisely
and conveniently controlled such that errors associated
with computer roundoff due to a possible ill-condi-
tioned LSQ matrix and errors associated with the nec-
essary truncation of the harmonic sampling series are
minimized. These errors are controlled by adjusting
the degree of diagonal dominance of a set of LSQ ma-
trices. The time sampling spacing and time history re-
cord length which yield low LSQ analysis errors are
very specific to the frequency content of the signal being
analyzed and are typically both very large. Thus while
the required time history record length is very large,
the actual number of time sampling points remains
very modest due to the associated large time sampling
step. Therefore this tailoring of the LSQ method allows
for very accurate yet extremely economical LSQ anal-
yses to be performed for the analytically generated
nonlinear loading signals (Westerink et al. 1988).
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3. Description of the Bight of Abaco
a. Physical characteristics

The Bight of Abaco, shown in Fig. 1, is a shallow
embayment with land boundaries consisting of the Is-
land of Abaco along the southern and eastern bound-
aries and the island of Little Abaco and Grand Bahama
along the northern boundary. The western boundary
is predominantly connected to the open ocean. The
bight is roughly 100 km in length and 40 km in width.

The bathymetry within the bight is shown in Fig. 2.
In the region along the open ocean boundary depths
vary between 2 and 5 meters. This region actually forms
a sill since depths increase again in the interior of the
bight. In the northern half of the bight a depression
with depths between 7 and 8 meters exists. Depths be-
come extremely shallow along the northern boundary.
Outside of the bight depths drop very rapidly. In fact,
the 200-m contour lies between 1 to 3 km seaward of
the sill region and depths drop to more than 1000 me-
ters within 3 to 15 km from the sill.

Bottom characteristics also vary somewhat within
the bight. The sill region has a bottom surface char-
acterized by numerous sand waves with heights be-
tween 1 and 3 m. These sand bores are not represented
in the depth distribution. The northern depression re-
gion contains muddy mounds with heights of 10 cm
and a horizontal scale of several meters. The relatively
flat southern portion of the bight has a bottom surface
consisting of thin sediment cover over rock, punctuated

hY PN

FIG. 1. Bight of Abaco, Bahamas.
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F1G. 2. Bathymetry of the Bight of Abaco in meters with field data
measurement locations indicated.

in patches by sea fans and corals (Filloux and Snyder
1979; Snyder et al. 1979).

b. Computational grid and boundary conditions

The finite element discretization for the Bight of
Abaco is shown in Fig. 3. The open ocean boundary
for the grid corresponds to the outer sill where the very
sharp depth gradient begins.

Detailed tidal forcing information must be specified
on the open ocean boundary. Field data collected by

Filloux and Snyder (1979) is used in the specification -

of the incoming astronomical constituents on this
boundary. Boundary forcing data for the five main as-
tronomical constituents is shown in Table 1. Each
constituent is essentially constant along the entire open
ocean boundary.

The specification of nonlinear shallow water con-
stituents is also quite straightforward. As the nonlinear
tides generated within the bight reach the open ocean
boundary, they are largely reflected, out of phase, back
into the bight. For a long wave passing over a step with
a shallow to deep water depth ratio of the bight, varying
between 0.005 and 0.001, the computed reflection coef-

FI1G. 3. Finite element discretization of the Bight of Abaco.

ficient varies between —0.87 and —0.94 (Ippen 1966).
Thus it is a reasonable approximation to assume that
these nonlinear waves are fully reflected. In conjunction
with the fact that no significant nonlinear tidal species
exist in the open ocean, we can conveniently specify
all nonlinear shallow water tides equal to zero on the
open ocean boundary.

All land boundaries are treated as flux prescribed
boundary conditions on which normal flux is set to
zero. It is noted that a number of very shallow con-
nections in the northwestern part of the bight are also
treated as land boundaries. The data taken by Filloux
and Snyder (1979) showed that these openings were

TABLE 1. Ocean boundary forcing values for astronomical
constituents from measured data.

Amplitude Phase lag
Tide (cm) (degrees relative to M)
(o 1.5 195
K, 9.5 207
N, 10.0 340
M, 395 0
S, 6.0 43
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TABLE 2. List of frequencies used for M, overtide cases
(Cases O-1 through O-13).

Frequency Period

Tide (rad sec™!) (h)

Steady 0.00000000000 —
M, 0.00014051892 12.42
M, 0.00028103783 6.21
M, 0.00042155675 4.14
M; 0.00056207567 3.11
Mjo 0.00070259459 2.48
M;; 0.00084311350 2.07
M, 0.00098363242 1.77
Mis 0.00112415134 1.55
My 0.00126467025 1.38

relatively opaque to the tides and therefore could be
simply treated as land boundaries.

4. Overtide computations in the Bight of Abaco

We shall first consider a series of cases with the dom-
inant M, tide as the only astronomical forcing tide and
the M, overtides as the only nonlinearly generated
shallow water tides. This preliminary approach offers
simplicity and clarity in examining a number of dif-
ferent issues including the variability in basin response
with changing bottom friction, the extent to which the
different nonlinear terms generate the various nonlin-
ear tides and the mutual interaction of these tides.

We shall consider, together with the M, forcing tide,
the nine M, overtide constituents listed in Table 2.
The M, tide is specified as 39.5 cm along the open
ocean and all overtide constituents are specified as zero
along this boundary. All ten frequencies were used in
the harmonic analysis of the time history loading sig-
nals. However, except when noted, only the first six
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frequencies (steady state~-M,o constituents) were al-
lowed to backfeed into the signal (i.e., were used in the
generation of an updated response time history). The
LSQ harmonic analysis was applied using a central time
origin with 38 evenly spaced time sampling points dis-
tributed exactly over the period of modulation of the
signal, 12.42 hours. This leads to LSQ submatrices
which are entirely diagonal.

a. Basin response characteristics with varying bottom
Jriction factor

In this subsection we shall determine the influence
of varying the bottom friction factor, ¢, on basin re-
sponses. All nonlinear terms in the governing equations
are included in the computations. It is noted that all
damping in the basin results from friction alone since
model TEA-NL neither includes user specified eddy
viscosity type terms nor introduces numerical damping
as a result of the numerical discretization. Table 3
shows the effect of varying ¢, on the basin averaged
responses in elevation, 7,, and velocity, Uj, at the var-
ious frequencies. These friction factors, which range
between 0.003 and 0.012, were used over the entire
bight. A decrease in M, response is seen as ¢rincreases.
A corresponding decrease is seen in all the basin average
overtide responses, with the exception of #; at steady
state.

It appears that basin average elevation and basin
average velocity maintain approximately the same ratio
over the range of ¢, values at a given frequency with
the exception of the steady state constituent. Further-
more, the average elevation to average velocity ratios
remain the same to within a factor of approximately
two at a given ¢, value for all constituents, again with
the exception of steady state. Thus basin average ele-

TABLE 3. Basin-averaged harmonic elevation (in meters) and velocity (m s™') responses for the M, astronomical boundary forcing cases
with varying friction factor (numbers given to 3 or more significant figures).

Constituent

Case Cr Variable Steady M, M, M M; My
O-1 0.0030 ;}2 0.0202 0.299 0.0148 0.0133 0.00264 0.00640
U; 0.0106 0.222 0.0161 0.0237 0.00422 0.00776
0-2 0.0060 . 1—1_;; 0.0203 0.239 0.0100 0.0116 0.00214 0.00526
U; 0.00569 0.164 0.0105 0.0188 0.00328 0.00655
0-3 0.0090 51‘ 0.0204 0.211 0.00821 0.0107 0.00192 0.00462
U; 0.00422 "0.137 0.00836 0.0161 0.00280 0.00575
0-4 0.0095 ﬂi 0.0204 0.208 0.00802 0.0106 0.00189 0.00454
U; 0.00407 0.134 0.00811 0.0158 0.00274 0.00564
O-5 0.0100 _i 0.0204 0.205 0.00783 0.0105 0.00187 0.00447
U; 0.00394 0.131 0.00789 0.0155 0.00268 0.00554
0-6 0.0120 ﬁ! 0.0204 0.194 0.00725 0.0101 0.00179 0.00422
U; 0.00350 0.120 0.00714 0.0143 0.00249 0.00519




1354

vation amplitude appears to be an adequate measure
of the importance of a constituent except at steady state.
Thus we shall use %; as the principle basis of com-
parison of computed tides in this paper, but it must be
kept in mind that »; will not be a good indication of
the relative importance of low frequency constituents.

