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ABSTRACT

Earlier work has suggested that internal wave reflection off sloping bottoms may cause significant diapycnal
mixing in the deep ocean, and may also represent an important sink of internal wave energy. Most theories
have been limited, however, by the representation of the bottom as an infinite plane slope. In this paper, the
scattering of internal waves off irregular topography is studied for a few idealized bottom shapes. We pay special
attention to the critical case, which occurs when the bottom slope dh/dx locally matches the wave ray slope s.
Analytical solutions for bottom shapes such that dh/dx = s at a single point are discussed for both locally
convex and concave topography, and are compared with the results of specular reflection theory. They lead to
the important conclusion that one is more likely to observe energy enhancement at the critical frequency above
locally convex rather than concave topography. This suggests that energy dissipation rates associated with the
breaking of internal waves may also be higher above locally convex topography. We aiso note that, for Jocally
convex topography, rapid variations of the reflected wavefield with height above the bottom can be explained
by purely geometric effects, and need not be a consequence of nonlinear interactions,

1. Introduction

When internal waves reflect off a sloping bottom,
their frequency is conserved and hence the magnitude
of the angle which the wave rays make with the hori-
zontal is also conserved. Close to the critical frequency
. at which the wave ray slope is equal to the bottom
slope, simple kinematics (Phillips 1977) show that,
upon reflection, the wavenumber, energy density, and
shear associated with the incident waves are greatly
amplified, so that shear instability and energy dissi-
pation are more likely. Eriksen (1982) has presented
observational evidence for energy and shear enhance-
ment near the critical frequency at a few mooring sites.
He also observed Richardson numbers close to % (and
hence a presumption of shear instability) over vertical
scales of 40-50 m in the first 100 m above the bottom
at mooring 636 of the Western Boundary Sill Experi-
ment (4°2'N, 39°40'W), which is suggestive of intense
mixing near the bottom at this location. These obser-
vations led Eriksen ( 1985) to explore some of the pos-
sible implications for ocean mixing of the shear insta-
bility of internal waves reflected off a sloping sea floor.

Using the observational requirement that the inter-
nal wave spectrum a few hundred meters above a slop-
ing bottom has seemingly readjusted to the canonical
GM?79 form (Munk 1981 ), Eriksen computed a quan-
tity which he called the “redistributed energy flux”
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normal to the bottom. He defined it as the integral
over all azimuths, frequencies, and wavenumbers of
the modulus of the difference between the reflected
energy flux and what this flux would be for a reflected
spectrum of canonical form. The values he obtained
for the redistributed energy flux were so large (20-30
mW m™2) that only a small fraction of it would be
sufficient to maintain a coefficient of vertical eddy dif-
fusivity K, of 10™* m? s~! in the ocean. However, a
major shortcoming with Eriksen’s calculation of the
“redistributed energy flux™ was that he offered no ex-
plicit criteria to say how much of it shouid be lost to
dissipation, the remainder being presumably redistrib-
uted in the four-dimensional internal wave spectrum
by nonlinear processes. In any event, it seems very un-
likely that the energy flux lost from the internal wave
spectrum could be of the same order of magnitude as
the “redistributed energy flux,” since this would drain
the internal wavefield of its total energy of about 4
X 103 J m~? (Munk 1981) in just a few days, leading
to far less universality of the internal wave spectrum
in tsime and space than seems to be typical (e.g., Olbers
1983).

Garrett and Gilbert ( 1988, hercafter GG), have pro-
posed a more specific model based on mechanistic ideas
to estimate the energy flux that might be lost to dissi-
pation. They first calculated the vertical modenumber
Jo such that, for a typical incident internal wave spec-
trum, the reflected waves have a Richardson number
of order 1 if their shear spectrum is integrated from j
= 1 to j = j,. They then argued that waves reflected
with j > j, are likely to undergo shear instability, and



NOVEMBER 1989

hence break and cause mixing at a rate proportional
to their bottom-normal energy flux. Their results in-
dicate that the dissipated energy flux F; may be of the
order of | mW m ™2 (Fig. 1). These estimates of F,
while much less than Eriksen’s “redistributed energy
flux,” still appear to be significant for deep-ocean mix-
ing rates and may represent an important sink in the
overall energy balance of the oceanic internal wavefield
(Olbers 1983). It is interesting to note that for the
model incident spectrum discussed by Munk (1981),
the formulae obtained by GG for the cutoff mode-
number j, and the dissipated energy flux F, depend
only on the two parameters tana and f/ N, where tana
is the bottom slope and f/ N is the ratio of the inertial
to the buoyancy frequency. With regard to this, Fig. 1
shows that (i) for a given value of f/N, F, generally
increases with bottom slope tana, reaching a broad
maximum when tana ~ 3f/N, and (ii) for a given
value of tana, Fj; increases as f/N gets smaller, sug-
gesting that boundary mixing via internal wave break-
ing should be more intense at low latitudes than at
midlatitudes. This may explain why the clearest evi-
dence of energy and shear enhancement near w, pre-
sented by Eriksen (1982) came from a low-latitude
site. ‘

