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ABSTRACT

Steady flow over large-scale bathymetric changes of a uniform zonal current in a two-layer fluid is studied
under the assumptions that it is geostrophic, that relative vorticity can be ignored, that variations in the planetary
vorticity are important and that the upper layer is infinitely thick. This is an extension of the analytic work by
Rhines to situations in which the interface can have finite deformations. As concluded by Rhines, both from a
small amplitude theory and from numerical integration of the time-dependent initial value problem, there are
several features of the resulting solutions that bear close resemblance to the classical channel hydraulics phe-
nomenon. These include the downward (upward) dip of the interface when the flow is subcritical (supercritical )
with respect to the long Rossby wave phase speed and the formation of sharp frontal regions downstream of
the topography. With respect to the latter it is shown in this steady state analysis that the front arises, not from
a hydraulic effect in the conventional sense, but from the intersection of characteristics carrying conflicting
information from different parts of the boundary. Concomitant with caustic formation is an induced change
in upstream conditions. The Froude number dependence is determined. For the small Froude numbers expected
of the midocean deep circulation only very large topographic features such as the mid-Atlantic Ridge can be
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expected to induce a caustic.

1, Introduction

The classical model of the deep circulation by Stom-
mel and Arons (1960a,b) is driven by a prescribed flux
across a horizontal interface and is contained within a
basin whose bottom is flat. Welander ( 1969) first con-
sidered the effects of planetary-scale bathymetry on this
model and pointed out the controlling influence of po-
tential vorticity (f/h) isolines. Two recent papers by
Rhines (1983, 1989) have explored the response of the
planetary scale circulation to similar scale, small am-
plitude bathymetry in a model which allows the inter-
face to be controlled by the dynamics. No driving is
provided across the interface; instead, the upstream
flow is specified.

Rhines gives analytic solutions for the two layer,
steady problem under the assumption that perturba-
tions to the interface and the bottom are both small
and points out some apparent similarities to classical
hydraulic control, in particular the inverse dependence
of the interface elevation on the difference between the
incident flow rate and the long Rossby wave phase
speed. He then numerically integrates the planetary
geostrophic (i.e., relative vorticity neglected ) time-de-
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pendent equations for an initial value problem in which
the upper layer is infinitely deep. Although the topog-
raphy is quite small in amplitude (order a few hundred
meters) large amplitude distortions of the incident flow
result.

This paper extends the analytic work of Rhines to
finite amplitude. Using the method of characteristics
analytic, steady state solutions are derived for which
neither the bottom nor the interface displacements need
be small. These solutions reproduce the end states of
the numerical integrations reasonably well and dem-
onstrate that the sharp, frontal features found in the
model are not related to the hydraulic jumps found in
classical hydraulics but are, instead, caustics which oc-
cur where characteristics intersect and bring conflicting
information from different portions of the boundary.
When a caustic forms it also shields part of the domain
from characteristics originating at the boundary. Res-
olution of this dilemma indicates that the topography
can influence the upstream state if a caustic forms,

The flow speeds used by Rhines are an order of mag-
nitude larger than might be anticipated for the deep
ocean long-term mean away from strong currents such
as the Antarctic Circumpolar Current. More gentle
flows indicate the need of topographic features extend-
ing almost the full depth of the layer in order to induce
caustic formation and influence the upstream state.

2. Formulation

Consider the situation sketched in Fig. 1. There are
two layers of different density flowing uniformly with
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F1G. 1. A schematic drawing of the geometry and flow configuration
for two layer flow over Gaussian topography. Figure la is the plan
view and 1b a side view. )
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the same speed toward the east and toward a piece of
topography which is isolated in the zonal direction and
whose height is given by z = d(x, y). The upper layer
is infinitely deep so that any effect of the topography
is restricted to the lower layer pressure and the interface
elevation. The domain is square with sides of length
2 L.Itis convenient to take the north-south coordinate
as the coriolis parameter f = f + By such that the
boundaries are at f; = f — BL and f, = f + BL and f
is the value of the coriolis parameter at the center lat-
itude. In the analysis below we shall mainly restrict our
attention to the special case of an equatorial 8-plane
in which case f = 8y making f; = 0 and f, = 28L. We
will assume that motions are geostrophic and of suf-
ficiently large scale that relative vorticity can be ne-
glected (i.e., “planetary geostrophic™).