The increased resolution indicated in Table 3 around
¢r= 0.0095 is provided since this value corresponds to
the optimal friction factor which yields the best agree-
ment between Filloux and Snyder’s (1979) measure-
ments and TEA-NL overtide computations for the
main M, tide. For the M, tide this value provides a
near minimum error. However, for the M tide there
is no apparent local minimum in this ¢, range and a
discrepancy between measurements and computations
of a factor of about two exists at ¢, = 0.0095. Details
of the error analysis are given in section 6.

An optimal friction factor equal to 0.0095 at first
seems somewhat high. However, when considering the
depths and bottom characteristics of the bight, this fac-
tor is well founded. The dunes and shallow depths in
the sill region lead to especially high ¢svalues. For dunes
of one meter height, in water depths ranging from 2
to 5 meters, the friction factor ranges between 0.0125
and 0.0092 (using a Manning # equal to 0.040). In the

“northern depression and southeastern portion of the
bight, friction values are somewhat lower and we es-
timate values equal to approximately 0.003. Therefore
it appears that the optimal friction factor is physically
well justified in the sill region but not in other portions
of the bight. However, the sill region is the most im-
portant region in the bight with respect to M, damping
and nonlinear tide generation due to the fact that the
highest velocities, the largest elevations and the shal-
lowest depths in the bight occur in this region. In fact,
we found that using lower friction factor values in the
northern and southeastern portions of the bight did
not significantly alter response computations. This
concurs with the findings of Snyder et al. (1979). Thus
we shall use friction factors which are constant
throughout the domain and in fact, for the bulk of the
remaining computations, use the value ¢, = 0.0095.

b. Nonlinearities and the overtides they generate

In this subsection we shall investigate the origins of
both the nonlinear forcings and responses in addition
to examining how the shallow water constituents in-
teract through these nonlinearities. The approach we
take is to selectively neglect in our computations certain
nonlinear terms and to compare the resulting basin
averaged harmonic forcings and responses. The cases
examined are summarized in Table 4. Basin averaged
amplitudes of the harmonic nonlinear finite amplitude
forcing components for the continuity equation, P,,
and the nonlinear friction and convective acceleration
components for the momentum equation, Py, (i.e., the

nonlinear portion of P% 4., and P2 ), in addition to
p ¢l fi
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TABLE 4. Run sequence for nonlinear overtide interactions—
nonlinearity included (yes/no).

Finite

Finite amplitude Quadratic amplitude Convective
Case  in continuity friction in friction term acceleration
0-7 yes no no no
0-8 no yes no no
0-9 no yes yes no
0-10 yes yes no no
O-11 yes yes yes no
04 yes yes yes yes

basin averaged harmonic responses in elevation, N
and velocity, U;, are given in Table 5.

1) CASE O-7: THE EFFECT OF FINITE AMPLITUDE IN
THE CONTINUITY EQUATION

Let us first consider only the effect of the finite am-
plitude term in the continuity equation. We turn off
the nonlinear quadratic friction term and convective
acceleration terms such that all momentum equation
nonlinear harmonic forcings, Py, are equal to zero.
However, linearized friction factors are updated in five
purely linear iterations computing only the linear M,
response as described in section 2b with the exception
that no relaxation factor is applied. P35 ;. is then set
to zero at all nodes. It is noted by comparing the M,
response for this case to the fully nonlinear case O-4
in Table 5 that the M, constituent can be quite well-
computed using only these iteratively updated linear-
ized friction factors. The computed overtide responses,
however, are dramatically different from the fully non-
linear case.

Table S indicates that the most significant forcings
due to the finite amplitude term in the continuity
equation occur at steady state and M,. Basin-average
continuity equation forcings at these harmonics are
generated mainly due to the response at M, interacting
with itself. The P, forcings at M, and Mg are much
smaller than at steady state and M, since these forcings
represent the interaction of the responses at M, with
the much weaker overtide response at steady state and
M,. P, at Mg is even smaller than any of the previous
harmonics since the interaction is now between even
weaker overtides at higher frequencies with M, (e.g.
M with M,) or between overtides with each other (e.g.
M, with My). The finite amplitude continuity equation
forcing at higher order harmonics progressively dimin-
ishes by about an order of magnitude with each higher
frequency.

The responses at M, are not significantly affected by
the finite amplitude forcing term due to the dominance
of the boundary forcing and linear terms. Responses
at each overtide are strictly determined by the ampli-
tudes of the }3,,‘. forcing. Table 5 shows that the steady
state response 1n average velocity is quite close to that
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TABLE 5. Basin averaged harmonic forcings and responses for the M, astronomical
boundary forcing case for various nonlinear interactions.
Constituent

Case Variable Steady M, M, M M; Mo
O-7 }E i 28.368 4.9037 38.194 1.7947 0.13344 0.011926

Py, 0 0 0 0 0 0

n 0.00947 0.204 0.00387 0.000168 0.0000171 0.0000023

U; 0.00356 0.128 0.00449 0.000319 0.0000305. 0.0000037
0-8 2, 0 0 0 .0 0 0

Py, 1078 2736.5 1077 269.96 1077 120.46

0 10712 0.208 1072 0.0109 10712 0.00473

U; 10712 0.134 10712 0.0163 10712 0.00598
0-9 P, 0 0 0 0 0 0

Py, 51.595 - 27355 54.778 269.05 14.121 119.89

7 0.00677 0.208 0.00253 0.0109 0.000450 0.00472

J; 0.000808 0.134 0.00367 0.0162 0.000791 0.00594

0-10- Ifm‘ 28.988 5.1201 37.815 1.9809 3.8698 0.49813

Py, 100.02 2733.1 123.67 264.35 36.099 117.45

my 0.0126 0.208 0.00559 0.0108 0.00133 0.00465

U; 0.00392 0.134 0.00541 0.0161 0.00181 0.00585
0O-11 1? W 28.890 5.8966 37.647 2.5238 3.8062 0.66956

Py, 150.37 2731.1 175.46 259.36 48.726 114.28

i 0.0193 0.208 0.00804 0.0106 0.00174 0.00455

U; 0.00374 0.134 0.00770 0.0158 0.00250 0.00567
0-4 }j'u 28.872 5.8927 37.592 2.5364 3.7978 0.69860

Py, 155.44 2729.5 163.22 259.82 52.114 113.43

bl 0.0204 0.208 0.00802 0.0106 0.00189 0.00454

U; 0.00407 0.134 0.00811 0.0158 0.00274 0.00564

of the fully nonlinear run O-4 whereas the response in
average elevation is about half. At M, both average
responses in elevation and velocity appear to be about
half as large as the fully nonlinear case. At Mg responses
are more than two orders of magnitude smaller than
for the fully nonlinear case and for higher order har-
monics this difference becomes progressively larger.

2) CASE O-8: QUADRATIC FRICTION WITH NO FI-
NITE AMPLITUDE OR CONVECTIVE ACCELERA-
TION EFFECTS

In this case we shall consider quadratic friction as
the only nonlinear term and suppress all finite ampli-
tude effects in both the continuity and momentum
equations in addition to convective acceleration effects.
Thus as Table 5 indicates, all harmonic nonlinear con-
tinuity equation forcings, P, are equal to zero. Fur-
thermore, as expected, harmonic nonlinear momen-
tum equation forcings, PU, essentially occur only at
odd harmonics M,, Mg and Mjo. The forcings and
responses at the odd overtide harmonics Mg and M,
do not diminish as rapidly as those associated with the

finite amplitude term in the previous case. This is due
to the form of the friction term, u|u|, which is largely
responsible for forcing all these odd harmonics simul-
taneously through the interaction of the M, response
with itself. The largest harmonic nonlinear momentum
equation forcing component is at the forcing frequency
itself. This explains our success in approximating the
friction term in the previous case by using information
from a Fourier expansion of the dominant component
of this term and a few simple linear iterations. The
next largest value of PU is found at Mg and is an order
of magnitude smaller than at M;: PU then progres-
sively decreases by a factor of roughly two at each higher
order odd harmonic. The extremely small momentum
equation forcings at the even harmonics (steady state,
M, and M) fall within the error threshold of the LSQ
analysis procedure.

Table S shows that the M, basin averaged responses
are almost identical to the fully nonlinear case O-4.
The odd overtide harmonics, Mg and Mo, have re-
sponses which are slightly higher than the fully non-
linear case. The responses at all even harmonics are
essentially zero.



