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ABSTRACT

Analytic solutions are obtained for the barotropic shelf circulation caused by wind and deep-ocean forcing
at subinertial frequencies. An inclined beach model of the continental shelf is used and only situations in which
bottom friction is important are considered. Three different alongshore forces are considered: pressure gradients
and currents (maintained by the deep ocean) at the shelf break and wind stress over the shelf. In each case the
model is formulated as a boundary value problem in which the boundary conditions are determined by the
forcing mechanism. In general, a damped resonant response occurs when the forcing function has the same
longshore velocity as an unforced continental shelf wave and is most significant for the first mode. In the case
of forcing by an alongshore pressure gradient at the edge of the shelf, this leads to the amplification of the
pressure signal towards the coast. The modal frequencies and structures are determined for various frictional
values. When friction is small the results are consistent with those of Brink and Allen in that phase speeds
remain unchanged and cross-shelf phase differences are introduced. At larger frictional values, however, phase
speeds are reduced, and the modal structures and cross-shelf phase differences are further altered.

1. Introduction

Two types of theory have been developed by earlier
workers to explain the effects of bottom friction on
coastal circulation processes. One type has bottom
friction dominating to the extent that time dependence
is unimportant, while the second has emphasized a
time-dependent (wavelike ) formulation which includes
bottom friction as a perturbation only.

The frictionally dominated, steady-state theories of
circulation on inclined shelves due to wind stress
{Csanady 1978) and oceanic alongshore pressure gra-
dients (APGs) (Middleton 1987) are strictly valid only
when the time scales of variability are long compared
to the frictional spindown time (Csanady 1978; Wright
1986). The main purpose of this paper is to relax this
constraint to allow for subinertial frequency variability
and also to determine the response on the shelf to
alongshore oceanic currents in addition to the forcing
mechanisms considered above. An extensive exami-
nation of the roles played by the important parameters
in the problem (bottom friction, forcing frequency and
the shelf gradient) is then made.

The study of the frictional modification of barotropic
continental shelf waves (CSWs) began when Gill and
Schumann (1974 ) suggested that an allowance be made
for frictional effects by including a dissipative term in
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the equation which governs the amplitudes of the in-
viscid modes in the forced response. Later, Brink and
Allen (1978, 1983) confirmed the validity of this in
their study in which the frictional modification was
treated as a small perturbation to the inviscid equations.
Their solutions showed cross-shelf phase differences in
the frictionally modified CSWs, with the flow nearshore
leading the flow offshore. To the lowest order, phase
speeds were unaffected by friction. In the present study,
the restriction to subinertial frequencies and an ideal-
ized depth profile allows the effects of both time de-
pendence and friction to be determined analytically
without restriction of the magnitude of friction. In or-
der to better understand the results obtained, the prop-
erties of the free waves are determined and compared
to the results for small friction described above.

In the case of wind-forcing, two types of shelf-break
boundary conditions are considered. The reasons for
this are as follows. It is usual in the study of wind-
forced CSWs to solve the equations over the shelf, slope
and deep ocean, apply asymptotic boundary conditions
and to match the solutions using continuity of both
across-shelf mass flux and pressure. In this investigation
however, our primary interest lies in the response on
the shelf, and to obtain a good approximation to this
response in as simple a manner as possible. We cir-
cumvent the more complicated, general approach by
applying conditions at the shelf break which approxi-
mate the more complete solutions under fairly typical
conditions. The first type of condition imposed is that
the surface displacement, ¢, is zero at the shelf break.
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The solutions obtained in this manner will approximate
the more general solutions provided that the transition
from the shelf to the deep ocean is rapid. If this is not
the case an alternative condition is required. Gill and
Schumann (1974), for example, argue that the along-
shore velocity, set to zero at the shelf break is appro-
priate for matching the oceanic and shelf flows at the
outer edge of the continental margin when there are
no depth discontinuities and the alongshore scale of
variations greatly exceeds the shelf width. In the second
case, the response to oceanic APGs is determined by
matching the solution over the shelf to an alongshore
sea-level slope at the shelf break. In the final case, when
forcing is due to an alongshore oceanic current, it is
assumed that the depth is continuous and an along-
shore velocity is imposed at the shelf break. It is further
supposed that a geostrophic balance exists there. This
leads to a condition on {,, the cross-shelf gradient of
the surface displacement.

The problem is formulated in the following section
and the corresponding general solution is determined
in the next. The boundary conditions are then applied
in section 4. The salient features of the free modes are
determined and presented in section 5. The forced so-
lutions are then reexamined in the same section. Fi-
nally, the key results are summarized and discussed in
the last section.

2. Formulation

In formulating the problem, a right-handed coor-
dinate system has been chosen such that the positive
x-direction points seaward from the coast, and the y-
axis lies along the straight coastline at x = 0 as in Fig.
1. The depth, h(x), is given by

h = sx (2.1)

where s is a constant that is sufficiently small that ver-
tical motions need not be considered.