Now GG have pointed out some of the weaknesses
of their model for estimating F,. In the present paper
we will be concerned with just one of these, namely
their neglect of finite topographic effects. Strictly
speaking, the reflection laws developed by Eriksen
(1982),' and used by GG, are only valid for infinite
sloping planes. It is therefore not obvious that they can
be used to provide a good description of the interaction
of internal waves with a bottom of nonuniform slope,
and if so, under what conditions.

In our attempt to tackle at least some aspects of this
problem, we will be particularly interested in deter-
mining how the critical reflection process is affected.
For waves of a given frequency incident on a bottom
of varying slope, the wave ray slope will match the
local bottom slope only at a few isolated points, so we
ask whether large enhancements of vertical shear and
energy density near the critical frequency can still be
expected in the neighborhood of these points.

In section 2, we review previous work on the scat-
tering of internal waves off sinusoidal topography, and
point out some of its limitations with regard to the
critical case. In section 3, we present Baines’ (1971b,
1974) exact solutions for the scattering of internal
waves off locally convex and concave topography re-
spectively, and interpret them in terms of specular re-
flection theory. In section 4, we extend the theory of
Hurley (1970) in order to evaluate the total energy
flux backscattered from a sharp convex corner. The

! Sandstrom (1966) derived an earlier version of these laws, but
did not publish it.
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FG. 1. Dissipated energy flux F,, in mW m~2, as a function of
bottom slope tana and frequency ratio f/ N (from Garrett and Gilbert
1988).

possible significance of our result for a rounded convex
corner is briefly discussed. In section 5, we present a
simple model for the spatial pattern of the reflected
wavefield above locally convex topography, using
specular reflection theory. In section 6 we discuss the
results of previous sections and summarize our main
conclusions.

2. Sinusoidal topography

Baines (1971a, 1971b) has done much of the pi-
oneering work on the scattering of internal waves by
irregular topography. He pointed out the importance
of using the proper form of the radiation condition,
which requires the scattered waves to propagate energy
away from the boundary, and showed that the correct
formulation of the problem of a single wave incident
on smoothly-varying topography can be written in
terms of a Fredholm integral equation of the second
kind. For the “flat-bump” case where the bottom slope
dh/dx is everywhere less than the characteristic slope
s, Baines (1971a) arrived at the surprising conclusion
that the back-reflected wave (i.e., that reflected back
along the incident characteristic) usually does not van-
ish, so that the simple application of ray theory (e.g.,
Longuet-Higgins, 1969) is incorrect.

A logical first step in the study of internal wave scat-
tering by irregular topography is to investigate the
problem of a single wave component incident on si-
nusoidal topography of infinitesimal amplitude. The
solution of this problem could then be used to deter-
mine the scattered wavefield over arbitrarily compli-
cated topography, subject to linearization of the
boundary condition.
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To simplify matters, Baines (1971a) assumed that
both the wave motion and the bottom topography are
independent of the alongslope y-coordinate. This 2-D
assumption, together with the incompressibility con-
dition V - u = 0, enabled him to describe the wave mo-
tion in terms of a streamfunction and thus facilitated
analytical treatment of the problem. He let a mono-
chromatic wave of frequency w, characteristic slope s,
and wavenumber (sK;, K, ) in (x, z) space be incident
on a sinusoidal bottom

h(x) = d cosix (2.1)

where d is the amplitude of the sinusoidal perturbation,
and /is the topographic wavenumber. Making the “flat-
bump” assumption

% =ld<s for

—o<x<oo (22)

max

and assuming that K, d < 1 and /d < 1, Baines found
that, in addition to the specularly reflected wave whose
wavenumber is (sK;, — K ), two scattered waves were
generated with wavenumbers
K =(sK, +1/,~|K; £1/s]). (2.3)
The sum (+) wave is always forward-scattered,
whereas the difference (—) wave can be either forward-
scattered when / < sK; or backscattered when / > sK; .
Denoting by F; the energy flux associated with the in-
cident wave, and by F. the energy flux associated with
the sum and difference waves, Baines showed that

F,
—:=’K1i£
s

F, (2.4)

i

to first order accuracy in K;d and /d.