1356

3) CASE O-9: QUADRATIC FRICTION INCLUDING FI-
NITE AMPLITUDE IN THE MOMENTUM EQUATION
ONLY

This case takes into account the full nonlinear fric-
tion term with finite amplitude but neglects finite am-
plitude effects in the continuity equation and convec-
tive acceleration terms. Table 5 indicates that nonlinear
momentum equation forcings at the odd harmonics
have remained essentially the same as in the previous
case. However, now the finite amplitude component
of the friction term generates nonlinear momentum
equation forcings at the even harmonics which are, in
general, much smaller than the forcings at the adjacent
odd harmonics. These even harmonic forcings pro-
gressively decrease by about a factor of four, a much
slower rate than in case O-7 with finite amplitude in

the continuity equation acting alone. This is due to

the fact that all these even harmonics are for a large
part generated by the M, tide interacting with itself, as
was the case for the odd harmonics generated with fric-
tion.

The responses at M, are essentially identical to both
the previous case and the fully nonlinear case O-4. Odd
harmonic responses are also the same as in the previous
case, still slightly higher than in the fully nonlinear
case. Even harmonic responses are all substantially
smaller (between a factor of three to four) than the
fully nonlinear case. When comparing even harmonic
responses to the continuity equation finite amplitude
only case O-7, we find that the comparisons vary quite
a bit. The steady state response is much smaller, by a
factor of five, compared to that of case O-7, whereas
the M, response is comparable (to within a factor of
1.5) and the Mj response is larger by a factor of 27.
The substantial increase at Mg is a result of the fully
nonlinear friction term with finite amplitude directly
generating a forcing at this constituent through M, in-
teracting with itself.

4) CASE O-10: QUADRATIC FRICTION EXCLUDING
FINITE AMPLITUDE IN THE MOMENTUM EQUA-
TION BUT INCLUDING FINITE AMPLITUDE IN THE
CONTINUITY EQUATION

We now consider quadratic friction in addition to
finite amplitude in the continuity equation but do not
compute finite amplitude terms in the momentum
equation and convective acceleration terms. Again Ta-
ble 5 shows that the nonlinear momentum equation
forcings, Py, at the odd harmonics are -almost the
same as the previous two cases, showing slight de-
creases. The Py, values have doubled at the even har-
monics compared to the previous case even though the
finite amplitude part of the friction term has been
turned off. These even harmonic Py, forcings are gen-
erated due to the responses existing at these frequencies
themselves. These responses in turn were generated by
the continuity equation finite amplitude forcings: P,
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values for the steady state through Mg harmonics are
approximately the same as the continuity equation fi-
nite amplitude only case O-7. However, at Mg and M,
we see an increase in P, of more than an order of
magnitude over case O-7.

Again the M, response is the same as the previous
case and the fully nonlinear case O-4. Furthermore,
odd harmonic responses have been slightly reduced
from the previous nonlinear friction only cases al-
though these responses are still slightly larger than the
fully nonlinear case. Finally, although even harmonic
responses are still somewhat under those of the fully
nonlinear case, they are the correct order of magnitude
and are in fact closer to the fully nonlinear run O-4
responses than any of the previous cases considered in
this subsection. In particular, the Mg response has in-
creased by two orders of magnitude over the finite am-
plitude only case and by a factor of about three over
the quadratic friction with finite amplitude in mo-
mentum only case O-9. This increased response at Mg
is no longer due to the largely simultaneous forcing of
the even harmonics through M, interacting with itself,
due to the form of the nonlinearity as in the previous
case O-9, but results from the interaction through the
continuity finite amplitude term of the M, and Mg
constituents as in case O-7. However, in the present
case the Mg response has been dramatically increased
over that of case O-7 by two orders of magnitude due
to the nonlinear friction term. Thus the large Mg re-
sponse is a result of the quadratic friction term gen-
erating a significant response at Mg and the continuity
finite amplitude term allowing the interaction of the
M, and Mg constituents to generate this response
at Ms.

5) CASE O-11: QUADRATIC FRICTION WITH FINITE
AMPLITUDE IN THE MOMENTUM AND CONTINU-
ITY EQUATIONS

In this case we neglect only the convective acceler-
ation terms: P'Uj forcings at odd harmonics continue to
decrease slightly over the previous three cases. At even
harmonics, Py, forcings have essentially increased over
the previous two separate finite amplitude and qua-
dratic friction cases as the sum of the average forcing
values of these runs. Furthermore, P, values are
roughly the same at all even harmonics and are in-
creased somewhat at odd harmonics compared to the
previous case.

As Table 'S5 shows, responses at M, are again the
same. Responses at odd overtide harmonics have con-
tinued to decrease slightly over the previous two cases
and are now essentially equal to the fully nonlinear
case O-4. This is a result of the fact that at these odd
overtide harmonics the finite amplitude continuity
equation forcing and the quadratic friction forcing are
for a large part out of phase within the bight and thus
add destructively. Average responses at even harmonics
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add almost linearly from the responses at the previous
two cases which considered the two finite amplitude
terms separately in conjunction with friction. Thus,
the finite amplitude effects in the continuity and mo-
mentum equations reinforce each other constructively
at the even harmonics. For the generation of the steady
state and M, tides, the finite amplitude term in the
continuity equation is somewhat more important than
the finite amplitude component of the nonlinear fric-
tion term. The Mj tide is generated as a result of the
mutual interaction of quadratic friction and continuity
finite amplitude in addition to the finite amplitude
portion of the friction term.

6) CASE O-4: ALL NONLINEAR TERMS COMPUTED

This fully nonlinear case considers quadratic friction,
finite amplitude in both the momentum and continuity
equations, and convective acceleration effects. Nonlin-
ear forcings are about the same as the previous case
with the exception of small changes in Py, at steady
state, M, and M. Accordingly, small increases in even
harmonic responses are seen due to the inclusion of
convective acceleration,

¢. Overtide interactions

Let us now examine to what extent the higher order
overtides interact and influence the lower order over-
tides. We accomplish this by suppressing the feedback
of the M and/or M, overtides into the response signal.
In this series of three cases we initially allow the inter-
action of the steady state through Mg constituents and
then add the Mg and M, harmonics to interact with
the other harmonics. All nonlinearities are computed
and a ¢y value of 0.0095 is used. The harmonic basin
averaged responses for these cases are given in Ta-
ble 6.

It is noted that the responses at steady state, M4 and
M are all increased by the inclusion of the combined
M; and M constituents. The changes in response typ-
ically alternate somewhat depending on whether we
have added an even or odd harmonic. As much as a
6% increase is seen in the Mg response due to the in-
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teraction with the M,, tide. Furthermore, case O-13
shows that the M, constituent also interacts with Mg
through the continuity finite amplitude term and de-
creases the response at My by about 11%. Responses
at M, and Mg will not change significantly with the
addition of constituents higher than M;o. However,
slight changes will still occur at Mg and Mg due to the
addition of the M,, and M, constituents.

d. Summary of the nonlinear overtide interactions

We have examined some aspects of the overtide in-
teractions within the Bight of Abaco. The dominant
nonlinearity is quadratic friction and the sill region is
the most important area with respect to the generation
and interaction of the main M, tide and its overtides.
Thus the optimal global friction factor of ¢, = 0.0095,
which is physically well justified in the sill area, leads
to very satisfactory comparison to measurement data
for the M, and M, constituents. The Mg tide, however,
is substantially overpredicted.

We have determined the influence of the various
nonlinear terms in controlling the response at each fre-
quency. The M, tide is entirely dominated by quadratic
friction. However, this quadratic friction is largely lin-
ear with regard to its behavior at M, itself. Therefore
M, can be well modeled with a linear friction law as
long as local A\ values are properly determined. The
M, constituent is not significantly affected by finite
amplitude in either the continuity or momentum
equations or by convective acceleration. However, the
M, responses are one of the most critical factors in
determining the generation of the overtides. The steady
state response is mainly caused by the finite amplitude
term in the continuity equation in addition to a smaller
constructive contribution from the finite amplitude
portion of the nonlinear friction term and a small con-
structive contribution from convective acceleration.
The M, constituent is primarily generated by the con-
tinuity finite amplitude forcing together with a sec-
ondary but similar order constructive forcing due to
the finite amplitude component of the friction term.
This constructive addition is due to the highly coherent
phase between these two forcings at M. The Mg con-

TABLE 6. Basin averaged harmonic responses for the M, astronomical boundary forcing case and varying degree of overtide interaction.