Following Wright (1986) we begin with the linear-
ized, depth-averaged, shallow water equations for flow
in a homogeneous, incompressible, barotropic and hy-
drostatic fluid forced by an alongshore wind stress 7.
These equations are

F1G. 1. Schematic diagram of the continental shelf of width / and
nondimensional width . The cross-shelf variables are x (dimensional)
and X (nondimensional). Oceanic forcing is applied at x = / and
wind forcing applies over the whole shelf.
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w—fo=—gl—ru/h (2.2)

o+ fu=—g&,—rv/h+1/ph (2.3)

(hu)x + (hv), = —§, (2.4)

where u and v are the horizontal, depth-averaged ve-
locity components in the x, y directions respectively;
t is time; ¢ is the surface displacement; g is the accel-
eration due to gravity; f is the Coriolis parameter (as-
sumed constant); p the density and subscripts denote
partial differentiation.

Bottom friction has been assumed to be proportional
to the depth-averaged velocity with a constant friction
coefficient ri.e.,

(2.5)

Such a parameterization scheme can be justified for
subinertial motions in the presence of energetic tidal
motions. The limitations and implications of this
scheme have been fully discussed by Grant and Madsen
(1979).

Consider motions for which

(u, v, §]
= R{[U(x), V(x), Son(x)] exp[i(ky ~ wt)]} (2.6)

where k is the wavenumber and w is the frequency
{allowed to take either sign) of both the forcing and
the response. It can be shown that for such motions
the terms u, and —ru/hin (2.2) can be neglected, pro-
vided that (kL)? < 1, (w/f)?> < 1 and (r/fh)? < 1
(Wright 1986). The surface divergence can be neglected
if f2L?/gh < 1 (Buchwald and Adams 1968). Here
L characterizes the scale over which the dependent
variables change in the x-direction and 4 is a scale
depth. Motions satisfying the above requirements can
therefore be investigated with the following simplified
set of equations:

Tp/p = —ru.

Jo=g¢s
vt fu=—g&+r/ph—rv/h (2.8)
(hu), + (hv), = 0. (2.9)

(2.7)

These three equations have been presented by earlier
workers in investigations of the evolution of the coastal
boundary in response to an impulsive wind stress
(Birchfield and Lunde 1978; Maeland 1983).
Elimination of u and v from (2.7)-(2.9) yields the
following equation for the surface displacement, ¢{:

BB + hSoa + She8y + 18 = 0. (2.10)

Denbo and Allen (1983) have solved this equation in
the case of no longshore variations in the forcing. In
this paper the full equation is used to investigate three
cases of coastal circulation which have different along-
shore forcing mechanisms: 1) wind stress and either
2) oceanic pressure gradients or 3) oceanic currents
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imposed at the shelf break. Cases I and 2 are time-
dependent extensions of existing theories (Csanady
1978; Middleton 1987, respectively). Thompson
(1987) has obtained solutions of (2.10) for case 1 for
. one of the two offshore boundary conditions we con-
sider in this paper.

In each case the coastal boundary condition is that
of no normal transport, i.e.,

hu—->0 as x—0.
It follows from (2.7), (2.8) and (2.10) that

$xe
S

where the right-hand side is zero once it has been es-
tablished that ¢ and ¢, are finite as x — 0, since ;# —>
0 as x = 0. Note that 7(x, y, t) is nonzero for case 1
only. Ifitis assumed that variations of wind stress across
the shelf are not important and the wind-stress prop-
agates alongshore then we can assume that

7(y, t) = 1o expli(ky — wi)]. (2.13)

Solutions for realistic forcing may be found by sum-
ming contributions from appropriate frequencies, but
considerable insight into the dynamics is obtained here
by considering a single, arbitrary, component.

The offshore boundary conditions can be readily sti-
pulated in terms of non-dimensional variables and their
formulation is best left until after the general solution
has been obtained in the following section.

(2.11)

g—rv»gh( +§y) as x—>0, (2.12)

3. General solution
a. Surface displacement

Substitution of (2.1) and (2.6) into (2.10) gives

(r — iwsx) — d — jws = 4 ikfsn = 0.

dx
Transforming x to dimensionless form using X = x/
L where the length scale L is defined as L = 1/k, k
> 0, reduces (3.1) to

[(QX + i)y —n=0 (3.2)

where @ = w/f is a nondimensional frequency and e

= r/(fsL).
Setting

(3.1)

EHX) =2(QX + ie)'/2/Q

reduces (3.2) to

(3.3)

"+ —§n=0 (3.4)

where the derivatives (primes) are now with respect to
the complex variable £. The choice of the branch for
£ does not effect the validity of the solutions, however,
the form of the solution in case 1 is simplified if the
real part of §, « = R{£} > O for all X and Q when
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6 = oo. Since QX + ie does not vanish over the shelf
at any possible modal frequency (e # 0), this choice
uniquely determines £. Further details regarding £(X')
are left to appendix A.