In an interesting paper, Rubenstein ( 1988 ) expanded
the work of Baines (1971a) by applying (2.4) to a more
general bathymetric profile, using the empirical power
spectrum of topographic variations introduced by Bell
(1975b). The downward propagating part of the model
internal wave spectrum of Munk (1981 ) was assumed
to be incident on this rough bottom. Rubenstein found
that the principal interactions involve the scattering of
low-frequency, low-wavenumber incident waves into
higher wavenumbers. Because of its higher wavenum-
bers, the scattered wavefield has elevated shear levels
compared to the incident wavefield. He found that the
inverse Richardson number (Ri™'), summed from
mode j = 1 toj = 260, is increased by a factor of about
3.6 with respect to the incident wavefield. This is im-
portant, as it shows we can expect enhanced internal
wave breaking above a bumpy bottom even when the
mean slope on a larger scale is effectively zero. The
mechanism leading to shear enhancement here is thus
somewhat different from that envisaged by Eriksen
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(1985) and GG, who assumed the bottom was bump-
less but had a nonzero mean slope.

The conclusions of Rubenstein ( 1988) are probably
qualitatively true. However, they are quantitatively
uncertain as there are problems associated with the use
of (2.4), the cornerstone of his paper. Perhaps the most
serious of these is that (2.4) was obtained under the
assumption that the bottom slope is everywhere less
than the characteristic slope (2.2). Shadowing effects
are thus strictly forbidden, and the critical case where
dh/dx = s locally, which is so important from a shear
point of view (Eriksen 1982; GG), cannot be dealt with
explicitly.

Now for “abyssal hills” topography, the rms bottom
slope depends on the scale of resolution, but equals
0.07 for topographic wavenumbers less than 0.75 cycle
km ! according to Bell (1975a). We might stipulate,
as Rubenstein did, that the flat-bump assumption (s
> dh/dx) is then satisfied in a probabilistic sense (95%
probable) for s > 0.14. For the “typical” midlatitude
value of N/f = 10 (e.g., Bell 1975a), this corresponds |
to w > 1.7 f in the frequency domain, which leaves a
wide range of near-inertial frequencies (f < w < 1.7f)
for which the flat-buinp assumption would be violated.
The range of offending frequencies is of course very
sensitive to the value of N/f’ it would be reduced to
(f <w< 1.2f) for N/f ~ 5 for instance, a fairly
common situation at midlatitudes in the 4-5 km depth
range.

Another problem with (2.4) is that it is only accurate
to first-order in K;d and /d. Mied and Dugan (1976)
numerically performed a higher-order perturbation
expansion involving a finite set of 2n,.« + 1 discrete,
scattered horizontal wavenumbers

Ki.=sKixtnl, n=0,1,2,3, «°¢, Apax. (2.5)

Their higher-order solution for the scattered wave-
field agrees remarkably well with the first-order solution
of Baines (1971a) for /d < s5/6, i.e., the contributions
from »n = 2 are then unimportant. However, when the
bottom slope /d becomes steeper than about s/2, they
find that the series solution (2.5) fails to converge. This
is unfortunate, in that it does not take us nearly as
close to the critical case as is desirable; in the model
of GG, for slopes of infinite extent, it was typically
found that 80% of the total shear comes from waves
with ray slopes within £20% of the critical wave ray
slope.

Mied and Dugan (1976) also pointed out that (2.4)
only conserves the energy flux of the incident wave to
O(K;%2d?/s?), so that for a given bathymetry profile
for which K,d is held fixed, Baines’ solution will do
much worse at conserving the energy flux of the inci-
dent wave at low frequencies than at high frequencies.
This, as well as the occasional violations of the flat-
bump assumption, limits the ability of (2.4) to describe
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the interaction of near-inertial waves with the ocean
bottom, which is what Rubenstein (1988) was pri-
marily concerned with.

3. Local topographic effects

Given our inability to deal properly with the critical
case using a Fourier representation of the topography,
we can at least try to determine some properties of the
scattered wavefield for particular topographic shapes.

Baines (1971b) developed a two-dimensional theory
for the scattering of internal waves off smoothly varying
topography, in which the critical case can be dealt with
explicitly, provided dh/dx = s at a single location in
the bathymetry profile. Using the same radiation con-
dition as in Baines (1971a) he was able to reduce the
problem of determining the scattered wavefield to a
pair of coupled integral equations with two unknown
functions. He cast the problem in terms of the char-
acteristic coordinates

E=z+sx, n=2z—sx (3.1)

where z is the vertical (upwards) coordinate, x is the
cross-isobath (onshore) coordinate, and s is the char-
acteristic (or wave ray) slope. The origin of both the
characteristic and Cartesian coordinate systems is cho-
sen to coincide with the single location in the bathym-
etry profile where dh/dx = s. Now for smoothly varying
topography, the bottom can be regarded as either lo-
cally convex (d*h/dx? < 0) or concave (d*h/dx? > 0).
It should therefore be useful to examine the properties
of the scattered wavefield for both of these cases.