Constituent

Case Variable Steady M, M, Me Mg Mo
0-12 U] 0.0208 0.208 0.00792 0.00999 — —

U; 0.00404 0.134 0.00793 0.0151 — —
0-13 0] 0.0198 0.208 0.00812 0.00998 0.00206 —_

U; 0.00410 0.134 0.00831 0.0151 0.00308 —
0-4 7 0.0204 0.208 0.00802 0.0106 0.00189 0.00454

U; 0.00407 0.134 0.00811 0.0158 0.00274 0.00564
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stituent is almost entirely generated by the quadratic
friction term with a small destructive contribution from
the finite amplitude term in the continuity equation
due to these two forcings being out of phase over a
large area of the basin. The M tide is generated largely
through the continuity finite amplitude term but is de-
pendent on the relatively high response existing at Mg
which can only be generated through the quadratic
friction law. The M; tide is further influenced directly
by the finite amplitude portion of the friction term in
addition to a small effect of the convective acceleration
terms. Finally, the M, constituent is generated mainly
by the quadratic friction term but sees a small reduction
in response due to the out of phase forcing of the finite
amplitude term.

Though M, is largely responsible for directly forcing
many of the nonlinear tides, there are also interactions
between the main M, tide and its overtides which can
significantly influence the responses at other overtides.
The generation of the Mg constituent is, of course, the
most dramatic example of this. However, we also saw
that the influence of higher order harmonics such as
the Mg and M, can respectively increase responses at
the M4 and Mg constituents.

Finally, by showing that the convective acceleration
terms were not very important we can justify our ne-
glecting the eddy viscosity type terms in our compu-
tations since it is reasonable to assume that lateral tur-
bulent momentum transport is closely related to the
convective terms. Of course this does assume that the
depth averaging used in our formulation does not sig-
nificantly contribute to these dispersion type terms.

5. Compound-tide computations

Let us now examine the nonlinear interactions and
generated shallow water tides which appear through
the simultaneous boundary forcing of all five measured
astronomical constituents. Some of the details of these
interactions will be determined through a series of runs
which selectively bring into the full nonlinear inter-
action groups of astronomical and/or compound tide
constituents. The first compound tide case C-1 in this
section takes into consideration M, and its overtides
in addition to the K, , Oy, N, and S, astronomical con-
stituents. All compound tide constituents are sup-
pressed by not computing responses at these constit-
uents and thus not allowing the suppressed constituents
to feed into the time history responses and nonlinear
forcing vectors. Subsequent cases, in addition, allow
the interaction of sets of compound tides grouped ac-
cording to the astronomical constituents which gen-
erated them. In case C-2, M,-N; compound tides are
allowed to interact with all astronomical tides, the M,
overtides and with themselves, while the interaction
with all other compound tides is still constrained. The
remaining runs progressively take into account the M, -
S, compound tides, the M,-N,-S, compound tides
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and finally compound tides involving the O, and K,
tides.

The harmonics considered in our compound tide
computations are listed in Table 7. These tidal con-
stituents result from the nonlinear interaction between
the five astronomical constituents considered and may
be significant within the Bight of Abaco. Although the
K, constituent is normally considered to be an astro-
nomical constituent, it is treated here as a pure overtide
of the K, astronomical tide. Furthermore the SO; and
MK constituents have identical associated frequencies
and are therefore not separable in our computations.

The LSQ harmonic analysis is always performed us-
ing all the frequencies listed in Table 7 regardless of

TABLE 7. List of frequencies used for compound tide cases
(cases C-1 through C-5)

Frequency Period
Tide (rad s™") (h)

Steady 0.000000000000000 —
MN 0.000002639203296 661.31
SM 0.000004925202335 354.37
0, 0.000067597751162 25.82
K, ’ 0.000072921165921 23.93
SO, 0.000077846368256 22.42
MNS, 0.000132954511452 13.13
2MK, 0.000135195502324 1291
2NM, 0.000135240510491 12.91
2MS, 0.000135593714748 12.87
N, 0.000137879713787 12.66
3MSN, 0.000138232918044 12.63
M, 0.000140518917083 12.42
SNM; 0.000142804916122 12.22
2MN, 0.000143158120379 12.19
S 0.000145444119418 12.00
K, 0.000145842331842 11.97
MSN, 0.000148083322714 11.79
2SM, 0.000150369321753 11.61
MO, 0.000208116668245 8.39
S0O; and MK, 0.000213041870580 8.19
KO, 0.000213440083004 8.18
SK; 0.000218365285339 7.99
2MNS, 0.000273473428535 6.38
N, 0.000275759427574 6.33
3MS, ' 0.000276112631831 6.32
MN, 0.000278398630870 6.27
M, 0.000281037834166 6.21
3MN, 0.000283677037462 6.15
MS, 0.000285963036501 6.10
MK, 0.000286361248925 6.09
2MSN, 0.000288602239797 6.05
2NM; 0.000416278344658 4.19
2MNg 0.000418917547953 4.17
M 0.000421556751249 4.14
MSNg 0.000423842750288 4.12
2MS¢ 0.000426481953584 4.09
2MK 0.000426880166008 4.09
2SM¢ 0.000431407155919 4.05
2(MN)g 0.000556797261741 3.13
3MNg 0.000559436465036 3.12
M, 0.000562075668332 3.11
2MSN; 0.000564361667371 3.09
3MS; 0.000567000870667 3.08
Mo 0.000702594585415 2.48
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the constituents which are suppressed in any given case.
This is done to ensure the accuracy of the LSQ analysis,
since despite the fact that certain nonlinear interactions
may be suppressed, there will be nonlinear forcings at
all these frequencies because all five astronomical con-
stituents are always allowed to interact through the
nonlinearities. A central time origin and 394 evenly
spaced time sampling points, 8.39078505 days apart,
were used for the LSQ harmonic analysis. This leads
to a time sampling record length of 9.03 years which
is about twice as long as the maximum synodic period
of 4.43 years for this set of frequencies. It is noted that
a standard hourly LSQ analysis would involve 100 to
200 times more time points than our tailored LSQ
analysis for the same resolution capability.

Open ocean boundary forcings for the five astro-
nomical constituents are uniformly applied across this
boundary using the values in Table 1. Elevations for
all the interacting nonlinear constituents on this
boundary are set to zero. Furthermore, all cases in this
section include all nonlinearities and use a friction
value of ¢, = 0.0095.

Basin averaged elevation responses, 7;, for the five
cases considered in this section in addition to responses
for case O-4 are presented in Table 8. However, only
constituents with 5; values above a threshold of 0.001
m are considered to be significant and reported. In
general, it is not even necessary to compute these below
threshold constituents since their effect on most sig-
nificant constituents is usually very small.

We now proceed to discuss the cases at hand. We
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shall note significant changes in the computed tides as
we progressively take more constituents into account
with each case. In addition to conclusions drawn from
these five cases we will present major conclusions or
observations from cases which selectively suppress cer-
tain astronomical tides, compound tides or nonlinear-
ities but which are not presented in detail.

a. Case C-1: Nonlinear interaction of the O;, K;, M,
N, and S, astronomical tides and M, overtides

In addition to M, and its overtides (case O-4), we
now consider the interaction of the four secondary as-
tronomical tides. Certainly these secondary astronom-
ical constituents are much less important than the pri-
mary M, tide. Computed basin average elevation re-
sponses in Table 8 indicate that the values for ;at K,
O, and N, are respectively 28%, 24% and 20% of 7; at
M,, while the average S, response is only 12% of the
average M, response.

The introduction of the four secondary astronomical
tides only slightly influences the primary M, tide. By
comparing the responses of case C-1 to case O-4 in
Table 8 it is noted that 5; at M, only decreases by 2%.
The M, overtides are however substantially influenced.
Table 8 indicates that compared to case O-4, 7; at My
has decreased by 5% and n; values at Mg, Mg and M,
have decreased respectively by 13%, 17% and 23%.
From computations not presented, which add only the
N, and/or S; constituents to the harmonics of case
0O-4, it was deduced that the largest portion of these

TABLE 8. Basin-average harmonic elevation responses (in meters) for compound tide cases. Only harmonics
with significant responses are included. Suppressed constituents are indicated by “—".