Equation (3.4) is the modified Bessel equation of
order zero and has linearly independent solutions I,
and Ky, the modified Bessel functions of the first and
third kinds, respectively. Thus the general solution is

n(§) = Aly(§) + BKo(£) (3.5)
where 4 and B are complex constants.

b. Transport and velocity

The correspohding transports and velocities can be
obtained by substituting (2.6) into (2.7) to give
fLX dn
V(X)=X—
g% (X ax
say, with ¥ (X ) being a scaled alongshore component
of the volume transport. Similarly, (2.6)in (2.8) gives

= V(X)

(3.6)

FU(x) = [( iw — —)V(x) igkton +E] -
ph

The non-dimensional form of AU(x) is given by

fLXU(X) fLX(zw r 1)
kLXn +
2% fosLx) T psgro
or
UX)=(iQ — e¢/X)V —iXn+ e (3.7)

where U(X) = fX U(X )/ g $ok has been introduced
in analogy with ¥ (.X) in (3.6) and 7, = 1 in case 1
(zero otherwise). Here { = 70/(pgse).

Equations (3.6) and (3.7) can be used to calculate
the non-dimensional transport, once n(.X') has been
found. In section 4, streamlines for the scaled transport
(U, V) are presented. Reference is made to W(X), the
scaled transport streamfunction, defined by ¥y = U
and ¥y = —V.

The complex functions I,,, were calculated using
the International Mathematical Subroutine Library
(IMSL) subroutine DCBINS. The K,, were calculated
from either their power series representation, recur-
rence relations or asymptotic forms. The properties of
modified Bessel functions used in this paper can be
found in Abramowitz and Stegun (1965).

4. Boundary conditions and the corresponding solutions
a. The coastal boundary conditions

Elimination of v(0) from the nondimensional form
of (2.12) gives

=1 (4.1)

dn
dx
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in case 1 if {o = 7ofL/prg and
dn _
ax

in cases 2 and 3 provided that r # 0 (¢ # 0).

0 (4.2)

b. The offshore boundary conditions

Consider matching the flow on a shelf of width /,
and depth A, at the shelf-break with an ocean of depth
h, in which the geostrophic balance is disturbed only
by an alongshore wind-stress. Matching pressure and
mass flux then leads to 4, & + 7 + f(h — M) §, =0,
sothat n, =0ifh, = hyandn —> 0if h, — by = .
Both these boundary conditions are used in the case
of wind forcing. In each case the solution is constrained
at x = lor X = [/L = &, the nondimensional shelf
width. We now consider each case in turn.

In case 1 the two types of offshore boundary con-
ditions considered are:

(a) n(8)=0 (4.3)
and v(6) = 0. 1.e.,
dn
(b) — = 0. (4.4)
: X |y,

In case 2, {, = P where P = Py exp[i(ky — wt)] is the
alongshore, sea-level slope at X = 4. Choosing {, = P,/
k gives

7(8) = —i. (4.5)

If it is assumed that a geostrophic balance exists be-
tween fv and g{, at the shelf-break, the condition in
case 3 reduces to -

dn
ax
if {o = fVoL/g. Equations (4.1), (4.2), (4.4) and (4.6)

can be readily given in terms of 5(£) since d§/dX =2/
Q¢ and so

=1 (4.6)

¢. The solutions

The resulting conditions, together with their corre-
sponding solutions are as follows:

1) THE WIND FORCED SOLUTIONS

In case 1 n,(£(0)) = (ie)'/2. Here the same choice
of branch is made as for ¢ (section 3). In case 1a, 5(8)
= 0 while 7,(£(8)) = O in case 1b.
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The solutions are given by
A (ie)'? ( Ko )
A= = ——— 4.7
‘ (B),a A \—In (4.7
A —(ie)'"? (K“)
Ay = =— 4.8
1b (B)lb A I, (4.8)

where the notation Ko = K;(£(0)), I, = I,(£(d)) etc.,
has been introduced. Also, A, = I16Ko1 + I0:K1o and
Aw = 111K 0 — 1,0K;;. The solutions in case 1a have
been obtained independently by Thompson (1987).
On a semi-infinite shelf, the wind-driven response
for which n = 0 as X = oo (or 5, = 0), is given by

2(X) = —(ie)'*Ko(£)/ Kio. (4.9)

In Fig. 2, contours of the (a) surface displacement,
n(X) and (b) transport-streamfunction, ¥(X), are
presented for case la where the offshore boundary
condition is taken to be zero surface elevation. The
contour interval is chosen to be the same for all plots,
within a given figure. For example, in Fig. 2a the in-
terval is fixed at 0.1 while in Fig. 2b it is fixed at 0.2.
In these, and similar diagrams, the coastline is coin-
cident with the y-axis at X = 0. We find it convenient
to introduce ¢ = Q/8,, 8. = kL. and L, = (r/kfs5)'/?
so that ¢ = (w/f)/(kL.) represents a dimensionless
phase speed. The length scale L. is in fact V2 times the
length scale chosen by Csanady (1978 ) and Middleton
(1987). Three different values of o are considered;
—3.5, 0 and 3.5. The case ¢ ~ 0 approximates Csan-
ady’s arrested topographic wave solution in which the
nearshore flow obeys a balance between windstress,
bottom friction and alongshore pressure gradient, with
the flow in the same direction as the wind over the
majority of the coastline. Offshore, the flow is governed
by Ekman dynamics and is perpendicular to the wind.