a. Locally convex topography

For locally convex topography with radius of cur-
vature R at the origin, Baines (1971b) showed that,
for |£/R| < 1, the equation for the bottom can be
approximated by

3 (1 + s2)3/2
8s’R

in terms of the characteristic coordinates (Fig. 2). This
equation is symmetric in £, an asymmetric term pro-
portional to £3/ R? having been neglected. Baines let a
plane wave with stream function ¥; = ¢ exp{i(K,¢
— wt)} of infinitesimal amplitude ¢, total wavenumber
K (1 + 5?)!/2 and frequency w be incident on idealized
topography specified exactly by (3.2). He obtained an
analytical solution for the scattered wavefield, and ex-
pressed it as a superposition of a back-reflected (or
backscattered ) wave Y, a wave transmitted to the right
¥7,, and a wave transmitted to the left ¥ 7; (see Fig. 2).
His solution may be conveniently summarized as
follows:

n= “0152, Cy (3.2)

¢R(£’ t)=0’ —ao0 <E<OO (3.3)
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‘I/Tr(n’ l) = ‘PTI(W, t)

= —eexp{—Ki(n/c1)""?} exp(—iwt),

0<n<ow (34)

Yre(n, 1) = —eexp{i[Ki(Inl/c:))'? = wi]},
£>0,—0<n<0 (3.5)

Yn(n, 1) = —eexp{~ilKi(Inl/c)' + i},
£<0,—0 <n<0. (3.6)

It is worth analyzing this solution in some detail.
The vanishing of the backscattered wave (3.3) is a
property of the particular bottom shape specified by
(3.2): symmetric in £ and parabolic in the characteristic
coordinates, with slope at infinity asymptotic to that
of the &-characteristics. The backscattered wave does
not necessarily vanish for other bottom shapes.

For the region above the grazing characteristic (5
> 0), where purely specular reflection would produce
no motion, (3.4) describes an evanescent field of os-
cillatory motions with velocity amplitude

%
an

K
) WCXD{_KI(WQ)W}, 0<yp<o
1

(3.7)

where €K is the velocity amplitude of the incident
wave. The time-averaged kinetic energy density is thus
given by

L|owaf _ K

= _ 172
4| on 16(Cln)CXD{ 2K (n/cy) },

O<gp<oo. (3.8)

The e-folding scale associated with the exponential
factor in (3.8) is given by 7 = ¢;/4K,2 = (1 + 5?)3/?/
(325%K,®R) ~ (32s*K;*R)™'. It is therefore very sen-
sitive to our choice of s, K; and R. For example, it
equals 1250 m for K, = 10> m™', s = 0.05, R = 10*
m, but merely equals 12.5 m for K; = 107> m ™" with
s and R unchanged, indicating a much faster rate of
decay of the scattered wavefield for large incident
wavenumbers (small incident wavelengths ). Note that
the distance from the 7 = 0 characteristic is given by
[7]/(1 + s2)!/2, which approximately equals |n| for
small wave ray slopes, and that the kinetic energy den-
sity in (3.8) decays as ™! for 0 < 5 < ¢1/4K,%.

In the region below the grazing characteristic ( < 0),
i.e., for n-characteristics which intersect the bottom,
(3.5) and (3.6) describe a field of propagating internal
waves with velocity amplitude

I% K <n<o
on

T 2@ (3.9)
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and time-averaged kinetic energy density
_ €K €K%5'R
16ciinl  2(1 +s2)*2n|’

ol

an

1
4

- <7<0. (3.10)

As Baines (1971b) pointed out, perhaps the most
significant feature of the field of motion (3.3)-(3.6)
is that the kinetic energy density near n = 0 is propor-
tional to ¢2K;2R/|%|, as can be seen from (3.8) and
(3.10). There is a singularity at 5 = 0, and the strength
of this singularity increases with the local radius of cur-
vature R (R = oo for a bottom of uniform slope ). Now
with Y = 0, the condition that the total streamfunction
¢ must vanish on the boundary reduces to

Yi+yn=0 on t=—(Inl/c))'?* (3.11)
Yi+y¥n=0 on E&=(lnl/c)"?.  (3.12)

A similar boundary condition involving only incident
and reflected wave components can be used to derive
Phillips’ (1977) law of reflection. Hence we expect the
latter to be valid for n < 0, i.e., for the region of the
fluid where n-characteristics intersect the bottom. To
verify this, we first need to find a relationship between
the bottom slope dh/dx and the characteristic coor-
dinate £ for the idealized topography shown on Fig. 2.
Substituting £ = i(x) + sx and n = A(x) — sx into
(3.2), and differentiating with respect to x, we obtain

