On α_i -distance in *n*-dimensional space

Ozcan Gelişgen and Rüstem Kaya

Abstract. In this study, we introduce the concept of α_i -distance, which is a generalization of Taxicab, Chinese Checker, and α -distances from \mathbb{R}^2 to \mathbb{R}^n .

M.S.C. 2000: 51K05, 51K99, 54E35. **Key words**: Taxicab distance, CC- distance, α -distance, non-Euclidean geometry.

H. Minkowski [8] has introduced a family of metrics including the taxicab metric at the beginning of the last century. Later, Menger [7] developed the taxicab plane geometry using the taxicab metric instead of the well-known Euclidean metric for the distance between any two points in the analytical plane. E. F. Krause [6] asked the question of how to develop a metric which would be similar to the movement made by playing Chinese Checkers. An answer to this question was given by G. Chen[2]. S. Tian [9] developed a family of metrics, which is a generalization of both the Taxicab and Chinese Checker distances on the plane, and named it the α -distance. In [4] and [5], the authors extended the concept of α -distance to three and *n*-dimensional space, respectively. In this paper, we introduce the α_i -distance in *n*-dimensional space as a generalization of the work in [4] and [5].

The following definition introduce a family of distances in \mathbb{R}^n , which include Taxicab, Chinese Checker and α -distances as special cases.

Definition 1. Let $P_1 = (x_1, x_2, \ldots, x_n)$ and $P_2 = (y_1, y_2, \ldots, y_n)$ be two points in \mathbb{R}^n . Denote $A = \{|x_1 - y_1|, |x_2 - y_2|, \ldots, |x_n - y_n|\}$, $\Delta_1 = \max A$ and $\Delta_i = \max \left\{ A \setminus \bigcup_{k=1}^{i-1} \Delta_k \right\}$, $i = \{2, \ldots, n\}$. For each $i = 1, 2, \ldots, n$, let $\alpha_i \in [0, \pi/4]$ and $\alpha_i \leq \alpha_{i+1}$. Then the function $d_{\alpha_i} : \mathbb{R}^n \times \mathbb{R}^n \to [0, \infty)$ α_i -distance between points P_1 and P_2 is defined by

$$d_{\alpha_i}(P_1, P_2) = \Delta_1 + (\sec \alpha_1 - \tan \alpha_1)\Delta_2 + \dots + (\sec \alpha_{n-1} - \tan \alpha_{n-1})\Delta_n$$
$$= \Delta_1 + \sum_{j=1}^{n-1} (\sec \alpha_j - \tan \alpha_j)\Delta_{j+1}.$$

Applied Sciences, Vol.10, 2008, pp. 88-94.

[©] Balkan Society of Geometers, Geometry Balkan Press 2008.

The α_i -distance in \mathbb{R}^n generalize the Taxicab, Chinese Checker, and Alpha distances between points P_1 and P_2 in \mathbb{R}^n as follows:

$$d_T(P_1, P_2) = \Delta_1 + \Delta_2 + \dots + \Delta_n$$
, $d_c(P_1, P_2) = \Delta_1 + (\sqrt{2} - 1) \sum_{i=2}^n \Delta_i$

and

$$d_{\alpha}(P_1, P_2) = \Delta_1 + (\sec \alpha - \tan \alpha) \sum_{i=2}^{n} \Delta_i$$

respectively. Notice that

- 1. if all of $\alpha_i = 0$, $\alpha_i = \pi/4$, $\alpha_i = \alpha \in [0, \pi/4]$, then $d_0(P_1, P_2) = d_T(P_1, P_2)$, $d_{\pi/4}(P_1, P_2) = d_c(P_1, P_2)$ and $d_\alpha(P_1, P_2) = d_\alpha(P_1, P_2)$.
- 2. if $\Delta_2 > 0$ and $\alpha > \alpha_i$, then

$$d_E(P_1, P_2) < d_c(P_1, P_2) < d_\alpha(P_1, P_2) < d_{\alpha_i}(P_1, P_2) < d_T(P_1, P_2)$$

for all $\alpha_i \in (0, \pi/4)$ where $P_1, P_2 \in \mathbb{R}^n$ and d_E stands for the Euclidean distance.

3. if $\Delta_2 = 0$, then P_1 and P_2 lie on a line which is parallel to one of the coordinate axes, and

$$d_c(P_1, P_2) = d_\alpha(P_1, P_2) = d_{\alpha_i}(P_1, P_2) = d_T(P_1, P_2) = d_E(P_1, P_2)$$

for all $\alpha_i \in [0, \pi/4]$.