From the hydrostatic equation the excess pressure
in the lower layer is found to be

p=-[rudy+gia+n (m)
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where g’ = g(p — p,)/ p is the reduced gravity. Ignoring
relative vorticity the potential vorticity equation is

u-Vg=0, qE—f-

7 (2)
or, after using geostrophy:
(U—-f;(d+ h)y)qx +§l(d+ h)xg, = 0. (3)

Using the definition for g the lower layer thickness,
h(x, y) can be eliminated from (3) and we obtain

g'B g’dy) g'dy
u-£2-82),
( a7 )T

This is in characteristic form with the characteristic
velocity given by the group velocity, as modified by
the bottom slope, plus the mean barotrophic advection.

Scaling the coriolis parameter by f and horizontal
distance by f/8 for the midlatitude, or 8L and L for
the equatorial S-plane, the velocity by U and heights
by the lower layer thickness on the eastern boundary,
H,, puts equation (4) in the following nondimensional
form:

4 =0. (4)

(Frf—‘—]l-—df)qx+dqu=0. (5)
0

Because g is conserved along characteristics it has been

replaced in the characteristic speed by its value, go, at
the origin of the characteristic. The nondimensional
Froude number:

ur?. _ UBL?
&'BH, §'Ho

(midlatitude or equatorial 3-plane) is the ratio of the
mean advection to the long Rossby wave speed without
topography. The eastward zonal flow is opposed to the
westward phase propagation of the long Rossby waves,
and provided that

Fr = (6)

(7)

the characteristic velocity will be westward away from
the topography and information will originate to the
east. We will restrict ourselves to this, subcritical, case
although this is not essential. Note that the topographic
component of the characteristic speed can cause local
reversals and that the y-component induces southward
(northward ) characteristic speeds to the east (west) of
a topographic high.
‘The slope of a characteristic is then given by

af dx

—_— 8
dx Frf—(1/q)— ds ®)
and this equation can be integrated exactly:
- F
dx, ) = dxo, ) + 2L+ (=) (9)
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where (xo, /o) are the coordinates of the characteristic
at its origin. This equation will form the basis of our
analysis. Given the bottom height and potential vor-
ticity at a starting location, d(x, /) at another latitude
can be found from Eq. (9) and this inverted to obtain
x. The principle difficulty comes in determining
the regions of influence of different portions of the
boundary.

.

3. Solution for Gaussian topography

Equation (9) gives the position of a characteristic
(x, f) as a function of its initial position and vorticity.
In order to invert for (x, f) we need to specify a to-
pographic shape d(x, /) which we will take to be the
Gaussian form:

2 2
w-l5) o
X Y
centered at the midpoint of the domain (x, f) = (0,
1) with X and Y giving decay scales in the zonal and
meridional directions. The size of X is unimportant
except that we wish d(x, y) to be sufficiently small at
the east and west boundaries that it can be neglected
there. We will use X = 0.25. The value of Y will be
varied from Y = oo appropriate for a meridional ridge
to Y = 0.25 for an isolated topographic high.