Case 04 C-i C-2 C3 C4 C-5
Steady 0.0204 0.0195 0.0195 0.0194 0.0194 0.0203
MN — — 0.0116 0.0115 0.0114 0.0114
SM — - — 0.00684 0.00680 0.00717
0O, 0.0482 0.0479 0.0479 0.0479 0.0483
K, — 0.0567 0.0565 0.0564 0.0564 0.0576
MNS, — — — — 0.00109 0.00107
2MS, — — — 0.00401 0.00413 0.00407
N; 0.0414 0.0442 0.0441 0.0443 0.0442
3IMSN, — — — — 0.00103 0.00101
M, 0.208 0.204 0.204 0.204 0.204 0.204
SNM, — — — — 0.00102 0.00114
2MN, — — 0.00676 0.00668 0.00673 0.00665
S, — 0.0243 0.0243 0.0258 0.0261 0.0261
K, — — — — — 0.00111
MO, — — — — — 0.00224
KO, — — — — — 0.00189
MN, —_ — 0.00353 0.00352 0.00353 0.00353
M, 0.00802 0.00760 0.00748 0.00742 0.00741 0.00746
MS, —_ - - 0.00213 0.00213 0.00217
2MN; — — 0.00401 0.00396 0.00398 0.00395
M, 0.0106 0.00920 0.00840 0.00816 0.00812 0.00785
2MS¢ - — — 0.00232 0.00237 0.00233
3MN; — — 0.00119 0.00119 0.00118 0.00118
Mg 0.00189 0.00157 0.00139 0.00133 0.00133. 0.00132
Mo 0.00454 0.00348 0.00281 0.00262 0.00261 0.00244
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changes is due to the diurnal constituents. This is re-
lated to the mixed character of the tides in the bight.
For the main M, tide and the odd overtide harmonics,
Mg and Mo, more than half the decreases in amplitude
can be attributed to the O, and K, tides, whereas for
the even harmonics, M, and Mg, the relative changes
in amplitude are almost entirely due to the diurnal
tides. The response decreases attributed to the semi-
diurnal secondary astronomical tides are dominated
by the N, constituent. Furthermore, these additional
computations indicate that the semidiurnal N, and S,
constituents were themselves not substantially influ-
enced by the diurnal tides (changes less than 1%) in-
dicating a limited direct interaction between these sec-
ondary astronomical constituents themselves.

Quadratic friction is the primary mechanism through
which the various secondary astronomical constituents
interact with the dominant M, tide. In fact, additional
computations indicate that all the secondary constit-
uents are substantially reduced (between 14% and 20%)
through the nonlinear quadratic friction terms when
compared to linearized friction computations. These
frictional decreases are somewhat offset by small in-
creases due to the finite amplitude terms for the O
and K, constituents. The decreases in M; and its odd
overtides noted between cases O-4 and C-1 are directly
related to the significant changes in the frictional bal-
ance in the bight, which occur when the secondary
astronomical tides are taken into account. The small
decrease seen in the M, tide can be attributed to the
small decrease in the M, response, which is almost en-
tirely responsible for driving the M, through the finite
amplitude terms. The much more significant decrease
in the My tide is related to the small drop in M, and
the much greater decrease in Mg which combine to
generate the M; constituent.

b. Case C-2: Addition of the M,~N, compound tides

We now include the full nonlinear interaction of the
M,-N, compound tides to the interacting constituents
considered in case C-1. Significant M,-N, compound
tides which appear are the MN, 2MN,, MN,, 2MNj
and 3MN; tides. The MN and MN, are generated
through the finite amplitude terms, the 2MN; is gen-
erated almost entirely through the quadratic friction
term and the 2MNg is dominantly generated by qua-
dratic friction with a small destructive contribution
from the continuity equation finite amplitude term.
The 3MNj constituent, in a manner analogous to Mg,
is generated through the combined influence of qua-
dratic friction generating a high response at Mg and
the continuity finite amplitude term allowing a direct
interaction between N, and M. Table 8 indicates that
the M,-N, compound tides typically have a basin-av-
erage elevation amplitude of a little less than half the
corresponding M, overtide with the exception of 3MNj
which has an average amplitude of 86% of the adjacent
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M;. The most important M,-N, compound tide, the
2MN, constituent, has no associated adjacent M,
overtide.

As is seen from Table 8, the majority of the astro-
nomical constituents remain essentially unchanged
when the nonlinear interactions involving the M,-N,
compound tides are considered. A notable exception
is the N, astronomical constituent which increases by
7% compared to case C-1. The M, overtides again ex-
perience substantial drops in 7;. While the M, only
decreases by less than 2% due to the inclusion of the
M;-N, compound tides, the Mg, Mg and M, tides see
decreases in 7; of respectively 9%, 11% and 19%. It can
be demonstrated that it is the 2MN, tide which is chiefly
responsible for these changes in the N, and M,-overtide
constituents. The 2MN, constituent also significantly
influences other M,-N, compound tides (by up to
20%). All these factors indicate a relatively strong fric-
tional interaction between 2MN,, M, and N; and the
M, overtides.

From computations not presented here, which in
the same way as case C-2 took into account M, and
its overtides, S, and/or N, but suppressed the O, and
K, constituents, it can be shown that the same relative
changes that were noted between runs C-1 and C-2
occur once the M,-N, compound tides were taken into
account. However, these computations did indicate
that some of the M,~N, compound tides are influenced
by the O, and K, tides (in particular the 2MNg and
3MN; responses were lowered by about 5%) while not
being significantly influenced by the S, constituent.
This influence of the O; and K, tides on the M,-N,
compound tides is related to the lowering of the M,
overtides which results due to the presence of the O,
and K, constituents.

¢. Case C-3: Addition of the M-S, compound tides

In addition to the constituents considered in case
C-2 we now take into account the full interaction of
the M,-S, compound tides. The significant M,-S,
compound tides which appear are the SM, 2MS,, MS,
and 2MS,. The nonlinear mechanisms which generate
these constituents are the same as for the corresponding
M;,-N; compound tides.

Table 8 shows that the significant M,-S, compound
tides appear with only a little more than one-fourth of
the basin-average elevation amplitude of the adjacent
M, overtides. Thus the M,-S, compound tides are
about 40% smaller than the corresponding M,-N,
compound tides which is directly related to the smaller
S, astronomical tide relative to the N, astronomical
tide. The 2MS; is the largest M,-S, compound tide.

Taking the M,-S, compound tide into account es-
sentially-does not affect any of the astronomical con-
stituents with the exception of the S, tide. When com-
paring 7; at S, for this case to that of case C-2 in Table
8, we note an increase in S, of about 6% due to the
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M,-S, compound tides. This percentage increase is
similar to that which N, saw when the M,~N, com-
pound tides were added. The inclusion of the M,-S,
tides further decreases the M, overtides: #; at M, drops
by less than 1% while Mg, Mg and M, decrease re-
spectively by 3%, 4% and 7%. These decreases are quite
a bit smaller than those experienced when the M,~N,
compound tides were added (in fact a third as small).
This is again related to the smaller S, and associated
M,-S, compound tides in relation to the N, tide and
its compound tides. The increase seen in the S, con-
stituent and the decrease in the M, overtides are dom-
inantly caused by compound tide frictional interactions
involving the 2MS; tide. In general, the characteristics
of the M-S, compound tide interactions are very sim-
ilar to those experienced with the M,—N, interactions,
except substantially smaller.

Finally, it is noted from Table 8 that the M,-N,
compound tides are only marginally affected by the
M-S, compound tides. Through computations similar
to case C-3 (except with N, and/or O, and K, inter-
actions suppressed), it can be shown that the pattern
of relative change brought about through the intro-
duction of the M,-S, compound constituents is iden-
tical to that of case C-3. However, in case C-3 the M-
S, constituents were weakened by the Oy, K, and N,
astronomical constituents in addition to the M,-N,
compound constituents. Whereas the M,-N, com-
pound tides were not significantly influenced by the
M-S, compound tides, the reverse is not true. Again
this is due to the much more substantial effect the M,—
N; compound tides have on the M, overtides.

d. Case C-4: Addition of the M,~N S5 compound tides

We now include the interaction of compound tides
which involve the M,, N, and S, constituents. Three
significant constituents of this type were computed: the
SNM;, 3MSN; and MNS, tides. These semidiurnal
compound tides are generated almost entirely by qua-
dratic friction. These tides were the smallest significant
constituents computed in this run and are only slightly
above the 0.001 m threshold.