FIG. 2. A plane wave with streamfunction y; is incident on to-
pography specified by (3.2) and gives rise to a wave transmitted to
the left, ¥y, and a wave transmitted to the right, y7,. The back-
reflected wave g vanishes for this particular bottom shape. The arrows
point in the direction of energy propagation, and the wave ray slope
is s = 0.2. The origin coincides with the single location in the ba-
thymetry profile where the bottom stope matches the wave ray slope,
and R denotes the radius of curvature of the topography there. The
characteristic coordinates are £ = z + sx, 7 = z — sx.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 19

dh _ s(1 —2¢§)

dc (1+2af)

The bottom is thus vertical at £ = —1/(2¢,), and hor-
izontal at £ = 1/(2¢,). We also verify that dh/dx = s
at{ =0,and dh/dx —> —sas £ — o0, as stated earlier
in the text. Our next step consists of defining the phase
function

(3.13)

1/2
B(n, 1) = K('—c’ﬂ) — ot

1

(3.14)

for the wavefield ¥r,(», 1) given in (3.5). Subject to
the WKB approximation (Gill 1982, p. 300), a local
wavenumber K'(7n) may then be defined by

, d K, sgn(n)
K'(n) = P ®(n, 1) = 26, 2| 2

yielding the wavenumber amplification

X’ ~1

K 2¢2 g7

A similar amplification in velocity amplitude was im-
plicit in (3.9). Now by virtue of (3.12), we can replace
I71'/? by ¢;'/?%, so that

(3.15)

K -1
—_—=— 3.1
K, 2¢¢ (3.16)
Rearranging terms in (3.13), we get
£ = —(dh/dx —$) (3.17)

© 2¢i(dh/dx + 5)

and substituting this back into (3.16), we obtain
K _ (dh/dx + s)
K, (dh/dx—s)’

It is relatively easy to show that (3.18) is equivalent to
Phillips’ (1977, p. 227) formula for the wavenumber
amplification. Letting di/dx = tangB, and s = tanu, we
get

(3.18)

K'(n) _ sin(8 + u)
Ki(&) sin(B—n)’

By virtue of (3.1), the vertical wavenumber amplifi-
cation is also given by (3.19), whereas the horizontal
wavenumber amplification is given by the negative of
that. Equation (3.19) is thus consistent with the spec-
ular reflection theory of Phillips, as could be expected
from the simple form of the boundary condition (3.12).
This is an important result. It suggests that when the
backscattered wave either vanishes or is small enough
to be neglected compared to the incident and reflected
waves, then internal wave reflection off a bottom of
nonuniform slope does not differ significantly from re-
flection off a uniform slope, the rules for which are well

(3.19)
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known. The implications of this for ocean mixing are
that for a given frequency, large enhancements of ver-
tical shear and energy density can still be expected
above locally convex topography in the neighborhood
of points where dh/dx = s.

b. Locally concave topography

Using the same formalism as in Baines (1971b),
Baines (1974, appendix 1) also examined the problem
of internal wave scattering off locally concave topog-
raphy. For |£/R| < 1, the equation for the bottom
can be approximated by (see Fig. 3)

here ¢ (1 +5%)%"
w =
! 8s%R

n =g, (3.20)
Substituting £ = A(x) + sx and n = h(x) — sx into
(3.20), and differentiating with respect to x, we can
obtain a formula for the bottom slope dk/dx as a func-
tion of the characteristic coordinate £ (cf. (3.13))

dh _s(1 +2¢)
dx (1 —2¢8)

The topographic shape described by (3.20) is thus hor-
izontal at £ = —1/(2¢,), and vertical at £ = 1/(2¢,).
We still have dh/dx = sat £ = 0, and dh/dx - —s at
& - *o0, as for Fig. 2. For an incident plane wave
with streamfunction

Vi€, 1) = eexp{i(Kif — wi)},

(3.21)

-0 < £ < o0,
(3.22)

Baines’ solution for the scattered wavefield may be ex-
pressed as the superposition of a back-reflected wave
Yz and an n-dependent field of motion 7, where

Vr(E, 1) = eexp{ —i(Kif + wt)}, —o0<f< o0

(3.23)

£=1/(2¢)

—
———
—_—

—_—
_—
—_—

E=-1/e)

FIG. 3. As in Fig. 2, but for topography specified by (3.20). The
back-reflected wave y/x has the same magnitude as the incident wave
¥, and we have a pure standing wave pattern. The bottom is vertical
at £ = 1/(2¢,), and horizontal at £ = —1/(2¢,).