For characteristics beginning at the eastern bound-
ary, go = fo and Eq. (9) gives fy as a cubic function of
d and f. This suggests that characteristics originating
at different points along the eastern boundary might
cross, i.e., for given values of d and f there may be
more than one starting latitude fy. Figure 2a shows the
(d, f) relationship for different values of f; and, indeed,
they do cross for topographic heights above a value
which depends on the scaled latitude VFr f. This is
illustrated for a Gaussian ridge (Y = o0) in Fig. 2b.
The locus of the points at which characteristics cross
is where

d(x,f) = Do exp(—

ad
—— 0
dfo
or
f=FeR®=Fri fo <ho, (11)
from Eq. (7). Substitution in Eq. (9) gives
d=1-3(Ftf?)" + Frf? (12)

for the locus of intersections [taking d(xy, fo) = 0].
This is the heavy dashed curve in Fig. 2a; topographies
which rise above this curve as a function of f so distort
the characteristics that they intersect. Such an inter-
section represents a conflict of information arriving
from the eastern boundary and results in the formation
of a caustic whose shape is given by Eq. (12).

For the case of a meridional ridge the northern extent
of the caustic is determined by the northernmost char-
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FIG. 2. Trajectories of evenly spaced characteristics emanating from
the eastern boundary and being disrupted by a uniform meridional
ridge. Panel (a) gives the characteristics treating d as the dependent
variable while Panel (b) is in physical space. The heavy dashed curve
in Panel (a) is the locus of the points of intersection of the charac-
teristics.

acteristic originating from the eastern boundary. For
those coming from the northern boundary, intersec-
tions would result where

“_
9xo
which can easily be shown to be an impossibility; char-
acteristics from the northern boundary do not intersect
one another but can, of course, intersect those from
the east. For more confined topography with Y finite
the characteristic pattern can be more complex with
stagnation points and associated zonal speed reversals.
These regimes are defined in the Dy — Y ! plane in
Fig. 3 for two values of Fr, a slightly subcritical value

(13)
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FIG. 3. Regime diagram showing the parameter values needed for
caustic and stagnation point formation for (a) Fr = 0.2 and (b) Fr
= 0.02.

Fr = 0.2 (putting the critical latitude at 2.24 just north
of f;, = 2) and a low value Fr = 0.02. The methods for
determining the different regime boundaries are out-
lined in the Appendix.

The curves in Fig. 3 divide the (Do — Y ') plane
into three or four different regimes depending on the
value of Fr. In both cases the solid curve distinguishes
where a stagnation point just develops in the interior
of the domain. Along the nearly vertical portion the

_stagnation characteristic originates at the northeast
corner and, consequently, depends on there being a
northern boundary while along the nearly horizontal
portion it originates south of f = f, and, therefore, is

unaffected by the northern boundary. The dotted curve .

in Fig. 3 identifies the dependence of Dy on Y ! for
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which a caustic just forms. There are two connected
sections of this curve. The one in the regime with no
stagnation point is determined by insisting that the in-
tersection between the caustic equation (12) and the
characteristic from the northeast corner occur some-
where along x = 0 (i.e., no caustic). When there is a
stagnation point, caustic formation is determined by
the condition that the stagnation characteristic intersect
the caustic along x = 0. Thus, there are two curve seg-
ments in Fig. 3a (Fr = 0.2) which do not depend on
the presence of the northern boundary and two which
do. In Fig. 3b (Fr = 0.02) one of these occurs for Dy
> 1, which is impermissible if the active fluid layer is
to have nonvanishing thickness.

These regimes are illustrated in Fig. 4 by drawing
the caustic and the important dividing characteristics
for Dy = 0.5 and the various values of Y ™! shown by
the large dots in Fig. 3. Figures 4a~c are from Fr = 0.2,
the slightly subcritical case. When Y = oo (i.e., a ridge,
Fig. 4a) there can be no stagnation point and the caustic
begins at the ridge peak and terminates where it is tan-
gent to the characteristic coming from the northeast
corner. Another characteristic exists further to the
south, which is tangent to the caustic’s origin at the
ridge crest and this defines a band of latitudes for which
information originating from the eastern boundary
terminates at the caustic (region B). Characteristics
from a portion of the northern boundary to the west
of the northeast corner also terminate at the caustic
(region C). Finally, there is a characteristic which be-
gins at (0, f,,) and loops south and back on itself. Inside
of this closed region E no information from the bound-
aries can penetrate, and the steady state solution will
depend on dissipation (e.g., homogenized potential
vorticity).

