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Abstract. Guardian of the genome, p53 gene, and its partners that form
the complex network involved in apoptosis and cell cycle arrest, is put
under investigation. Some relevant mathematical models are described
and each of them contains variables with time delay. For given values of
the models parameters, numerical simulations and conclusions are made.
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Introduction

In every normal cell, there is a protective mechanism against tumoral degenera-
tion. This mechanism is based on the p53 network. p53, also known as ”the guardian
of the genome”, is a gene that codes a protein in order to regulate the cell cycle. The
name is due to its molecular mass: it is a 53 kilo Dalton fraction of cell proteins.
mdm2 gene plays a very important role in p53 network. It regulates the levels of
intracellular P53 protein concentration through a feedback loop. Under normal con-
ditions the P53 levels are kept very low. When there is DNA damage the levels of
P53 protein rise and if there is a prolonged elevation the cell shifts to apoptosis, and
if there is only a short elevation the cell cycle is arrested and the repair process is
begun. The first pathway protects the cell from tumoral transformation when there is
a massive DNA damage that cannot be repaired, and the second pathway protects a
number of important cells (neurons, myocardic cells) from death after DNA damage.
In these cells first pathway, apoptosis, is not an option because they do not divide
in adult life and their importance is obvious. Due to its major implication in cancer
prevention and due to the actions described above, p53 has been intensively studied
in the last two decades.

During the years, several models which describe the interaction between p53 and
mdm2 have been studied. We mention some of them in references [2], [3], [4], [6], [11],
[12], [13], [14], [15].
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1. Model 1. The protein interaction between P53-
Mdm2

This section gives a mathematical approach to the model described in [14]. The
authors of paper [14] make a molecular energy calculation based on the classical
force fields, and they also use chemical reactions constants from literature. Their
results obtained by simulations in accordance with experimental behavior of the P53-
Mdm2 complex. The analyze of the Hopf bifurcation with time delay as a bifurcation
parameter can be done using the methods from [1], [7], [8].

1.1. The mathematical model

The state variables are: y1(t), y2(t) the total number of P53 molecules and the total
number of Mdm2 proteins.

The interaction function between P53 and Mdm2 is f : R2
+ → R given by [14]:

(1.1) f(y1, y2) =
1
2
(y1 + y2 + k −

√
(y1 + y2 + k)2 − 4y1y2).

The parameters of the model are: s the production rate of P53, a the degradation
rate of P53 (through ubiquitin pathway), and also the rate at which Mdm2 re-enters
the loop, b the spontaneous decay rate of P53, d the decay rate of the protein rate
Mdm2, k1 the dissociation constant of the complex P53-Mdm2, c the constant of
proportionality of the production rate of mdm2 gene with the probability that the
complex P53-Mdm2 is build. These parameters are positive numbers.

The mathematical model is described by the following differential system with
time delay [14]:

(1.2)
ẏ1(t) = s− af(y1(t), y2(t))− by1(t),
ẏ2(t) = cg(y1(t− τ), y2(t− τ))− dy2(t),

where f is given by (1.1) and g : R2
+ → R, is

(1.3) g(y1, y2) =
y1 − f(y1, y2)

k1 + y1 − f(y1, y2)
.

For the study of the model (1.2) we consider the following initial values:

y1(θ) = ϕ1(θ), y2(θ) = ϕ2(θ), θ ∈ [−τ, 0],

with ϕ1, ϕ2 : [−τ, 0] → R+ are differentiable functions. In the second equation of
(1.2) there is delay, because the transcription and translation of Mdm2 last for some
time after that P53 was bound to the gene.

1.2. Numerical simulations

Let X0 = (y10, y20)T be the equilibrium state. For the numerical simulations we
use Maple 11 and the data from [14]: the degradation of P53 through the ubiquintin
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pathway a = 3×10−2sec−1, the spontaneous degradation of P53 is b = 10−4sec−1, the
dissociation constant between P53 and Mdm2 protein is k1 = 28, the degradation rate
of Mdm2 protein is d = 10−2sec−1, and the production rate of Mdm2 is c = 1sec−1.
For this data we consider different values for the constant k. Also, we have three
cases: s = 0.01, s = 0.1, respectively s = 10 and obtain Table 1, Table 2, respectively
Table 3.