Comparing responses presented in Table 8 for this
case to those of the previous case C-3 indicates that
the M;, O; and K, astronomical tides are not at all
affected by these M,~N,-S, compound tides, while a
very slight increase is seen in the N, and S, tides (re-
spectively 0.5% and 1% increase). With the exception
of a few M,-S, compound tides no significant changes
are noted in any of the nonlinear shallow water con-
stituents. All of these interactions are quite weak due
to the smallness of the M,~N,-S, compound tides.

From computations which were similar to case
C-4, with the exception of suppressing O; and K, it
was noted that certain M,-N,-S, compound tides are
significantly affected by the O, and K, tides. In fact,
the presence of the O, and K constituents lowers these
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compound tides by as much as 23%. This substantial
lowering is a result of the participation of not only the
astronomical tides and M, overtides but also the M~
N, and the M,-S, compound tides in the generation
of the M,-N,-S, compound tides. Thus since M, over-
tides and M,-N, and M,~S, compound tides all de--
crease due to the O, and K tides, we see this dramatic
decrease.

e. Case C-5: Addition of overtides and compound tides
involving O; and K

Finally we shall consider the interaction of overtide
and compound constituents involving the O, and K,
tides with other constituents in addition to all the tides
considered in the previous cases. Two relatively im-
portant terdiurnal tides now appear through the non-
linear interactions, the MO; and KO; tides. These con-
stituents are generated by quadratic friction, although
the responses are reduced significantly by both finite
amplitude terms and to a much smaller degree by the
convective acceleration terms. These terdiurnal con-
stituents are both slightly smaller than the M, tide. It
is noted that the KO; tide is relatively important while
not involving the primary M, tide. This is possible due
to the O, and K, tides being the predominant secondary
astronomical constituents. Finally, we note that a small
K, overtide also appears which is slightly above the
threshold of significance. The K, overtide is dominantly
generated by quadratic friction although its response
is somewhat reduced by both finite amplitude terms.

Checking Table 8 we see that M,, N, and S, astro-
nomical constituents do not change as a result of in-
teractions with O;/K, compound tides. The O; and
K, astronomical tides do however increase by about
1% and 2%, respectively. The increases in these as-
tronomical constituents are small compared to those
experienced by the N, and S, constituents when their
corresponding compound tides were added. Even
though the 2MK, tide has been included it certainly
does not have the pronounced influence of the 2MN,
and 2MS, tides. However, the 2MK, constituent is very
weak since it results from the interaction of the M,
tide with the weak K, tide which is included in the
computations only as an overtide of the K, constituent.
The only M, overtides which are significantly influ-
enced are the Mg and My, which decrease by respec-
tively 3% and 7% compared to case C-4. The M;-N,
compound tides see some very small changes while the
M,-S, compound tides are slightly more affected. The
M,-N,-S; compound tides are also only slightly af-
fected with the exception of SNM,. In general, how-
ever, the interaction of O;/K,; compound tides with
other compound tides is weak.

[ Summary of major features of compound tide runs

In this section we have seen that important nonlinear
interactions and couplings occur between the astro-
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FIG. 4. Basin averaged elevation amplitudes (in meters) for significant constituents.

nomical and shallow water tides. The M, overtides have
been especially significantly affected in our more de-
tailed computations. Between case O-5 which consid-
ered only M, and its overtides and case C-5 which con-
siders five astronomical constituents and all pertinent
nonlinear tides, the My, Mg, Mg and M/, respectively
decrease by 7%, 26%, 30% and 46%. The addition of
the secondary astronomical constituents are responsible
for most of the decrease in M, and about half the
change in Mg, Mg and M. The inclusion of com-
pound tides affects the My very little but, as a whole,
is responsible for the other half of the decrease in the
Mg through M, overtides. Of all the compound tides,
the 2MN;, is the most important. In fact this constituent
brings about the single greatest decreases in the Mg,
Mj; and M tides of any of the tides considered, whether
astronomical or nonlinear with the exception of M,.
These decreases are through frictional interactions ei-
ther directly, as is largely the case with the Mg and Mg
tides, or in conjunction with finite amplitude interac-
tions, as is the case for the M; (through its dependence
on My). Furthermore the relatively larger change in
M, indicates an important interaction between Mg
and M,o. Thus Mg is affected by M, as was noted in
section 4, but M, is also significantly affected by M.

Compound tides also significantly influence second-

TABLE 9. Elevation amplitude measurement error for each
constituent in terms of proportional standard deviation, S;.

Constituent
O, K, N; M, S, M, Mg
Sm 0.03 0.08 0.13 0.03 0.14 0.10 0.12

ary astronomical constituents and other compound
tides. In fact the presence of the 2MN, and 2MS, tides
respectively increase the N, and S, astronomical con-
stituents by about 7%. Furthermore these two impor-
tant compound tides strongly interact with compound
tides involving the same two astronomical tides. The
2MS, is very similar to the 2MN, but, in general, in-
teracts less strongly due to the S, tide being smaller
than the N, tide. Furthermore the strength of the com-
pound tides are not only determined by the astronomi-
cal tides and compound tides of the same species but
are also sensitive to the strength of the M, overtides.
Thus, in general, mechanisms which affect the M,
overtides will in turn affect the compound tides. Oth-
erwise interactions between compound tides of different

_species appear to be weak.

" Figure 4 shows the relative importance of significant
constituents based on computed basin averaged ele-
vations. We note that compound tides are important
relative to the overall sequence of nonlinear constitu-
ents. We also note that the sexto-diurnal constituents
are of about the same importance as the corresponding

TABLE 10. Elevation amplitude prediction error, S;?, for runs
which vary friction factor, ¢, for overtide computations.

Constituent -

Case ¢ M, M, Mg

O-1 0.0030 0.5044 1.1306 1.6045
0-2 0.0060 0.1954 0.4655 1.2342
0-3 0.0090 0.0923 0.2923 1.0194
0-4 0.0095 0.0893 0.2853 0.9929
0-5 0.0100 0.0899 0.2823 0.9683
0-6 0.0120 0.1122 02958 0.8867
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TABLE 11. Elevation amplitude prediction error, S;?, for compound tide cases.
Constituent

Case 01 K1 N2 M2 SZ M4 M6

0-4 — — — 0.0893 — 0.2853 0.9929
C-1 0.1594 0.1623 0.1962 0.0899 0.2684 0.2805 0.7471
C-2 0.1635 0.1649 0.1847 0.0900 0.2698 0.2777 0.6051
C-3 0.1637 0.1659 0.1848 0.0900 0.2323 0.2771 0.5640
C4 0.1641 0.1661 - 0.1848 0.0901 0.2257 0.2770 0.5579
C-5 0.1564 0.1486 0.1850 0.0901 0.2254 0.2768 0.5128

quarter-diurnal constituents (i.e. 7m, = M, M2MNs
=~ 7Mn,; €tc.). This is related to the very shallow depths
in the bight and the dominance of the associated fric-
tional interactions.

In general, the amplitudes of all the nonlinear con-
stituents are quite small. However, the astronomical
constituents are relatively small as well and it can be
shown that the ratios of the amplitudes of the various
constituents to that of the M, constituent in the Bight
of Abaco are of similar order as in more energetic basins
such as the English Channel. Thus it is anticipated that
the same dynamic interactions discussed in this paper
also occur in other very shallow basins with a domi-
nating M, tide.

Finally, we note that low frequency constituents
(steady state, MN and SM) are not included in Fig. 4
since, as was indicated earlier, these constituents would
incorrectly appear as too significant when ranked in
terms of 7;. Based on the importance of Uj, the se-
quence of constituents listed would remain approxi-
mately the same while the low frequency constituents
would appear as follows: steady state would be slightly
smaller than 2MNg; MN would be smaller than KO;;
SM would be smaller than 3MSN,.