For ¢ = 3.5, both the transport and surface displace-
ment are reduced in amplitude compared to their val-
ues for ¢ =~ 0. Significant displacements are concen-
trated closer to shore. Amplitudes of both { and ¥ are

greatest for ¢ = —3.5 where the forcing moves in the
same direction as subinertial free modes propagate (see
section 5).

In order to interpret the results it is useful to define
phase and response functions for the surface displace-
ment and the alongshore component of the transport.
The response functions are (unnormalized) ampli-
tudes, while the phase functions are defined by

¢ X; 0) = tan (T {0}/ R {n})
o X; o) = tan NI {V}/R{V})

which represent temporal (or spatial in y) phase dif-
ferences between the response and the forcing. Since
both { and the longshore transport are porportional to
e ™ ¢ > 0 (¢ < 0) indicates that the response lags
the forcing when ¢ > 0 (¢ < 0).
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FIG. 2. Case 1a (windstress applied, » = 0 at the shelf break) (a) Surface displacement and (b) transport streamfunction -
contours for the dimensionless frequencies ¢ = —3.5, 0 and +3.5 [¢ = Y(kL,)™, @ = w/f].
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FIG. 3. Case 1a response and phase of the surface displacement and alongshore transport
over the o-X plane, with the dimensionless shelf width & = 23,.

The phase and response functions for 4 and V (the
alongshore component of the scaled, nondimensional
transport defined in section 3 ) in case 1a are contoured
over the range ~3.5 < o < 3.5 in Fig. 3. Both |#| and
| V| show maxima at values of ¢ ~ —3/ \5, with cor-
respondingly rapid phase change. At ¢ ~~ —3/ \5, Vis
in phase and 7 is 180° out of phase with the wind
across the entire shelf. In addition, the phase changes
rapidly about this point, switching sign as ¢ passes

through —3/ V2. Together, these features characterize
a forced resonant response. In contrast, both phase and
response functions show relatively small changes for
a>0.

In Fig. 4, contours of the surface displacement are
presented for case 1b in which the alongshore current
is set to zero at X = 6. When ¢ = 0 the solutions differ
only in minor detail to their case 1a analogues in Fig.
2. At ¢ = —3.5, the transports remain similar. In con-
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F1G. 4. Case 1b (wind stress applied, 7. = O at the shelf break). The surface displacement contours for o = —3.5, 0 and +3.5.

trast, the surface displacement has a distinct double
structure with maximum amplitudes at the coast, in a
narrow nearshore band. Amplitudes then increase with
X over most of the shelf, with secondary maxima at
the shelf break. Unlike the case 1a solution, the re-
sponse at o = 0 is greater than at ¢ = —3.5.

_ In Fig. 5 the phase and response functions for 7 and
V in case 1b are contoured over the o — 8 plane. The
surface displacement nearshore leads the offshore signal
when ¢ > 0. When ¢ < 0 however, the opposite is true,
with cross-shelf phase differences exceeding 90°. As ¢
is reduced from zero, the region of phase change is
concentrated closer to shore.- There is little phase
change except in the range —1 /Vi < ¢ < 0. Again,
there is a forced resonant response, but this time at ¢
~ —0.57 for V. It is interesting to note that while sur-
face displacements are largest here, over most of the
shelf there is no rapid phase change passing through
0°. On the other hand ¢y changes rapidly near o
= —0.57. Also, when ¢ > —0.57 (¢ < —0.57) V leads
(lags) the forcing.

In Fig. 6 the phase and response functions for an
infinitely wide shelf are presented. Maximum [7n| and

| V| occur when o < 0, however no resonances are in
evidence. This is discussed in more detail in section 5
and appendix B.

2) THE OCEANIC APG FORCED SOLUTIONS

In case 2, 7:(£(0)) = 0 and n(£(8)) = —i. Manipu-
lation then gives

e ()35
B, Mx\Ip
where A; = Aq,.