DENIS GILBERT AND CHRISTOPHER GARRETT

1721

and
7 1/2

Yr(n, 1) = —2¢ cos[Kl(c—) ] exp(—iwt),
1

O0<np<oo. (3.24)

Perhaps the most striking feature of this solution is-
that the back-reflected wave Y has exactly the same
amplitude as the incident wave y;, and since it travels
in the opposite direction, a standing wave pattern re-
sults:

Vi€, 1) + Yr(&, 1) = 2e cosK & exp(—iwt).  (3.25)

The total streamfunction Yy = y; + Y + Y7 is thus
equal to zero for £ = =(n/c,)!/?, as required by the
no-normal flow boundary condition. Note that (3.24)
also represents a standing wave pattern, with velocity
amplitude

alp K . 1/2
-l

dn
kK [ (1)K (VR
(5'171)]/2 ! C; 3t \¢g

(3.26)

which, for K,(n/c;)"/? < 1, reduces to (after correcting
eq121ation (A13) of Baines (1974 ) for a missing factor
K*)

6K12 _ SSZ(KIR)
a '+

~

(3.27)

r
an

where €K, is the velocity amplitude of the incident
wave. Interestingly enough, this velocity field is inde-
pendent of the n-coordinate, and no singularity arises
unless the radius of curvature R becomes infinite (the
uniform slope case). It follows from (3.27) that, for 0
<5 < ¢/K,?, the time-averaged kinetic energy density
above locally concave topography is given by

L|&df €K
41 9y 4¢,2

2

(3.28)

This can be compared with the time-averaged kinetic
energy density above locally convex topography (3.8)
which, for 0 < < ¢;/4K,?, is approximately equal to
€2K,%/16¢yn [same as (3.10)]. Assuming that R and
dh/dx (and therefore c,) are the same at two given
mooring sites, the first one being locally concave
and the second one locally convex, we find that very
close to the bottom, ie., for 0 < 5 <€ c¢/4K,>
~ (325°K,’R)7",

(K.E.)concave (62K14/4C12) _ 4K1277

<1. (3.29)

(KE)ewomex  (€K2/16cm) ¢
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This suggests that close to the bottom, internal wave
measurements made above locally concave topography
are much less likely to show energy enhancement at
the critical frequency than those made above locally
convex topography. To understand why locally concave
sites do not tend to show energy enhancement near
w,, we first rewrite (3.24) as .

\LT("” t) = \bTr("b t) + ‘PT!(W, t)

where
77 1/2
Vr(n, 1) = —e¢ exp{—i[[{l(;) + wt“ ’
1
0<n<oo (3.30)
7 1/2

Yr(n, t) = —¢ exp[i[Kl(c—l) - w,]} ,

0<n<oo. (331)

The above expressions for Y7,(7, t) and ¢r(n, ) are
of the same form as (3.5) and (3.6), which were them-
selves shown to be consistent with Phillips’ law of re-
flection for a bottom of uniform slope. This suggests
we can interpret Baines’ (1974) solution for the scat-
tered wavefield (3.23)-(3.24) in terms of a series of
specular reflections off the concave bottom. The first
stage of thése reflections occurs when the incident wave
¥i(£, t) impinges on £ = —(n/c;)"/? to generate ¥ 1,(n,
t), and on £ = (n/c;)'"/? to generate Yr(n, t). The
second stage of reflections occurs when ¢ ,(7, ). im-
pinges on £ = (n/¢,)'/?, and Y7(n, t) impinges on £
= —(n/c;1)"? to generate Yr(£&, t). The situation is
drawn schematically on Fig. 3.

Now if we let K'(n) denote the local (WKB) value
of the reflected wavenumber after the first reflection,
we could proceed as we did for convex topography and
show that the wavenumber amplification K’/ K| is again
given by (3.18). This result is not surprising in itself.
What is interesting though is that for the second re-
flection, the wavenumber amplification K”/K'is equal
to —(K’/K;)™" for topography specified exactly by
(3.20), due to the assumed symmetry of the reflecting
surface with respect to £ This yields K” = —K;, and
provides us with a simple explanation for the form of
the back-reflected wave Yr(&, t) given in (3.23).

The absence of a singularity in the velocity field near
7 = 0 is due to the fact that the wave reflected at ¢ = 0%
has a phase shift of = with respect to the wave reflected
at £ = 07, so that they interfere destructively. More
generally, the wave 4 reflected at £ = (n/c;)"/* has a
phase shift of # + 2K,(5/c;)"/? with respect to the
wave ¥, reflected at § = —(n/¢;)'/%. We expect them
to interfere constructively when
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n\1/2
1r+2K1(E-) =2nw, n=1,2,3,"
1

172
n ™
1( - = 2 —1 —_ = Y
l(cl) ( n )2’ n 1s2,3’

- (3.32)