6. Comparison of TEA-NL computations to measure-
ment data

Filloux and Snyder (1979) carried out extensive
measurements of water surface elevation within the
bight. In a sequence of three field experiments, each
lasting approximately one month, bottom mounted
pressure gauges collected elevation time history records
at a total of 25 sites (shown in Fig. 2). The month long

elevation records for each experiment were harmoni-
cally decomposed using the least squares method in
addition to being adjusted for atmospheric pressure,
to yield harmonic elevation amplitudes and phases for
the M, N,, S,, Oy, K, , M, and Mg constituents. Since
only 15 gauges were deployed during any one experi-
ment, each site has associated with it between one to
three values for the seven harmonic constituents.
However, there is a degree of variability from experi-
ment to experiment in these harmonically decomposed
measured values. In order to quantify this variability,
we computed the proportional standard deviation, on
a basin wide basis, for the amplitudes of each -of the
seven constituents which resulted from Filloux and
Snyder’s measurements. This proportional standard
deviation of measurement data for each harmonic
constituent j is expressed as:

L K 1 K; 1/2
2 2 "0, k)~ — 2 9™, k)
mo | EE [n;"(x1, ) K2 (1, k)]
/B L’ K >
Z Z 4, kP
I=1 k=1
where,
#;™ measured elevation amplitude component for jth

harmonic

Xx;  measurement site within the bight

L' total number of measurement sites with multiple
values for a constituent

K; total number of harmonically analyzed mea-
surement values at location /.

The S;” values presented in Table 9 may be interpreted
as the standard deviation in terms of a fraction of a

TABLE 12. Elevation amplitude prediction error, S;?, for reoptimization of ¢, with full compound tide interaction.

Constituent
Case Cr 01 Kl N2 Mz 82 M4 Mg
C-5 0.0095 0.1564 0.1486 0.1850 0.0901 0.2254 0.2768 ' 0.5128
C-6 0.0090 0.1432 0.1371 0.1849 0.0890 0.2175 0.2740 0.5296
C-7 0.0085 0.1293 0.1256 0.1863 0.0918 0.2097 0.2752 0.5484
C-8 0.0080 0.1150 0.1147 0.1894 0.0990 0.2022 0.2818 0.5695
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FI1G. 5. Computed contours and average measured (boxed) values for elevation amplitudes (in cm) and phases (in degrees lag w.r.t.
the M, constituent at the open ocean boundary) for the astronomical constituents for case C-6.

global representative measure of amplitude or roughly
as an average percentage of error for each constituent.
In order to compare TEA-NL computations to these
measured values, we shall compute the proportional
standard deviation between predicted elevation am-
plitude and measurement elevation amplitude for each
harmonic j in the same way as Snyder et al. (1979):

L K 12
1§1 EI (7,01, k) — 7;0a)P?
Sjp = L K s

Z Z [0, bF
I=1 k=1

where 7, is the TEA-NL predicted elevation amplitude
component for the jth harmonic, and L the total num-

ber of measurement sites. Again these values will rep-
resent the average standard deviation for a given con-
stituent in terms of a fraction of the global represen-
tative measure of amplitude. It is noted that this
prediction error, S;#, incorporates the measurement
errors. Let us now look how the various computations
discussed in sections 4 and 5 influence the prediction
error, S;7.

a. Error dependence on friction factor, c;, for the over-
tide computations

In section 4, we varied friction factor ¢ to determine
its influence on M, and its overtides. Table 10 now
shows how well these friction factors allow the predic-
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FIG 5. (Continued)

tion of the M,, M, and M constituents in these over-
tide only cases with all nonlinearities turned on. Clearly
the optimum M, response occurs at ¢, = 0.0095. At
this friction factor value there is on average a 9% error
between TEA-NL predictions and Filloux and Snyder’s
(1979) measurements. The M, error appears to be a
near minimum at ¢, = 0.0095 with an error of S/
=~ 29%. A slightly higher ¢, value yields a small reduc-
tion in the S;” value for this constituent. The M errors
continue to decrease over the entire range of ¢, values
tested. At ¢, = 0.0095 the M; elevation amplitude is
entirely overpredicted by approximately 99% or by
roughly a factor of two. The final optimal friction factor
selected in section 4 was based solely on the lowest
elevation amplitude error for the main M, tide.

b. Error dependence on compound tide interactions
with ¢y = 0.0095

In section 5, we investigated the variation of re-
sponses due to the influence of the interactions between
various astronomical and nonlinear compound tide
constituents. Table 11 indicates the associated elevation
amplitude prediction errors in terms of S/”. We shall
now point out the key features of these cases which
progressively allow more and more constituents to in-
teract.

Comparing cases O-4 and C-1, we note that allowing
the O,, K,, N; and S, astronomical constituents to
interact substantially reduces the Mg overprediction in
elevation amplitude from 99.3% to 74.7%. The M, and
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FG. 6. Computed contours for elevation amplitudes (in cm) for the significant low period constituents for case C-6.

M, errors remain at approximately the same level.
The errors associated with the additional astronom-
ical constituents are modest, ranging between 16%
and 27%.

The addition of the M,-N, compound tides, case
C-2, further reduces the Mg error from 74.7% to 60.5%.
We also see a reduction in the N, error from 19.6% to
18.5%. As previously discussed, these changes are
mainly due to the influence of the 2MN, tide. Although
this reduction in N errors seems minor, we note that
this is an astronomical constituent being influenced by
a compound tide constituent. Other errors are not sig-
nificantly influenced by the M,-N, compound tides.

Allowing the M,-S, compound tides to interact re-
duces the Mg error from 60.5% to 56.4%. Furthermore
the S, error is reduced from 27.0% to 23.2%. Other
constituent errors are not significantly affected. The
inclusion of the M,-N,-S, constituents does not really
significantly affect any of the constituent errors. Finally,
allowing compound tide constituents involving the O,
and K, constituents to interact further reduces the Mg
error from 55.8% to 51.3%. In addition, the O, and K,
errors see reductions of 1% to 2%, respectively.

These error trends are strictly in accordance with
the changes in elevation amplitude discussed in section
5. They substantiate that the trends established in sec-
tion 5 are in accordance with the field data. These errors
again underscore the importance of including the
compound tides. In particular, the Mg error is sub-
stantially reduced between case O-4 and case C-5 such
that the overprediction has dropped from 99.3% to
51.3% (from a factor of 2.0 to 1.5). This overall error
decrease is as much due to the introduction of the sec-
ondary astronomical tides (N, S,, O, and K,) as to
the interaction of compound tides. In particular the

2MN, and 2MS, constituents significantly influence
the Mg error. Furthermore, the 2MN, and 2MS, con-
stituents influence their associated astronomical con-
stituents.

¢. Re-optimization of ¢, with complete compound tide
interaction :

In section 6b we examined the elevation amplitude
errors associated with varying degrees of astronomical
and compound tide interaction using ¢; = 0.0095.
However, this bottom friction value was selected based
on being the optimal value for the overtide only cases.
Therefore, we now briefly examine whether this value
is still optimal when allowing for the more complete
nonlinear interactions which include all of the con-
stituents of case C-5.

Prediction errors for various ¢y values are shown in
Table 12 and indicate that the optimal ¢, value (based
on the minimum M; error only) has shifted to a value
0of 0.0090. With the exception of the Mg error all errors
benefit slightly from this reduction in friction factor.
Table 12 also shows that decreasing ¢ below 0.0090
corresponds to a continued downward error trend for
the Oy, K, and S, constituents whereas the N,, M, and
M, errors all show an upward error trend fairly soon
below the optimal value. Thus the final “optimal” value
for ¢ris selected as 0.0090 corresponding to run C-6.
This reduced ¢y value is in accordance with Le Provost
and Fornerino’s (1985) analytical predictions which
account for the increased damping effect of the main
secondary semidiurnal astronomical constituents.

The final “optimal” prediction errors, S;?, obtained
for case C-6 are typically significantly larger than the
corresponding measurement error, S;”, sl}own in Table
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9. We note that to get an estimate of the prediction
error which is adjusted for the measurement error,
S/7~™, we must compute the difference in the variances;
thus (S;7"™)? = (S;7)* — (S;™)>. Therefore, with the ex-
ception of the K,;, N and S, tides (for which />~
respectively equals 0.11, 0.13 and 0.17), the measure-
ment errors do not significantly affect the prediction
error values.