Contours of the surface displacement are presented
in Fig. 7. As before, values of ¢ = —3.5, 0 and 3.5, with
§/6. = 2 are chosen. When ¢ =~ 0 we recapture the
steady solutions obtained by Middleton (1987), which
indicate a reduction in the surface displacement from
the outer shelf to the coast. A similar result holds for
o = 3.5, although the maximum coastal elevation is
now directly opposite that at the shelf break, and the

overall transport is weaker. At o = —3.5, however, the
results are dramatically different. The surface displace-

(4.10)
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FIG. S. Case 1b, response and phase of the surface displacement and the alongshore transport over the ¢-X plane, with & = 23,.

ment near the coast is now much larger than that ap-
plied at the shelf with a correspondingly large rise in
the transport. The amplification of the oceanic pressure
signal across the shelf should be contrasted with the
prediction of the steady model.

The cross-shelf structure of the phase and response
for » and V for a shelf of width §/3, = 2 are shown in
Fig. 8. As in the wind-driven case 1a the responses
show clear maxima near ¢ = ~3/ V2 : Surface displace-
ments are larger near the coast with the response at the

coast being almost four times the forcing at X = 6.
There is a rapid phase change (through 180°) between
V and the forcing. There is some evidence for a sec-
ondary peak in the response when ¢ is small and neg-
ative however it does not display any of the other char-
acteristics of a forced resonance.

For oceanic pressure fields moving in a direction
opposite to that of coastally trapped waves, the trans-
mission of the sea-level displacement across the shelf
is substantially reduced below that for ¢ = 0. When ¢
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FIG. 6. Response of an infinitely wide shelf to wind forcing (Case 1 with 6 = co). The phase and response of both
the surface displacement and the alongshore transport are presented.

; ~ . .
< 0, V nearshore leads V offshore. The phase difference A, = (A) _ IE(8) A, A, (4.12)
3

is approximately 40° near o ~ 0 but quickly grows to B 2 A,
over 100° near resonance. The surface displacement _
nearshore leads (lags) that offshore whenever ¢ < 0  where A; = Ay,. Thus A; = YA, where
(o > 0). :
v(o, €) = i(V280/5, + ie)'>Ay/ A5, (4.13)

The relationship between the solutions in cases 2 and
In a similar manner, the solution in case 3 can be 3 can be gauged from Fig. 9 in which |y| and
shown to be given by C tan~!(J {7}/ R {v}) have been contoured over the ¢

3) THE OCEANIC CURRENT FORCED SOLUTIONS
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SURFACE DISPLACEMENT

F1G. 7. Case 2. (Response to an oceanic APG). Surface displacement contours for ¢ = —3.5, 0 and +3.5.

— 8/4, plane. The most striking feature is the weak
dependence upon &, exhibited by v, except on very
narrow shelves. In fact, for large /4., the asymptotic
behavior of £(X) (see appendix A), Ip(£) and Koy(§)
as X = oo shows that A,/A; — 1 as 6 = o0, and so

v ~ i(V260/8, + ie)'?

for large 6.

In order to better understand the results presented
in this section, the structure and properties of the free
modes are now determined.

5. Free waves and their role in the forced response
a. The free modes

1) MODAL FREQUENCIES

Two types of modes need to be considered:

type I having {(8) = 0 (cases la and 2);
type II which satisfy {(8) = O (cases 1b and 3).

Two important results concerning the modal frequen-
cies can be obtained immediately.

Multiplying (3.2) by 7, the complex conjugate of 7,
and then integrating over the shelf leads to

13 1
[ ineizax +ie [ 1nn12ax
0

n

, (5.1)
[ xtn12ax
0

where Q is the nondimensional frequency of the nth
mode (of either type) with cross-shelf structure n,
= n.(X). The unidirectional propagation property and
the fact that only decaying modes are possible follows
from the conditions that #{Q,} <0and 7 {Q,} <0.

When the homogeneous boundary conditions sat-
isfied by the free modes are applied, nontrivial solutions
are found to be possible only if A, = 0 (cases la and
2) or A; = 0 (cases 1b and 3). These two expressions
determine the dependence of the modal frequencies
upon the scalded friction parameter . The 72 { 2} and
J {Q} are measures of the phase speed and the degree
of damping, respectively. The complex roots of A, and
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FIG. 8. Case 2. Response and phase of the surface displacement and alongshore transport over the o—X plane, with 3/3, = 2.

A3 h?l‘VC been calculated numerically and are presented  provide upper bounds on the real and imaginary parts
in Figs. 10 and 11. Most of the important features can  of Q,,, respectively.

be obtained analytically:

Since 6 [, | n), | 2d.X provides an upper bound on the

denominator in (5.1),

8
[ 1mizax
0

——m T, Tle/d
5f Inn|2dX
0

The functional [ |6|2dX| fo X |¢'|>dX is in fact
maximized by the inviscid modal structures (Courant
and Hilbert 1953), in which case it equals |2, (e = 0){.
Thus any modification in 5 will reduce this ratio, and
so the phase speeds of the frictional modes are all
bounded above by the phase speed of their inviscid

counterparts. This result remains true for all reasonable
depth profiles, by a similar argument.
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FIG. 9. Relationship between surface displacement in cases 2 and 3 as measured
by |v| and tan™!(T {v}/ R {~v}) where v = n,/ns.