There is an additional region F for which informa-
tion is not supplied from the boundaries. This is the
area to the northwest bounded by the characteristic
from (0, f,) and the one defining the southern extent
of the caustic. Provided that flow remains subcritical,
information flow is toward the west and north but has
no obvious source. Further discussion of this problem
and its resolution will be reserved for the next section.

For somewhat higher Y~ = V6 the dividing char-
acteristics are displayed in Fig. 4b. This is in the regime

for which a stagnation point with associated closed

characteristics forms (Fig. 3a). The termination of the
caustic is determined by where it is tangent to the stag-
nation streamline. The northern boundary now does
not play a critical role; all of its characteristics skirt to
the north of the stagnation characteristic beginning and
ending on f = f;. There is a substantial region south
of the stagnation characteristic and to the west of the

caustic in which no information from the boundaries

can penetrates and for which appeal to some higher
order process must be made.

At the yet higher Y ! = 4 of Fig. 4c the caustic has
vanished and there now exists just the stagnation char-
acteristic which encloses a region which is cutoff from
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FIG. 4. Critical characteristics which divide the domain into regimes receiving their information from different portions of the boundary.
Panels (a~c) are for Fr = 0.2 while (d) is for Fr = 0.02. The finely dashed curves give the topographic contours at 0.01, 0.1, and 0.5 of the
maximum height D, = 0.5. The heavy dashed curve denotes the caustic which forms only in (a) and (b).

the boundaries. Everywhere else characteristics bring
information in from either the eastern or northern
boundaries. Reducing Fr by an order of magnitude
(Fig. 4d) gives a very similar picture. Note, as reference
to Fig. 3b will confirm, that patterns at the smaller
values of Y ! will be quite different from Fig. 4d but
no caustic forms at any value of Y ! for Dy = 0.5.

4. Full solution for a Gaussian ridge

There are a large number of possible flow configu-
rations that depend on the specific choice of parame-
ters; only the boundaries of the most important regimes
are shown in Fig. 3. The focus of this paper is the for-
mation of caustics and we shall illustrate this by giving
the full solution for a Gaussian ridge (Y ~' = 0) of
height Dy = 0.5 and zonal decay scale X ~! = 4. Further
examples will be given in the next section when we

make a direct comparison with the numerical integra-
tion of Rhines (1989).

Knowing the boundaries of the regimes from Fig.
4a it is a relatively simple matter to compute the ¢
contours as the potential vorticity is conserved along
the characteristics. For equally incremented values of
g, characteristics are begun along the eastern and
northern boundaries in regions A, B, C, and D and
terminated where they end at the particular regime or
domain boundary. For area E all characteristics are
closed and at steady state with weak dissipation the
potential vorticity should be uniform and equal to that
of the bounding characteristic (Rhines and Young
1982).

Area F is more problematic. As long as flow there
remains subcritical, information cannot penetrate from
the boundaries. In addition, it is not possible for fronts
or caustics to be downstream (in the characteristic
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sense) of the ridge as information then would have to
diverge from the caustic rather than converge on it.
The only solution to this dilemma seems to be that ail
characteristics must emanate from the point at the ridge
crest where areas A, B and C coincide. Varying g from
the value on region F’s bounding southern character-
istic to that on its bounding eastern characteristic then
allows ¢ to vary smoothly throughout except for a sin-
gularity at the ridge crest. Equation (9) becomes, in
region F:

ffFr

d(0, fee) + = (f*=fo) (14)

d(x,f)=

valid in region F with f,. being the latitude at which
the caustic begins. With this resolution of the dilemma
q contours are displayed in Fig. 5a. The asymmetry
caused by the caustic is rather subtle but note that ¢

contours in the northwest asymptote to a higher latitude

than they do in the east, which implies an influence
upstream by the topography.