Results for elevation amplitude and phase for sig-
nificant constituents for this fully compound constit-
uent interacting case C-6 with ¢, = 0.0090 are plotted
in Figs. 5 through 10. Filloux and Snyder’s (1979)
measured elevation amplitude and phase values, av-
eraged over up to three experiments, are indicated at

2MS;
AMPLITUDE

J. J. WESTERINK, K. D. STOLZENBACH AND J. J. CONNOR

1367

each measurement site for the M,, N,, S,, 0,,K;, M,
and Mg constituents. Measurement site errors in ele-
vation amplitude are, on average, roughly in accor-
dance with the proportional standard deviations listed
in Table 12. Comparing predictions to the average
measured values, we note that amplitudes for the M,
tide are slightly underpredicted in the northern bight,
while they are typically somewhat overpredicted in the
southern bight. The N, elevation amplitudes are under-
and overpredicted at roughly an equal number of mea-
surement sites, although in a randomly distributed
manner. The O;, K, and S, tides are predominantly
underpredicted. Overdamped secondary semidiurnal
astronomical tides are a commonly encountered prob-

2MN,
AMPLITUDE

FiG. 7. Computed contours for elevation amplitudes (in cm) and phases (in degrees lag
w.r.t. the M, constituent at the open ocean boundary) for the significant semidiurnal compound
constituents for case C-6.
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FIG. 8. Computed contours for elevation amplitudes (in cm) and phases (in degrees lag
w.r.t. the M, constituent at the open ocean boundary) for the significant terdiurnal compound
constituents for case C-6.

lem in tidal prediction models (e.g. Le Provost and
Fornerino 1985). The M, tide is under- and overpre-
dicted at about the same number of sites with discern-
able regional patterns. The Mg tide is uniformly sub-
stantially overpredicted. We note, in particular, that
certain values very near the ocean boundary are un-
derpredicted for both the M, and Mg constituents. This
suggests that the application of a fully reflective
boundary condition is not entirely correct and causes
some portion of the remaining overall errors in the M,
and Mg constituents.

Predicted phases, for our optimal run, also compare
favorably to the average measured values indicated
when taking into account the variability of the mea-
sured values. The agreement for the M, component is
excellent. The N, S, O, and K, phase predictions are

very good although, in general, slightly overpredicted
in the northern bight. The rapidly spatially varying M,
and M phase predictions also agree very well with the
measured values.

The predictions for the astronomical and M, over-
tide constituents are similar in character to those pre-
sented by Snyder et al. (1979). However, values and
patterns do differ somewhat, in particular for the M,
and Mg constituents. We note that Snyder et al. (1979)
obtained their optimal solution by allowing for either
a significant nontidal current [O(0.28 m s™')] or non-
quadratic friction law. The solutions we present do not
introduce high nontidal currents nor deviate from the
standard quadratic friction law. In fact, our optimal
solution relies on the inclusion of the interaction of
the compound tidal constituents. The Mg constituent,
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in particular, is significantly affected through these in-
teractions.

It is noted that the general structure of both the am-
plitudes and phases of constituents of the same type
and frequency range are extremely similar. Figure 5
indicates that the semidiurnal astronomical constitu-
ents, M,, N, and S,, all show substantial-damping and
a minimum amplitude point in between the sill and
the northern depression region. The diurnal astro-
nomical constituents, O, and K,, are similar to the
semidiurnal constituents, although the minimum val-
ues have decreased significantly less relative to the cor-
responding boundary values than is the case for the
semidiurnal constituents.

Figure 6 indicates that the low period constituents,
steady state, MN and MS, all show sharp gradients in

MN4
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the sill region and little variation elsewhere. This struc-
ture results from the finite amplitude terms in both the
continuity and momentum equations. For the steady
state component, this corresponds to a seaward residual
velocity component which balances the net flux to zero
along the open ocean boundary.

The relatively strong semidiurnal compound con-
stituents, the 2MN, and 2MS, shown in Fig. 7 have
amplitudes which increase steadily towards the north-
ern portion of the bight. The terdiurnal constituents,
MOj; and KOj; shown in Fig. 8 clearly exhibit amphi-
dromic regions in between the sill and the northern
bight region and then steadily increase towards the
northern and southeastern shorelines. The quarter-
diurnal constituents, M4, MN, and MS, shown in Fig.
9, also have an amphidromic region. Finally the sexto-

AMPLITUDE

F1G. 9. Computed contours and average measured (boxed) values for elevation amplitudes (in cm) and phases (in degrees lag w.r.t.
the M, constituent at the open ocean boundary) for the significant quarter-diurnal nonlinear constituents for case C-6.
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diurnal constituents, Mg, 2MNg and 2MS¢ shown in
Fig. 10, exhibit an amphidromic region which is located
further north than that of other constituents.

7. Conclusions

We have examined the interaction of the various
nonlinear terms in the shallow water equations in ad-
dition to investigating the influence of the shallow water
constituents on each other through the application of
model TEA-NL to the Bight of Abaco.

Model TEA-NL'’s iterative frequency~time domain
formulation is ideally suited for this study since this
technique allows for the selective suppression of the
backfeeding of nonlinear constituents. This allows ex-
cellent control over the degree of nonlinear constituent
interaction and permits the detailed determination of
how the various shallow water constituents affect each

2MNg
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other. Time domain models do not have this capability.
Furthermore, the tailored least-squares harmonic
analysis applied allows for the very efficient resolution
and determination of extremely closely spaced and/or
long period constituents.

Friction is the single most important nonlinearity
in the Bight of Abaco. It dominates the response of the
M, constituent, which in turn is largely responsible for
the generation of the shallow water tides through non-
linear interactions with itself, secondary astronomical
constituents, and the shallow water constituents. Fur-
thermore, friction is predominantly responsible for the
generation of the important semidiurnal compound
(2MN; and 2MS,) and sexto-diurnal compound tides
and overtides. Finite amplitude terms in both the con-
tinuity and momentum equations are largely respon-
sible for generating low period and the quarter-diurnal

2MSg
AMPLITUDE

FIG. 10. Computed contours and average measured (boxed) values for elevation amplitudes (in cm) and phases (in degrees lag w.r.t.
the M, constituent at the open ocean boundary) for the significant sexto-diurnal nonlinear constituents for case C-6.
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tides. The combined effect of friction and finite am-
plitude terms generate the eight-diurnal tides due to
the resulting interplay of the sexto-diurnal constituents
(generated by friction) and the astronomical constit-
uents through the finite amplitude term. The convec-
tive terms do not significantly affect the astronomical
tides nor the generation of the nonlinear tides.

A significant aspect of our study is the demonstrated
influence that nonlinear constituents have on each
other. Nonlinear tides are affected not only by the main
M, and other astronomical tides but also by the inter-
actions which result between the astronomical and
nonlinear tides themselves. Important examples in-
clude the dramatic decrease in Mg response due to the
2MN, and 2MS, constituents and the increase in Mg
response due to the interaction of M, with M,q. Fur-
thermore, important nonlinear constituents such as the
2MN, and 2MS; can influence secondary astronomical
constituents as much as 7%. We further note that com-
pound tides can be important relative to the corre-
sponding adjacent overtides (about half as important)
and even relative to adjacent astronomical tides (e.g.,
2MN, and 2MS; are about 15% of N, and S,, respec-
tively). Finally, we note that long period tides are gen-
erated, which can significantly influence the velocity
distribution in the sill region.

The Bight of Abaco simulations we have presented
clearly demonstrate the importance of allowing for the
full nonlinear interaction of shallow water constituents
(particularly 2MN2, 2MSQ, M4, M6, Mg, M]()). The
overprediction problem experienced by Snyder et al.
(1979) has been largely resolved simply by including
nonlinear shallow water constituents and without using
nonstandard friction laws or very high nontidal cur-
rents. The correct influence of these interactions is
substantiated by Filloux and Snyder’s (1979) measure-
ments. However, the Mg constituent still remains
overpredicted by about 50%. Improving the boundary
condition specification for all significant nonlinear
constituents will certainly improve both the M, and
Mg predictions. However, the secondary astronomical
constituents are also not entirely satisfactorily pre-
dicted. Both the Mg constituent and the secondary as-
tronomical constituents interact with the M, mainly
through the nonlinear friction term. We believe that
the associated over- and underprediction problems
stem largely from the inadequacy of the standard qua-
dratic friction law as suggested by Snyder et al. (1979).
The dominant influence of friction in the bight origi-
nates in the sill region with large dunes and very shallow
depths. The resulting large three-dimensional recir-
culating wakes behind these dunes brings into doubt
the validity of the assumed depth averaged horizontal
flow structure and the standard quadratic friction law.
The dominant influence of friction on the Mg constit-
uent and Snyder et al.’s (1979) partial success in re-
ducing Mg error with a linear/quadratic friction law
would certainly support the idea of nonstandard fric-
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tion laws. Extremely detailed truly 3-D turbulent flow
analyses would be required to entirely resolve the
question of the friction law. However, the computa-
tional capability required for this type of analysis is
only presently emerging.
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