In the frictionless case, e = 0 and £(X) = 2(QX)'/?/
Q. But Ko(X) = oo as X — 0 and so the inviscid
modes have n = AIH(£(X)). Application of the homo-
geneous, offshore boundary conditions gives Io(2
X (26)'/2/Q) = 0, in cases 1a and 2 and I, (2(06)'/?/
Q) = 0, in cases 1b and 3. Thus the inviscid modes
have nondimensional frequencies

Q, = 46/“712’ (l-’-n2 < O)

where u, is the nth (nonzero ) root of I (type I modes)
or I; (type Il modes). In dimensional form, this yields
the well-known (Pedlosky 1987) dispersion relation

wal f = 4kl/ uy’. (5.2)

In both Figs. 10 and 11 frequencies are scaled by their
inviscid values. The figures given are the values of
multiplied by 1000 for convenience. When friction is
small, phase speeds remain relatively unaffected but

damping is introduced in all plots. This result, found
earlier by Brink and Allen (1978, 1983), holds for
=9.5X 1075 m s~! (corresponding to e = 1.0 X 1073
if f=10"%s7,k=3.14X10°m'ands =3 X 1073)
since the phase speed of the frictionally modified first
type I mode is still 0.96C; (where C, is the phase speed
of the nth inviscid mode) in the case where / =~ 65
km. On the other hand, the phase speed of the second
type I mode is 0.93C, when ris only 1.9 X 10 m s™!
(e = 2.0 X 107%). In fact, C = 0.5C, when r ~ 1.4
X103 ms™! (e ~ 1.5 X 1073).

On narrower shelves the corresponding Q( ¢) for fixed
k are similar to those just discussed except that damping
and the reduction in phase speed are more substantial
at the same e. For example, if / =~ 32 km, the phase
speed of the second type I mode is 0.5C, when ris only
3.8 X 1073 ms™! (e = 4.0 X 107*). Similar statements
can be made for the type II modes.



1498
)
Phase speed 19,4
-10 -05
I R}
1.0 1Q,!
-1:0 "
T
0.20Q Second mode
5.0
0-50 05
—-0.5
2
o
-1-0 -
=)
c
2
-1.5 g
o
First mode —1-1.0

F1G. 10. Solutions of Aj, = A, = 0 which correspond to the first
and second frictionally modified modes on a shelf with / =~ 65 km,
which have 7(8) = 0 (type I). Here, Q, = 4156/ (1a28.) is the fre-
quency of the nth inviscid mode and u, is the nth root of I,. The
data points represent modal frequencies at increasing values of ¢
multiplied by 1000 for convenience. % {?} and J { @} can be con-
sidered as the dimensionless phase speed and damping rate respec-
tively.

2) MODAL STRUCTURE

The unnormalized modes are giveh by

M = Culo(£x(X)) + Ko(£x(X)) (5.3)

where £,(X) = 2(Q, X + ie)!/?/Q, and Q,, the modal
frequency, satisfies A(Q,) = 0 (A = A, for type I modes;
A = A; for type II modes).

Type I modes have

Cn = —Ko(£a(0))/10(£4(0))
whereas the type II modes have

Co = +Ki(£a(8))/ 11 (£4(8)).

In Fig. 12. contours of the (a) surface displacement
and (b) longshore velocity for the first mode (type 1)
are presented for different values of the dimensionless
~ friction parameter e¢. Following this, the surface dis-
placements of mode 2 (type I) and modes 1 and 2
(type II) are presented in Fig. 13. In each case / ~ 65
km. In Figs. 12 and 13 the diagram at left corresponds
toe=0(r=0).

The cross-shelf structure of the type I(II) inviscid
modes (see Pedlosky 1987, for example) are best un-
derstood in terms of the Bessel functions Iy (I;). The
nth zero of Iy (I;) occupies the shelf-break position.
As n increases, more and more nodes are squeezed
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onto the shelf. Some general comments can be made
about both types of modes. When friction is included,
the shelf-break position remains nodal, cross-shelf
phases are introduced, and the maximum in | V| jumps
offshore. Maximum |#| remain at the coast. But per-
haps the single most important difference between the
inviscid and frictional modes is that the latter are con-
strained to have v = 0 at the coast. As ¢ increases
fruther, the cross-shelf phase difference continues to
increase and the position of the maximum in | V]
moves further offshore. Midshelf amplitudes increase
relative to their coastal values and maximum |y} move
to the midshelf. At higher values of ¢, the second modes
of both types have maximum |7| over the midshelf,
which drive strong, longshore currents locally.

b. The resonant response

In section 4, the phase and response functions for
shelves of a particular width (8/6, = 2 in fact) were
presented for a range of different ¢ values. Maximum
responses and the most rapid change in phase with o,
always occur when ¢ < 0. According to the inviscid
theory outlined in section 5b, a series of resonant re-
sponses will occur when (w,/f)/(kl) = 4/u,* [from
(6.9)]. When'n = 1, this gives (£2/6) = —0.8 in cases
la and 2, and —0.27 in cases b and 3. When friction
is included, resonant responses are apparent at Q/6
=~ —0.7 (Figs. 3 and 8) and —0.2 (Fig. 5) only. No