Table 1.

s = 0.01 k = 0.18 k = 18 k = 180 k = 1800
y10 0.51621 1.69276 4.67125 15.11336
y20 0.65496 4.64864 13.45601 34.62588

Table 2.

s = 0.1 k = 0.18 k = 18 k = 180 k = 1800
y10 4.44004 8.31659 20.28508 81.19699
y20 3.85114 15.17973 37.80454 73.61833

Table 3.

s = 10 k = 0.18 k = 18 k = 180 k = 1800
y10 70012.08748 70756.83349 70088.92309 70019.72701
y20 99.95996 99.95997 99.96009 99.960388

We consider the case s = 0.1, k = 0.18 and obtain Fig.1.1, Fig.1.2, Fig.1.3.

Fig.1.1 (t, P53(t)) Fig.1.2. (t, Mdm2(t)) Fig.1.3. (P53(t), Mdm2(t))
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For the case s = 0.01, k = 180 we obtain Fig.1.4, Fig.1.5, Fig.1.6.
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Fig.1.4. (t, P53(t)) Fig.1.5. (t, Mdm2(t)) Fig.1.6. (P53(t), Mdm2(t))
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For the present model, we obtain an oscillatory behavior similar with the findings
in [14].

2. Model 2. The mRNA and protein interaction
between P53-Mdm2

2.1. The mathematical model

The tumour suppresser gene p53 and the mdm2 oncogene have important role in cell
cycle checkpoints, apoptosis, growth control and oncogenesis [4]. There exists also an
autoregulatory feedback loop between p53 and mdm2, implied in regulation of growth
control by p53 [4]. Namely the mdm2 protein promotes the rapid degradation of the
P53 protein, while P53 protein activates the transcription of the mdm2 gene [15].
This type of feedback loop could, in principle, give rise to an oscillatory behavior in
the activity of the two genes.

In this section we use the p53-mdm2 interaction model with time delay given in
[12].

Let y1, y2 be the concentrations of P53, Mdm2 proteins, let x1, x2 be the
concentrations of the corresponding mRNA, b1, b2 the degradations and a1, a2, a12

the proteins degradations. The p53-mdm2 interaction model with delay is given by:

(2.1)

ẋ1(t) = 1− b1x1(t),
ẏ1(t) = x1(t)− (a1 + a12y2(t))y1(t),
ẋ2(t) = f(y1(t− τ))− b2x2(t),
ẏ2(t) = x2(t)− a2y2(t)

with initial values:

x1(0) = x0, y1(θ) = ϕ(θ), θ ∈ [−τ, 0], x2(0) = x20, y2(0) = y20,

where f : R+ → R, is the Hill function, given by:

(2.2) f(x) =
xn

a + xn
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with n ∈ N∗, a > 0.
There is a time delay τ , because the interaction between proteins is not instanta-

neous. The parameters of the model are assumed to be positive numbers less or equal
than 1.

2.2. Numerical simulations

In this section, we consider system (2.1) with a1 = a2 = 0.13, b1 = b2 = 1, a = 4.

Waveplot (t, y1) Waveplot (t, y2) Phaseplot

n = 3

Waveplot (t, y1) Waveplot (t, y2) Phaseplot

n = 4

Waveplot (t, y1) Waveplot (t, y2) Phaseplot

n = 5

Our simple model with two interrelated genes p53 and mdm2 can account for sev-
eral type of behavior: evolution and maintaining of steady states, damped oscillations
or sustained oscillations, all tangible by modifications of some parameters.
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3. Model 3. P53-Mdm2 interaction with three delays

3.1. The mathematical model

Biological interaction do not take place instantaneous and therefore some amount of
time is required. For a better modelling of p53-mdm2 interaction we introduced in
previous model three delays in order to describe more specific the important processes
that took place.

We used as a base for our model the model described in [12]. Our model is:




ẋ1 = ϕA1 − η1x1(t)
ẏ1 = ψx1(t)− (λ1 + λ12y2(t− τ1))y1(t)
ẋ2 = ϕf(y1(t− τ2))− η2x2(t)
ẏ2 = ψx2(t)− (λ2 + λ21y1(t− τ3))y2(t)