When this condition is satisfied, we find that the ve-
locity amplitude (3.26) for the total n-field of motion
becomes twice that associated with y7; or Y7, alone, as
is indeed expected for constructive interference. This
lends further support to our assertion that Baines’ so-
Iution for the scattered wavefield (3.23)-(3.24) may
be interpreted in terms of specular reflection theory.
We now summarize the key results of this section.
For locally convex topography specified exactly by
(3.2), the backscattered wave is identically zero. There
is a singularity in energy density at » = 0, and the
strength of this singularity is proportional to the local
radius of curvature R of the topography. For %-char-
acteristics which come directly in contact with the bot-
tom (i.e., for n < 0), Baines’ (1971b) solution for the
scattered wavefield (3.5)—(3.6) is consistent in a WKB
sense with the reflection law of Phillips (1977). For »
> 0, there exists an evanescent field of oscillatory mo-
tions (3.4 ) whose origin cannot be explained by purely

“specular reflection, but there is no energy flux asso-

ciated with it.

For locally concave topography specified exactly by
(3.20), the back-reflected wave has the same amplitude
as the incident wave, and the resulting field of motion
is that of a standing wave. It is possible to interpret this
solution in terms of a series of specular reflections off
the concave bottom. Close to the origin (where dh/dx
~ §), ¥y and Y7, interfere destructively, and no sin-
gularity occurs. Locally concave topography is thus less
likely to show energy enhancement near w, than locally
convex topography.

4. Backscattered energy flux from a sharp convex cor-
ner

The topographic shapes considered in section 3 are
highly idealized, being perfectly symmetric with respect
to £, and with bottom slope at infinity asymptotic to
that of the £-characteristics. Baines (1971b) briefly ex-
amined the effect of relaxing those two assumptions
concerning the shape of the topography. He studied
the problem of a wave incident on topography specified
by (see Fig. 4)

n= —_61529 £L<£<£R

(. <0, L] <ér]. 4.1
n=—cEr(2E — Er), £> &R
n=—cé (26— &), £<&
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FIG. 4. Topographic shape described by (4.1). The bottom slope
for £ > £x(& < £1) is given by (3.13) evaluated at £ = £ (£ = &).

where ¢, = (1 + s2)3/2/8s2R as before. Such topog-
raphy is locally convex near the origin, but becomes
plane on either side of it, with bottom slope a contin-
uous function of £. Baines investigated the nature of
the solution for the scattered wavefield near the origin
and at large distances from it. He pointed out that the
singularities [e.g., (3.9)] associated with the reflected
waves are still present, so that we may still expect large
energy and shear enhancement near w, for the topog-
raphy shown on Fig. 4. He also found that the back-
scattered wave does not vanish near £ = 0, and the
velocity associated with it is finite and continuous there.
However, while Baines pointed this out, he did not
provide any estimate of the resulting backscattered en-
ergy flux.

Sandstrom (1972) also investigated the problem of
a wave incident on a bottom where two asymptotically
plane sections come together in a rounded corner. His
method of solution uses specular reflection theory as
a first approximation for the scattered wavefield, and
then gets rid of the wave components which violate
the radiation condition through a series of iterations.
Among other things, he found that the amplitude of
the backscattered wave is maximum for a sharp corner.
Hence, we can obtain an upper bound for the back-
scattered energy flux from a rounded corner (¢.g., Fig.
4) by letting R go to zero.

In this section, we use the theory developed by Hur-
ley (1970) to evaluate the total energy flux which is
backscattered from such a sharp corner. Because of the
suggestion in (3.29) that convex corners are more likely
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to show energy enhancement near w. than concave
corners, we are particularly interested in determining
the backscattered energy flux for a sharp convex corner.
A few changes to Hurley’s algebra are needed to deal
with the convex case. We only write the main results
here in order to avoid introducing a great deal of new
notation. The interested reader is referred to Hurley
(1970) for a more detailed description of his theory.

We consider a fluid of constant buoyancy frequency
N occupying the sector between two plane rigid walls
OA and OB, where OA is horizontal and OB is inclined
at an angle 0 to it (Fig. 5). We want to determine the
scattered wave field for an incident wave

v = %exp[iK(x sing + zcosp)] (4.2)

with velocity amplitude U and total wavenumber X,
and where p = tan"'s is the angle which the wave rays
make with the horizontal. An ¢~ '*! time dependence
is understood but omitted in (4.2). The incident energy
flux associated with ; comes from the upper-left cor-
ner, rather than the upper-right corner as in Hurley
(1970). The characteristic coordinates chosen by Hur-
ley are

g, = X Sing — Z cosu

il

o_ = xsinu + z cosu (4.3)

so that (4.2) could be more simply written as y; = U/
K exp(iKe_). Hurley’s (¢, 6_) coordinates are related
to the (£, n) coordinates of Baines (1971b) as follows:
oy = —n/(1 + )% and o_ = £/(1 + 5s*)!/2. Thus,
whereas |n| and | £] give us the vertical distance from
the n = 0 and £ = 0 characteristics respectively, |o. |