With the substitution g = f/h Egs. (9) and (14) can
be written as explicit relations for d(x, f). For example,
(14) becomes

V=)

2 _ g2
f f ec)

(15)

valid in region F. By now incrementing / and keeping
track of regime boundaries contours of constant layer
thickness, A, are rather easily constructed. However
interface elevation, n = d + h — 1, is more revealing
and this can be determined for each region through
substitution into Eqgs. (9) and (14). After some rear-
rangement these become

d(x,f) = d(0, foo) +

1
Vi— (2n/Frf2)’

in regions A and B;

d(x,f)=1+71_

in regions C and D;

2n
2 _ g2
S fn+Fr,

d(x,f) =fid(0,j;0) + (1 —%)(1 +n)

+ % (f?-f2), inregionF. (16)

The contours of 5 are displayed in Fig. 5b. Upstream
influence is again evident in region F.

From equation (2) it can be seen that the Jacobian
of the transport streamfunction, du =k X Vy, and the
potential vorticity vanishes. Therefore, lines of constant
¥ coincide with lines of constant g and will resemble
Fig. 5a. However, the g — y relationship is nonlinear
and equally spaced g contours will not necessarily be
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FIG. 5. Contours of (a) potential vorticity and (b) interface ele-
vation for flow over a uniform ridge. The contour interval in (a) is
0.3 units and in (b) it is 0.05 units with dashed contours being neg-
ative. Contours increment monotonically.

equally spaced ¥ contours. The relationship between
the two can be evaluated at the boundaries. A nondi-
mensional version of Eq. (1) for pressure is

2
p=—+i(d+h) (17)
Fr

2

On the eastern boundary where & = 1 and d = 0, this
gives for the streamfunction:

v=-/ (18)

Here ¢ and g are linearly related. On the northern
boundary in regions C and D (Fig. 4a) the normal
velocity vanishes giving

V=
after matching with (18) at f = f,.

(19)
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Region F is more difficult as the conditions along
the boundary are set by the characteristics flowing from
the termination point of the caustic at the ridge crest.
The streamfunction along the western wall north of f
= f, can be found by integrating:

h h hy
=—p==|-r+=\.
¥r Y f(.f ﬁ)
This can be done analytically but is not reproduced
here. In a similar fashion y can be determined along

the northern boundary where the normal velocity
component no longer vanishes and

h 1 (8 h?
\bx‘fpx_m(a-;?‘*‘hdx).

Finally, evaluating ¢ at the eastern edge of region F
does not give the value — f, found at the beginning of
this characteristic to the east of the ridge crest [Eq.
(19)]. In fact, there is more fluid flowing in through
the western and northern boundaries than is flowing
out across the eastern boundary.

This excess is more easily established by integration
of (21) across the latitude f = f,. After considerable
algebra, the streamfunction of the characteristic
bounding the eastern side of region F can be simplified

A1 —ff)(—— -

to
)

The ratio of the excess of mass inflow over total outflow
is shown in Fig. 6. It vanishes for topographic heights
smaller than that required for caustic formation. At a
height Dy ~ 0.5 regions D and E coincide, and for
larger heights the characteristic coming from (O, f,)
intersects the caustic at x > 0 thereby changing the
characteristic geometry.

(20)

(21)

S (22)

0.08

0.06f

ratio
(=]
(=]
»

0.02+

0.00 i :
0.0 0.2 0.4 0.6
Do

FIG. 6. The ratio of the difference between the mass inflow and
outflow to the outflow versus ridge height Dy.
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The lack of mass conservation in this model is trou-
blesome. It undoubtedly arises from the method in
which the potential vorticity has been determined in
region F. This is admittedly ad hoc but we have been
unable to find another method that does not produce
fronts. We presume that the mass inflow excess must
be absorbed by the singularity where the caustic begins
at the ridge crest.