The notations are identical as the previous section and: τ1 is the delay required for
Mdm2 to bind P53 plus the time required for the interaction (under research) between
P76MDM2 - P90MDM2, and also include the time for translocation of P53 in cytosol
[9] (this is also a mechanism for the down-regulation of P53); τ2 is the delay required
for P53 to enter in the nucleus to bind P2 promoter of the mdm2 gene; τ3 is the
delay required for the HAUSP to interact with P53 and Mdm2 and to deubiquinate
both proteins; λ21 is degradation rate for Mdm2 protein induced by P53. Recent
findings show that HAUSP (also known as USP7), an ubiquitin hydrolase, plays a
role in P53-Mdm2 degradations. Its role, in the presence of P53, is to deubiquinate
Mdm2 and keeps a high Mdm2 level. To simplify the expressions that will appear in
the calculus we use some notations: η1 = b1, λ1 = a1, λ12 = a12, η2 = b2, λ2 = a2,
λ21 = a21 and also put numerical values for some parameters as follows: ϕ = 1, ψ = 1,
A1 = 1. These changes have no mathematically effect on our system. Finally, we will
consider τ1 = τ2 = τ3 = τ , the reason is that without this hypothesis the calculus
become extremely complicated and the final result will not differ qualitatively from
the calculus with this hypothesis. With these specifications made, our system became:

(3.1)

ẋ1(t) = 1− b1x1(t),
ẏ1(t) = x1(t)− (a1 + a12y2(t− τ))y1(t),
ẋ2(t) = f(y1(t− τ))− b2x2(t),
ẏ2(t) = x2(t)− (a2 + a21y1(t− τ))y2(t)

where f : R+ → R, is the Hill function, given by:

(3.2) f(x) =
xn

a + xn

with n ∈ N∗, a > 0. The parameters of the model are assumed to be positive numbers
less or equal than 1.

For τ1 = 0, τ2 = 0, a21 = 0 in our model, we obtain the model from [12].
For the model (3.1) we consider the following initial values:

x1(0) = x̄1, y1(θ) = ϕ1(θ), θ ∈ [−τ, 0], x2(0) = x̄2, y2(θ) = ϕ2(θ), θ ∈ [−τ, 0],

with ϕ1, ϕ2 differentiable functions.
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3.2. Numerical simulations

For the numerical simulations we use Maple 11. In this section, we consider system
(3.1) with a1 = a2 = 0.13, a12 = 0.02, a21 = 0.02, b1 = 0.8, b2 = 0.01, a = 4; a12 = a21

because there is molecular interaction between Mdm2 and P53, one molecule to one
molecule. Let X0 = (x10, y10, x20, y20)T be the equilibrium state.

For n = 2 we obtain: x10 = 1.2500000, y10 = 0.72279716, y20 = 79.96962531,
x20 =11.55208766. The wave plots and the phase plot are:

Waveplot (t, y1) Waveplot (t, y2) Phaseplot (y1, y2)
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For n = 4 we obtain:x10 = 1.2500000, y10 = 0.82091152, y20 = 69.63487984, x20 =
10.19581588. The wave plots and the phase plot are:

Waveplot (t, y1) Waveplot (t, y2) Phaseplot (y1, y2)
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For n = 163 we obtain:x10=1.2500000, y10=0.99390609, y20=56.38320475, x20 =
8.45060883. The wave plots and the phase plot are:

Waveplot (t, y1) Waveplot (t, y2) Phaseplot (y1, y2)
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For n = 164 we obtain:x10=1.2500000, y10=0.99394289, y20=56.38087608, x20 =
8.45030131. The wave plots and the phase plot are:

Waveplot (t, y1) Waveplot (t, y2) Phaseplot (y1, y2)
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Recent dynamic studies of P53 and Mdm2 proteins suggest that their responses
in individual cells have cyclic behavior and their characteristics are compatible with
a digital clock [3]. Similar behavior we obtained in our mathematical model.

4. Model 4. P53-Mdm2 with distributed time delay

4.1. The mathematical model

In the last years, the approaches of P53 dynamics as response to DNA damage com-
prise modelings in which are described three distinct subsystems: a DNA damage
repair module, an ataxia telengiectasia mutated (ATM) switch and the P53-Mdm2
oscillator.

The DNA damage repair module includes a set of reactions which contain the
repair proteins formed at eukaryotes by Mre11, Rad50 and NBS1 (which form the
MRN complex). They come into action in DSB lesions of DNA and they will be
called DSB-repair protein complex.

The second module, ATM switch is formed by the reactions which lead to ATM
activation. In the cells under genetic stress, the initial signal of ATM activation is
induced by DSB-repair protein complex and then the activation of ATM is given by
intermolecular autophosphorylation, which is a quick process.