Phase speed 195!
-1-0 -05
' RiQ)
8 1Qa!
3.0
9.0 [
First mode =10 .té
-1-0] 2
a
- E
53
o
—4-2.0

FiG. 11. Solutions of Ay, = Az = 0 which correspond to the first
and second frictionally modified modes on a shelf with / ~ 65 km,
which have 7,(8) = 0 (type I1). @, = 4V25/(u,25.), where y, the nth
nonzero root of I,. The data points represent modal frequenciés at
increasing values of 1000e.
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FIG. 12. (a) Surface displacement and (b) longshore, depth-averaged velocity contours
for mode 1, type I [n(8) = 0] at increasing values of e.
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other resonances are evident. Thus on this particular
shelf at least, friction appears to have practically elim-
inated resonances which correspond to the modes with
n = 2 for the parameter values chosen. Further, the
frequency of the n = 1 resonance is slightly reduced
from its inviscid value.

In order to determine whether or not these results
have a wider applicability, response and phase func-
tions were averaged over the shelf. Shelf-averaged re-
sults from different shelves (with nondimensional
widths /6., from 0.3 up to 3) can then be compared.

POWER, MIDDLETON AND GRIMSHAW
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For example, in Figs. 14 and 15, the shelf-averaged
results for cases 1a and 2 respectively, are presented.
The phase functions are now estimates of the average
phase separation between the forcing and the response.
A single resonance is evident when o =~ 0.2 — 1.1 §/
8. (case 1a) and, ¢ =~ —0.08 — 0.925/4, (case 2). The
shelf-averaged results for cases 1b and 3 are presented
in Figs. 16 and 17 respectively. Again, only a single
resonance occurs when o =~ 0.08 — 1.206/6,(case 1b)
and —0.42 — (0.286/4, (case 3).

Thus friction not only reduces the rate at which the

SHELF-AVERAGED

PHASE OF SURFACE DISPLACEMENT

+SIV2 =

PRESSURE RESPONSE

|
K/
% 80y

PHASE OF LONG-SHORE TRANSPORT

WIND RBRC
FIG. 14. Shelf-averaged phase and response functions in case la.
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AMPLITUDE OF L.S. TRANSPORT

PRESSURE BC

FIG. 15. Shelf-averaged phase and response functions in case 2.

resonant frequency increases as ¢ increases, but also
shifts or detunes the resonance in frequency space,
if only slightly. The line representing o = 4V24/
(1%8.), corresponding to the resonant frequency of the
first inviscid mode, is shown on each of the shelf-av-
eraged plots.

6. Discussion

The shelf circulation models of Csanady (1978 ) and
Middleton (1987) which allow for arbitrarily large

bottom friction, have been extended to allow for time-
dependence at subinertial frequencies. In addition, the
solution for the shelf circulation driven by a deep-ocean
current has been obtained. A number of differences
exist between the solutions obtained here and those
given by the steady models.

When the dimensionless frequency @ = w/f is pos-
itive (and the forcing function moves in the opposite
direction to free wave propagation) the longshore ve-
locity, v, and the surface displacement, ¢{, are, in gen-
eral, reduced compared to their steady (2 = 0) values
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FI1G. 16. Shelf-averaged phase and response functions in case 1b.

over the entire shelf. There is very little change in the
phase relationship between the solution and the forcing
function as Q increases from zero, while significant
surface displacements are concentrated closer to shore.
In contrast, amplitudes of both { and v are greater when
Q < 0. A single forced resonance corresponding to the
first free wave is observed. The above results are com-
mon to the two types of wind-driven solutions obtained
using the boundary conditions: lan=0and Ibv =0
at the shelf-break. In case la near resonance v is in
phase and 7 is 180° out of phase with the wind across

the entire shelf and phase changes rapidly at resonance.
In case 1b the single forced resonance occurs at a much
lower frequency than in case 1a, when the surface dis-
placement has a distinct double structure, with maxi-
mum amplitudes at the coast and a secondary maxi-
mum at the shelf-break. When Q > 0, the nearshore
values of { lead those offshore. The opposite is true
when Q < 0, with cross-shelf phase differences exceed-
ing 90°. As Q is reduced from zero, the region of sig-
nificant cross-shelf phase change is concentrated closer
to shore.
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FIG. 17. Shelf-averaged phase and response functions in case 3.