5. Application to Rhines’s numerical experiments

Rhines (1989) derives a single, nonlinear, partial
differential equation for the interface elevation for the
time-dependent initial value problem with small dif-
fusion. He uses periodic conditions on the meridional
boundaries and conditions of no normal flow and no
interface flux on the zonal boundaries. His experiments
cover a range of subcritical, supercritical and mixed
upstream states. We shall focus on the subcritical cases
displayed in his Figs. 3—-6 and reproduced here as Figs.
7a and 8a. Both are in 2500 km X 2500 km domains
on the B-plane with § =2 X 107" ms™!, f =173
X 107 s™' and g’ = .005 m s~2. Both have Gaussian
shaped topographies centered in the domain with
maximum elevations of 300 m in a total layer depth
of 2000 m and both have uniform incident upstream
flow of U = 0.02 m s~'. The only differences are in
the horizontal topographic scales: the more confined
one has X = 300 km and Y = 600 km while the other
has scales larger by a factor of 10. The nondimensional
parameters take on the values Fr = 0.533, f, = 1.342,
fi=2—/,=0658 Dy=0.15and X' = 122, Y!
=6.1 or X~! = 1.22, Y~! = 0.61 depending on the
experiment.

For flow over the more confined bump the potential
vorticity contours are shown in Fig. 7a at numerical
steady state (i.e., at a point where any noticeable
changes were no longer occurring). The most promi-
nent feature is the north-south asymmetry to the dis-
tortion introduced by the bump with flow being ac-
celerated to the south and decelerated to the north.
Less noticeable is an east-west asymmetry with a rel-
atively sharper gradient in ¢ downstream and an as-
sociated drawdown of the g contours to the north.
Contours over the bump are closed. In Fig. 7b we show
the analogue of Fig. 3—the critical dividing character-
istics and curves which separate regimes with different
potential vorticity source distributions in the steady
state model. These are now computed with the actual
distributions along the boundary and take into account
the possibly finite height of the topography there. The
topography is high enough to form a caustic, which
extends almost all the way to the northern boundary
and closely coincides with the sharp gradient region to
the east of the bump crest in Fig. 7a. Contours of con-
stant g are given by Fig. 7c and resemble those of the
numerical integration. Major differences include our
inability to compute the contours where they are closed
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and our use of nonperiodic boundary conditions. Those
characteristics that originate along the northern
boundary have almost uniform values of gy and explain
the area of weak g gradients to the north of the caustic.

The broader bump is displayed in Fig. 8 in the same
sequence as Fig. 7. This is in a similar regime to that
of Fig. 7 and results in a similar pattern, which is more
spread out. Because the bump has appreciable height
at the meridional boundaries the recycling boundary
conditions substantially change the eastern boundary
condition north of about the midlatitude and causes
the caustic to be displayed somewhat to the south of
the point that is predicted in Fig. 7b. Presumably better
agreement could be reached by iterating the eastern
boundary condition using some fraction of the pre-
dicted value along the west.
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FiG. 7. A comparison between the (a) end state of Rhines’s (1989)
numerical integration of the time dependent initial value problem
with (b) the predicted critical steady state characteristics and (c) the
predicted contours of constant potential vorticity. The contour in-
terval in (c) is chosen to be that of (a). This is a confined Gaussian
hill with X' = 12.2 and Y ' = 6.1. Bathymetric contours are at
0.01, 0.1 and 0.5 of the peak elevation.

6. Discussion and conclusion

As was pointed out by Rhines (1989) there are sev-
eral features of this topographic problem reminiscent
of more classical channel hydraulics. The appearance
of sharp gradients downstream of the bump crest; here
interpreted as a caustic, has some visual similarity to
the formation of jumps downstream of control (choke)
points. If the depths are renormalized by a further factor
of (Frf?)!/3 Eq. (16) for interface displacement can
be rewritten as

h* = d* +

1
2d*?
which is precisely the cubic form found in channel

hydraulics (e.g., see Gill 1977). This apparent equiv-
alence between the two situations is deceptive. In the
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channel flow problem a continuous solution is obtained
by insisting that the control point occur at the extre-
mum of the cubic relation (A* = 1.0, d* = 1.5) which
is also where the local Froude number is unity. For the
planetary problem, in the “unstarred” quantities, this
occurs at & = (Frf?)!/3 whereas it can be shown that
the local Froude number is umty when 4 = Frf?, which
is greater than (Frf?)!/? and is, instead, the point at
which a caustic forms.