The third module, the P53-Mdm2 oscillator, includes the feedback loop between
P53 and its principal antagonist, Mdm2, a P53-specific ubiquitin ligase that is trans-
activated by P53 [3], [6], [9].

Based on these three modules approach of the P53 dynamics, in the paper [11] it is
described an interaction model of P53-Mdm2 and P53∗, taking into account ATMD,
ATM and ATM∗ and it is given by the following differential equations with time
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delay:

(4.1)

ż1(t) = −c1z1(t) +
1
2
c2z2(t)2,

ż2(t) = 2c1z1(t)− α1cc3z2(t) + c4z3(t)− c2z2(t)2 − c3(α2c + α3)z2(t)z3(t),
ż3(t) = α1cc3z2(t)− c4z3(t) + c3(α2c + α3)z2(t)z3(t),
ẋ1(t) = a1 − a2x1(t),

ẋ2(t) = b1 − b2x2(t) + b3
y3(t− τ1)n

y3(t− τ1)n + kn
1

ẏ1(t) = d1x1(t)− d2y1(t) + d3y3(t)− d4
y1(t)y2(t)
y1(t) + k2

− d5
y1(t)y3(t)
y1(t) + k3

,

ẏ2(t) = l1x2(t− τ2)− l2y2(t) + (l3 − l4)
z3(t)y2(t)
z3(t) + k4

,

ẏ3(t) = −d3y3(t) + d5
z3(t)y1(t)
y1(t) + k3

− d6
y3(t)y2(t)
y3(t) + k5

,

where z1(t), z2(t), z3(t) are the concentrations of ATMD, ATM, ATM∗ and x1(t),
x2(t), y1(t), y2(t), y3(t) are the concentrations of p53, mdm2, P53, Mdm2 and P ∗53,
τ1 > 0, τ2 > 0 and the coefficients are the degradation rates. The numerical simulation
and the specific interpretations are investigated in [11].

The models for P53-Mdm2 interaction were described in [5], [14].
In what follows we will consider a model only for the third module. The variables

of the model are: x1 p53-mRNA concentration, x2 mdm2-mRNA concentration, y1

P53-protein concentration and y2 Mdm2-protein concentration.
We consider P53-Mdm2 model with distributed delay given by:

(4.2)

ẋ1(t) = c1 − b1x1(t),
ẏ1(t) = x1(t)− (a1 + a12y2(t))y1(t),

ẋ2(t) = αf(y1(t)) + (1− α)f(
∫ t

−∞G(t− s)y1(s)ds)− b2x2(t),
ẏ2(t) = x2(t)− (a2 + a21y1(t))y2(t)

where: b1, b2 are the rates for mRNA degradation, a1, a2, a12, a21 are the rates for
proteins degradation. The function f : R+ → R, is the Hill function, given by:

(4.3) f(x) =
xn

a + xn

with n ∈ N∗, a > 0. The parameters a1, a2, b1, b2, c1, a12, a21 of the model are
assumed to be positive numbers less or equal to 1, α ∈ [0, 1] and τ > 0.

The memory function G(s) that reflect the influence of the past states on the
current dynamics is a nonnegative bounded function defined on [0,∞) and

∫ ∞

0

G(s)ds = 1.

The memory function is called delay kernel. The delay becomes a discrete one when
the delay kernel G(s) is a delta function at a certain time. Usually, we employ the
following form:

G(s) =
qp+1

p!
spe−qs
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for the memory function. When p = 0 and p = 1 the memory function are called
”weak” and ”strong” kernel respectively.

From (4.2), for α = 1, a21 = 0, c1 = 1, we obtain the model from [12], which sug-
gests that there is an oscillatory behavior based on using only numerical simulations.

If G(s) is given by:

G(s) = {
1
τ , s ∈ [0, τ ]
0, s > τ,

where τ > 0, then we consider a dynamic P53-Mdm2 model with uniform distributed
time delay:

(4.4)

ẋ1(t) = c1 − b1x1(t),
ẏ1(t) = x1(t)− (a1 + a12y2(t))y1(t),
ẋ2(t) = αf(y1(t)) + (1− α)

∫∞
0

G(s)f(y1(t− s))ds− b2x2(t),
ẏ2(t) = x2(t)− (a2 + a21y1(t))y2(t).