In case 2, when the response is driven by an oceanic
alongshore pressure gradient, the most important dif-
ference between the steady and time-dependent results
occurs when @ < 0, where there is an amplification of
the pressure signal across the shelf. This appears to be
a new possibility, not yet described elsewhere in the
literature. On the other hand, when Q > 0 the signal
is diminished across the shelf. When Q > 0, there is
very little cross-shelf phase difference in ¢, the overall
transport is weaker and { nearshore leads { offshore.
The opposite is true when Q < 0. The current driven

solution (case 3) is simply related to the solution driven
by the alongshore pressure gradient. Their surface dis-
placements are proportional to within a known func-
tion of the two dimensionless variables ¢ and §, the
shelf width.

In order to better understand these results, the prop-
erties of the frictionally modified waves were deter-
mined. Two types of free waves play an important role
in the forced response: type I waves having n = 0 at
the shelf-break (in cases 1a and 2) and type II waves
having v = 0 (in cases 1b and 3). The cross-shelf struc-
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ture of the type I (II) inviscid modes are best under-
stood in terms of the modified Bessel function Iy (1;).
The nth zero of I (1;) occupies the shelf-break position.
As n increases, more and more nodes are squeezed
onto the shelf. When friction is included, the shelf-
break position remains nodal, v is constrained to be
zero at the coast with maxima in |v| shifting offshore,
while maximum surface displacements remain at the
coast. Cross-shelf phase differences are introduced. As
friction increases further, the cross-shelf phase differ-
ence increases further and the position of the maximum
in | v} moves further offshore. At higher values of fric-
tion, the second modes of both types have maximum
| ¢| over the midshelf, which drive strong, longshore
currents locally. At realistic frictional values, phase
speeds, unchanged at smaller values, are reduced and
damping rates increased. On narrow shelves both of
these effects are more substantial, with phase speeds
being reduced to only small fractions of their inviscid
values.

Since resonances occur when Q < Q it is the existence
of the free modes in the time-dependent model which
limits the applicability of the steady models. On the
basis of inviscid shelf wave theory, one expects a
succession of resonant responses as the forcing fre-
quency passes through the modal frequencies. How-
ever, only the resonance at a frequency corresponding
to the first frictionally modified mode remains clearly
identifiable when damping is introduced, for the pa-
rameter values considered. This frequency is bounded
above by, but closely approximates, the frequency of
the first inviscid mode.
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aB=2e/Q2
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FiG. 18. The complex £-plane when Q = w/ f is real. The variable
£ = & + iB, is confined to the hyperbola af = 2¢/Q2. The arrows
indicate the behavior of £ as X increases from zero, when £ = V2(i
+ 1)/9.
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FIG. 19. The behavior of £X) = 2(QX + ie)'/2/Q = a + i when
Q = Q, + iQ;is complex and 2,, ; < 0. £(0) resides on the hyperbola
&6 = —¢|Q,1/(219Q]?) as shown. The angle 6 = (argQ)/2. As X in-
creases from zero, £ moves in the direction indicated. The precise
position is given by (Al)and (A2).

APPENDIX A
An Analysis of the Transformation Variable £(X)

For &X) = 2(QX + €)'?/Q = a + iB it can be
shown that

af = 2[(2,2 — 01 — QX |Q121/1Q1* (A1)
a? — B2 =49,(|Q1°X + 2¢Q)/|2|* (A2)

where Q = Q, + i9;. In the sections preceding section
5, however, Q; = 0 and so £is confined to the hyperbola
aB = 2¢/|9]? and o2 — B2 > +c0 as X = 0, asin
Fig. 18. In section 5, €; < 0. In this case the behavior
of £ X) as X increases from zero is most easﬂy deter-
mined by analyzing £ = &+ ifwhere £2= Q£%/4,ie.

22 |Q l , € ‘ Qr‘

= (x-1g) - 1 a
since the behavior of £ with complex Q is very similar
to the behavior of £ with real Q: £ is confined to the
hyperbola &8 = —¢|Q,|/(2]|9]?) where we choose the

branch with & > 0. The variable £ is then obtained
from (A3) which gives

(A3)

i/2)(argQ+2kr)
b

£=——T ke k=0,1. (A4)

|2
Choosing k = 0, multiplication by e~"/?*®? represents
an anticlockwise rotation of £ by an angle between «/
4 and 7 /2 since argQ lies between —x and —« /2 when
¢ ¥ 0. The resulting behavior of £ is depicted in
Fig. 19.

APPENDIX B

Free Modes Do Not Exist on an
Infinitely Wide Shelf

Frictionally modified modes do not exist on infi-
nitely wide shelves of uniform stope if #(0) =0
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As X = o0, both R{¢} and J {£} = oo and Iy(£)
becomes unbounded (Abramowitz and Stegun 1965)
provided that ¢ # 0. Therefore, 5, = BKy(£) and
7%(0)=—B-+ K (£(0))£x(0) = 0. Thus, any nontrivial
solutions must have £0) = 2(ie)!/2/Q = pu,,, where p,
is the nth root of K. But K has no zeroes for z: jargz|
< 7 /2 and since £(0) lies in this part of the complex
plane, no free modes exist.
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