Let l be a line through P_1 and parallel to the *j*th-coordinate axis and l_1, \ldots, l_n denote lines each of which is parallel to a coordinate axis distinct from the *j*th-axis. Geometrically, the shortest way of obtaining a path between the points P_1 and P_2 is taking the union of a line segment parallel to l_j and line segments each making α_i $(i = 1, \ldots, n - 1)$ angle with one of l_1, \ldots, l_n , as shown in Figure 1. Thus, the shortest distance d_{α} from P_1 to P_2 is the sum of the Euclidean lengths of these *n* line segments.

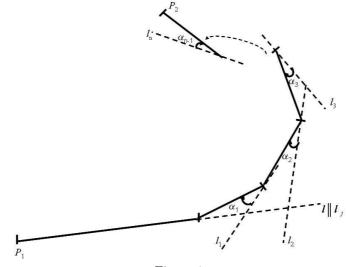


Figure 1

The next two propositions follow directly from the definition of the α_i -distance.

Proposition 1. The α_i -distance is invariant under all translation in \mathbb{R}^n . That is, $T : \mathbb{R}^n \to \mathbb{R}^n \ni T(x_1, x_2, \ldots, x_n) = (x_1 + a_1, x_2 + a_2, \ldots, x_n + a_n), a_1, a_2, \ldots, a_n \in \mathbb{R}$ does not change the distance between two any points in \mathbb{R}^n .

Proposition 2. Let $P_1 = (x_1, x_2, ..., x_n)$ and $P_2 = (y_1, y_2, ..., y_n)$ be two points in \mathbb{R}^n . If $q_j = \sec \alpha_j - \tan \alpha_j$, $j \in \{1, 2, ..., n - 1\}$, then

$$\Delta_1 + \sum_{j=1}^{n-1} q_j \Delta_{j+1} \ge \Delta_i + \sum_{k \in K, j=1}^{n-1} q_j \Delta_k, \quad \text{provided that each of } i, j, k \text{ appears} \\ only \text{ once in the last sum,}$$

where $i \in I = \{1, \ldots, n\}, k \in K = I \setminus \{i\}.$

Proof. Let $P_1 = (x_1, x_2, \ldots, x_n)$ and $P_2 = (y_1, y_2, \ldots, y_n)$. First observe that $\Delta_1 + \sum_{j=1}^{n-1} q_j \Delta_{j+1} \geq \Delta_i + \sum_{j=1}^{n-1} q_j \Delta_k$, where $i \in I = \{1, 2, \ldots, n\}, k \in K = I \setminus \{i\}$ is self-evident when dimension is 1. We assume that

$$\Delta_1 + \sum_{j=1}^{n-2} q_j \Delta_{j+1} \ge \Delta_{i'} + \sum_{j'=1}^{n-2} q_{j'} \Delta_{k'},$$

where $i' \in I' = \{1, 2, ..., n - 1\}, k' \in K' = I' \setminus \{i'\}$. That is, we suppose that the inequality holds when dimension is n - 1. So we have to show that the inequality holds if the dimension is n. One can easily get

$$\begin{split} \Delta_1 + \sum_{j=1}^{n-2} q_j \Delta_{j+1} &\geq \Delta_{i^{\scriptscriptstyle i}} + \sum_{j^{\scriptscriptstyle i}=1}^{n-2} q_{j^{\scriptscriptstyle i}} \Delta_{k^{\scriptscriptstyle i}} \\ &\Rightarrow \Delta_1 + \sum_{j=1}^{n-2} q_j \Delta_{j+1} + q_{n-1} \Delta_n \geq \Delta_{i^{\scriptscriptstyle i}} + \sum_{j^{\scriptscriptstyle i}=1}^{n-2} q_{j^{\scriptscriptstyle i}} \Delta_{k^{\scriptscriptstyle i}} + q_{n-1} \Delta_n \\ &\Rightarrow \Delta_1 + \sum_{j=1}^{n-1} q_j \Delta_{j+1} \geq \Delta_{i^{\scriptscriptstyle i}} + \sum_{j^{\scriptscriptstyle i}=1}^{n-2} q_{j^{\scriptscriptstyle i}} \Delta_{k^{\scriptscriptstyle i}} + q_{n-1} \Delta_n, \end{split}$$

where $k' \in K' = I' \setminus \{i'\}.$

Therefore, using this result one can show the required inequality holds as follows: Let $j^{\shortparallel} \in I^{\shortparallel} = I^{!} \setminus \{s\}$, $k^{\shortparallel} \in K^{\shortparallel} = I \setminus \{i, m\}$.