In this paper, the model with uniform distributed time delay is investigated using
the method from [1]. For c1 = 1, a12 = a21 the system (4.4) is given by:

(4.5)

ẋ1(t) = 1− b1x1(t),
ẏ1(t) = x1(t)− (a1 + a12y2(t))y1(t),

ẋ2(t) = αf(y1(t)) +
(1− α)

τ

∫ τ

0

f(y1(t− s))ds− b2x2(t),

ẏ2(t) = x2(t)− (a2 + a12y1(t))y2(t).

The function f is the Hill function and it is given by (4.3).
For the study of the model (4.5) we consider the following initial values:

x1(0) = x̄1, y1(θ) = ϕ1(θ), θ ∈ [−τ, 0], x2(0) = x̄2, y2(0) = ȳ2,

with x̄1 ≥ 0, x̄2 ≥ 0, ȳ2 ≥ 0, ϕ1(θ) ≥ 0, for all θ ∈ [−τ, 0] and ϕ1 is a differentiable
function.

4.2. Numerical simulations

For the numerical simulations we use Maple 11. In this section, we consider system
(4.5) with a1 = a2 = 0.13, a12 = 0.02, b1 = 0.2, b2 = 0.4, a = 4, n = 3. Let
X∗ = (x10, y10, x20, y20)T be the equilibrium state.

For α = 0.2 we obtain: x10 = 5, y10 = 23.41409107, y20 = 4.177330982, x20 =
2.499221188. The waveforms are displayed in Fig 4.1 and Fig 4.2 and the phase plane
diagram of the state variables y1(t), y2(t) are displayed in Fig 4.3:
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Fig.4.1. (t, y1(t)) Fig.4.2. (t, y2(t)) Fig.4.3. (y1(t), y2(t))
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For α = 0.8 we obtain: x10 = 5, y10 = 23.41409107, y20 = 4.177330982, x20 =
2.499221188. The wave plots are displayed in Fig4.4 and Fig4.5 and the phase plane
diagram of the state variables y1(t), y2(t) are displayed in Fig4.6:
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4.3. Discussions and conclusions

This new model is based on [13] and Model 3. Here we achieve a smoother modelling
of the phenomenon, i.e. the interaction p53-mdm2. The production of P53 protein
is continuous, so is the binding between P53 and the promoter of the mdm2. The
difference from Model 3 lies in the introduction of the integral form in the third
equation, which is the natural way of modelling a continuous process.

Using the integral form is better than using a simple time delay. From biological
point of view we explain the use of integral form as in the pool of P53 protein,
molecules has entered at different times.

For a better mathematical modelling we introduce the convex combination αX +
(1− α)Y in the third equation of system (4.5). Thus, it can be controlled the weigh
of current P53 protein concentration and the weigh of previous P53 protein concen-
tration. To sustain this statement, we say only that in spite of no biological meaning
of the two extreme values α = 0 and α = 1 there is a mathematical meaning. The
third equation of system (4.5) will not take into account the previous concentration
of P53 protein for α = 1 and current concentration of P53 protein for α = 0.

In (4.2), the term f(
∫ t

−∞G(t− s)y1(s)ds) is justified by the fact that the variable
y1(t) which characterize the P53 protein concentration is evaluated on (−∞, t) with
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the help of delay kernel G(s), after that we apply the activation function. The delay
kernels G for (4.2) are only of the Dirac type, weak and strong. To (4.4), we apply
the activation function to variable y1(t), after that the result is evaluated on [0, τ ]
and G is given by the uniform distribution.

If we replace the quadratic terms with the terms which contain Hill functions in
(4.2), then we obtain the model from [11] where it is eliminated ATM and P53∗.

In our future papers we will do a qualitative analysis of the model from [11].
As in our previous models, we obtain an oscillatory behavior similar to that ob-

served experimentally [3]. The conclusion is not surprising, but is useful as this model
provides a more accurate approach of the interaction P53-Mdm2. We can conclude
that the transformation made by us to the continuous model with distributed time of
the interaction P53-Mdm2, which actually is more real, did not alter the behavior of
the system.

Taking into account that in this paper we modelled only the third module (P53-
Mdm2 oscillator) and we have not introduced the ATM, we have not obtained the
digital clock behavior of the process, but we obtained oscillations similar with those
observed experimentally. Based on the recent experimental results and on the new
approaches of the process modelling we intend in the future to do a qualitative analysis
of a model which contain all the three modules.
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