Besides different dynamics another important dis-
tinction between the planetary flow problem considered
herein is that it is fundamentally two-dimensional. The
variation of the coriolis parameter makes the phase
speed of the long Rossby waves a function of latitude
so that even for a uniform ridge in a uniform ﬂow the
response is two-dimensional.
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FIG. 8. As in Fig. 7 except for a spread out hill with X! = 1.22
and Y™' = 0.61. Bathymetric contours are at 0.9, 0.95 and 0.99 of
the peak elevation.

Our results, particularly as regards caustic formation,
are strongly dependent on the upstream Froude num-
ber as defined by Eq. (6). Rhines uses parameter values
that lead to near critical values of Fr f;2. In particular,
he takes flow speeds on the order of a few centimeters
per second, intended to be typical of the deep Antarctic
Circumpolar Current. Away from such strong flows
the subthermocline deep interior is believed to be much
weaker if driven by the Stommel and Arons (1960a,b)
process. Flow speeds of a few millimeters per second
reduces the Froude number by an order of magnitude,
and reference to Fig. 2a will show that ridge heights on
the order of the layer depth (e.g., mid-ocean ridges)
are required to produce caustic features in the flow.

This model has particularly simple physics being
barotropic upstream and having an infinitely thick up-
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per layer. It would be of some interest to extend these
results to more realistic regimes.
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APPENDIX
Regime Boundaries

For characteristics originating at the eastern bound-
ary where gy = foand d = 0, Eq. (9) become

Fr
dxe )= 1-%+ (7 -4
o 2
The caustic condition ( 11) gives the shape of the caustic
asin Eq. (12). If we take f; = f, then we determine the
northeasterly extent of the caustic. If in addition, we
take x = 0 such that

d(0, Frfp*) = Dy exp(—(Frf> — 1)?/Y)

(Al)

1——%Frf02+%Fr3ﬂ)6 (A2)
and f; = f, we have determined the Dy — Y ! relation-
ship for caustic formation, given Fr and f,. This is
the dotted line beginning on the D, axis of Figs. 3a
and 3b.

A characteristic coming from the northeast corner
will just stagnate when :

3 _

af
along x = 0. Applying this condition to (A1) we get
2(/ - DAO./) _ 1 '

- = 4+ F
Y? ke
using the Gaussian topographic form. With x = 0 and
Jo = f» in (A1), d(0, f) can be substituted in (A4)
giving a cubic equation for f. Solving this for given Y
then allows D, to be calculated from (A1) and this

gives the nearly horizontal solid curve of Fig. 3.

0 (A3)

(A4)
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Neither of these characteristics need originate at the
northeast corner. If the critical stagnation characteristic
comes from f; < f, then we must determine f; as well,
which comes from the additional condition

82
Ef—j;b=0 (AS)
or
132
%(M—YT”—.—I)d(o,f)w (A6)

specifying that, in addition to this being the stagnation
characteristic, it i$ also the only one that stagnates.
Conditions (A1) (with x = 0), (A4) and (A6) are
solved for Dq versus Y ™! using a nonlinear rootfinder
(Press et al. 1988). This gives the upright portion of
the solid curve in Fig. 3.

Finally, when a stagnation point does develop the
condition for caustic formation must be modified. The
termination of the caustic is now determined by where
it intersects the stagnation characteristic, so we add to
(A1) (with x = 0) and (A2) condition (A4). Again
the root solver must be used and we obtain the dotted
curve in the stagnation region of Fig. 3a.
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