$$\begin{split} \Delta_i + \sum_{j=1}^{n-1} q_j \Delta_k &= \Delta_i + \sum_{j^{\scriptscriptstyle \square} \in I^{\scriptscriptstyle \square}} q_{j^{\scriptscriptstyle \square}} \Delta_{k^{\scriptscriptstyle \square}} + q_s \Delta_n + q_{n-1} \Delta_m \\ &= \Delta_i + \sum_{j^{\scriptscriptstyle \square} \in I^{\scriptscriptstyle \square}} q_{j^{\scriptscriptstyle \square}} \Delta_{k^{\scriptscriptstyle \square}} + q_s \Delta_n + q_{n-1} \Delta_m + q_s \Delta_m + q_{n-1} \Delta_n - q_s \Delta_m - q_{n-1} \Delta_m \\ &= \Delta_i + \sum_{j^{\scriptscriptstyle \square} = 1}^{n-2} q_{j^{\scriptscriptstyle \square}} \Delta_{k^{\scriptscriptstyle \square}} + q_{n-1} \Delta_n + (q_s - q_{n-1})(\Delta_n - \Delta_m) \\ &\leq \Delta_i + \sum_{j^{\scriptscriptstyle \square} = 1}^{n-2} q_{j^{\scriptscriptstyle \square}} \Delta_{k^{\scriptscriptstyle \square}} + q_{n-1} \Delta_n \leq \Delta_1 + \sum_{j=1}^{n-1} q_j \Delta_{j+1}, \end{split}$$

where $k^{\scriptscriptstyle |} \in K^{\scriptscriptstyle |} = I^{\scriptscriptstyle |} \setminus \{i^{\scriptscriptstyle |}\}.$

The following theorem shows that α_i -distance is a metric.

Theorem 3. For each $\alpha_i \in [0, \pi/4]$, the α_i -distance is a metric for \mathbb{R}^n .

Proof. We have to show that d_{α_i} is positive definite and symmetric, and triangle inequality holds for d_{α_i} . Let $P_1 = (x_1, x_2, \ldots, x_n)$, $P_2 = (y_1, y_2, \ldots, y_n)$ and $P_3 = (z_1, z_2, \ldots, z_n)$ be three points in \mathbb{R}^n . The α_i -distance between the points P_1 and P_2 is

$$d_{\alpha_i}(P_1, P_2) = \Delta_1 + \sum_{i=1}^{n-1} (\sec \alpha_i - \tan \alpha_i) \Delta_{i+1}, \, \alpha_i \le \alpha_{i+1}, \, \alpha_i \in [0, \pi/4] \,.$$

Because $|x_i - y_i| \ge 0$ for i = 1, 2, ..., n and $\sec \alpha_i - \tan \alpha_i \ge 0$ for each $\alpha_i \in [0, \pi/4]$, $d_{\alpha_i}(P_1, P_2) \ge 0$. Clearly, $d_{\alpha_i}(P_1, P_2) = 0$ iff $P_1 = P_2$. So d_{α_i} is positive definite.

Since $|x_i - y_i| = |y_i - x_i|$, i = 1, 2, ..., n, obviously $d_{\alpha_i}(P_1, P_2) = d_{\alpha_i}(P_2, P_1)$. That is, d_{α_i} is symmetric.

Now, we shall prove that $d_{\alpha_i}(P_1, P_2) \leq d_{\alpha_i}(P_1, P_3) + d_{\alpha_i}(P_3, P_2)$ for all $P_1, P_2, P_3 \in \mathbb{R}^n$ and $\alpha_i \in [0, \pi/4]$.

Let x_k and y_k are components about Δ_{i+1} and $k \in K = I \setminus \{j\}$.

$$d_{\alpha_{i}}(P_{1}, P_{2}) = \Delta_{1} + \sum_{i=1}^{n-1} (\sec \alpha_{i} - \tan \alpha_{i}) \Delta_{i+1} = |x_{j} - y_{j}| + \sum_{i=1}^{n-1} (\sec \alpha_{i} - \tan \alpha_{i}) |x_{k} - y_{k}|$$

$$= |x_{j} - z_{j} + z_{j} - y_{j}| + \sum_{i=1}^{n-1} (\sec \alpha_{i} - \tan \alpha_{i}) |x_{k} - z_{k} + z_{k} - y_{k}|$$

$$\leq |x_{j} - z_{j}| + |z_{j} - y_{j}| + \sum_{i=1}^{n-1} (\sec \alpha_{i} - \tan \alpha_{i}) (|x_{k} - z_{k}| + |z_{k} - y_{k}|) = l.$$

One can easily see that d_{α_i} satisfies the triangle inequality by examining the following cases:

Case I: If $|x_j - z_j| \ge |x_k - z_k|$ and $|z_j - y_j| \ge |z_k - y_k|$, $j \ne k = \{1, 2, ..., n\}$, then for each $\alpha_i \le \alpha_{i+1}$, $\alpha_i \in [0, \pi/4]$, $k \in K$, and $I = \{1, 2, ..., n\} \setminus \{j\}$,

$$d_{\alpha_{i}}(P_{1}, P_{2}) \leq l = |x_{j} - z_{j}| + |z_{j} - y_{j}| + \sum_{i=1}^{n-1} (\sec \alpha_{i} - \tan \alpha_{i})(|x_{k} - z_{k}| + |z_{k} - y_{k}|)$$

$$= |x_{j} - z_{j}| + \sum_{i=1}^{n-1} (\sec \alpha_{i} - \tan \alpha_{i}) |x_{k} - z_{k}| + |z_{j} - y_{j}| + \sum_{i=1}^{n-1} (\sec \alpha_{i} - \tan \alpha_{i}) |z_{k} - y_{k}|$$

$$= d_{\alpha_{i}}(P_{1}, P_{3}) + d_{\alpha_{i}}(P_{3}, P_{2}).$$

Case II: If $|x_j - z_j| \ge |x_k - z_k|$ and $|z_j - y_j| \le |z_k - y_k|$, $j \ne k = \{1, 2, \dots, n\}$, then we have the following two possible situations: (i) Let $|x_j - z_j| + |z_j - y_j| \ge |x_k - z_k| + |z_k - y_k|$. Then for each

$$\begin{aligned} \alpha_i &\in [0, \pi/4], \, k \in K, \, \text{and} \, I = \{1, 2, \dots, n\} \setminus \{j\}, \\ d_\alpha(P_1, P_2) &\leq l = |x_j - z_j| + |z_j - y_j| + \sum_{i=1}^{n-1} (\sec \alpha_i - \tan \alpha_i) (|x_k - z_k| + |z_k - y_k|) \\ &= |x_j - z_j| + \sum_{i=1}^{n-1} (\sec \alpha_i - \tan \alpha_i) |x_k - z_k| + |z_j - y_j| + \sum_{i=1}^{n-1} (\sec \alpha_i - \tan \alpha_i) |z_k - y_k| \\ &= d_{\alpha_i}(P_1, P_3) + |z_j - y_j| + \sum_{i=1}^{n-1} (\sec \alpha_i - \tan \alpha_i) |z_k - y_k| \\ &\leq d_{\alpha_i}(P_1, P_3) + d_{\alpha_i}(P_3, P_2), \end{aligned}$$

where $|z_j - y_j| + \sum_{i=1}^{n-1} (\sec \alpha_i - \tan \alpha_i) |z_k - y_k| \le d_{\alpha_i}(P_3, P_2)$ because of Proposition 2.

(ii) Let $|x_j - z_j| + |z_j - y_j| \le |x_k - z_k| + |z_k - y_k|$. One can easily give a proof for the situation (ii) as in situation (i).

Case III: If $|x_j - z_j| \leq |x_k - z_k|$ and $|z_j - y_j| \geq |z_k - y_k|$, $j \neq k = \{1, 2, \dots, n\}$, then we have the following two possible situations:

(i) Let
$$|x_j - z_j| + |z_j - y_j| \ge |x_k - z_k| + |z_k - y_k|$$
.

(ii) Let $|x_j - z_j| + |z_j - y_j| \le |x_k - z_k| + |z_k - y_k|$.

One can easily give a proof for the Case III as in the Case II.

References

- Z. Akca, R. Kaya, On the norm in higher dimensional taxicab spaces, Hadronic Journal Supplement 19 (2004), 491-501.
- [2] G. Chen, Lines and Circles in Taxicab Geometry, Master Thesis, Department of Mathematics and Computer Science, Centered Missouri State University, 1992.
- [3] O. Gelisgen, R. Kaya, M. Ozcan, Distance formulae in the Chinese checker space, Int. Jour. of Pure and Appl. Math. (IJPAM) 26, 1 (2006), 35-44.
- [4] O. Gelişgen, R. Kaya, On α-distance in three dimensional space, Applied Sciences, Vol. 8 (2006), 65-69.
- [5] O. Gelişgen, R. Kaya, Generalization of α-distance to n-dimensional space, Scientific and Professional Journal of the Croatian Society for Geometry and Graphics (KoG), 10 (2006), 33-37.
- [6] E.F. Krause, *Taxicab Geometry*, Addison Wesley Publishing Company, Menlo Park, CA 1975.
- [7] K. Menger, You Will Like Geometry, Guildbook of the Illinois Institute of Technology Geometry Exhibit, Museum of Science and Industry, Chicago, IL, 1952.
- [8] H. Minkowski, Gesammelte Abhandlungen, Chelsa Publishing Co. New York, 1967.
- [9] S. Tian, Alpha distance a generalization of Chinese checker distance and taxicab distance, Missouri Journal of Mathematical Sciences, 17 (1) (2005), 35-40.

(

 $Authors' \ address:$

Özcan Gelişgen and Rüstem Kaya Department of Mathematics, Faculty of Science and Arts University of Eskişehir Osmangazi, Eskişehir, Turkey. E-mail: gelisgen@ogu.edu.tr, rkaya@ogu.edu.tr