Cpl0.=0) Q
\\

FIG. 5. A plane wave ¢; is incident on convex, sharp-cornered
topography. Pure specular reflection off OA(OB) would only give
rise to the reflected wave ygr,(¥rs). However, diffracted waves
(¥p, and yp_) are also present due to the change in bottom slope at
O. The direction of net energy flux for each of the waves is indicated
by the arrows. The energy flux associated with ¥,_ is evaluated along
the path PQ, which lies on a ¢, = constant line. The unit vectors
a4 and a_ (4.12) are perpendicular to the o, and o_ axes (4.3) re-
spectively.
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and |o_| give us the distance from these characteristics
along a normal.

The wavefield generated by y; is made up of the
reflected waves Y4 and Yrp (Fig. 5), as well as the
diffracted (or scattered ) waves ¥p_(o-) and y¥p, (0. ).
Phillips’ law of specular reflection yields the waves Y 4
and yrp for reflection off OA and OB. The diffracted
waves yp_and y¥p, can be thought of as corrections to
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the Phillips solution. They cancel those wave compo-
nents of Yz, and Ygp which carry energy toward the
boundary and so violate the radiation condition (see
Baines 1971a or Sandstrom 1972, for a more detailed
discussion of this).

For the incident wave (4.2), it can be shown that
equations (3.36) and (3.37) of Hurley (1970), derived
now for a wave incident from the upper left, become

exp(—K|o_|t)dt

, _ Usgn(eo_) . 1r_2 0 @
vp (0-)= — smh[ P (m3+ 1)]J;

2
cos[-:— [2 Inz + ir(2m —mp+ ?)” - cosh[fc— (mB + ?)]

for sin(fp+u)=0 (4.4)

exp(—Klo,|t)dt

2/ o0
Vo,(a) = Usen(o.) sg’c‘(‘”) sinh[% (mB + ?)U

where

Sin(ag + }L)
sin(0p — u)

s ,
0 COSIZInt+i7r ~2n~m5+1 ~oosh1r— m3+0
c 0 ¢ 1

for sin(fs+u)=0 (4.5)

- l(mg+ nB)7r, (46)

mg, ng, and 0p are the values which m, n, and 0 take on the wall OB, according to the rules:

for

3
[

for
for
and

for
for

=2 for

T pu<0<22wr—p

p<b<wr+upu

O<b<m—u

4.7)

2r—u<f<22w

O<b<upu

(4.8)

T+pu<l<22w

Since we want to determine the backscattered energy flux for a convex corner, we are particularly interested
in the case where 05 lies in the range © + p < 0z < 2w — pu. Equations (4.4)-(4.6) then become

U ) L (2w [ exp(—K|o_|t)dt
¥p (02) = ——Sg—n-(—g—zsmh(—?—r—)f - xp(—Klo-[1) 5.7 (4.9)
¢ ¢ 0 cos{; [2 Int + ix(2Zm — 1)]] - cosh(T)
and
(27 [*® —K|o|t)dt
Vo (o) = Usgn(«u)sinh(?L)f . exp(—K|a.|1) — (4.10)
o€ €/ cos[;[Zlnt—iw(2n+ l)]}-—cosh(—c—)
where The velocity associated with the diffracted wave is given
sin(0s + )| _ 5. by
sin(fz — 1) ) ¥p.6- +¢¥p,04 (4.11)
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where - and o, are unit vectors perpendicular to the
o_ and o, axes respectively (Figure 5) and are given
by

~ = (—cos u, sinu)

+ = (cosp, sinp). (4.12)

Now, let P and Q be two points at either end of a
long line o, = constant (Fig. 5), and such that ¢;(¢_)|»
= y;(¢-)lp. We can then proceed as in Hurley (1970,
Appendix ) to show that the total, time- averaged back-
scattered energy flux in the direction of OCz is given
by

AP, = &;"E’i f Im{yp ¢} Jdo_ (4.13)
where po is the undisturbed fluid density, Im{ } refers
to the imaginary part of { }, and the asterisk denotes
a complex conjugate. This expression can be evaluated
numerically for any value of 0 within its range of va-
lidity, i.e., # + p < 8p < 2w — u. The particular case
where 0 = w + 2 is interesting, because the wave rays
associated with Yr4 and Yz then make the same angle
p with respect to OA and OB respectively. For this
“symmetric case,” the backscattered energy flux is
nearly constant for 4 < 10°, and is given by

APc, = (0.048) UK 2pyw coty.  (4.14)

The backscattered energy flux slowly decreases for
larger values of p, but is only 10% smaller for g = 7/
4, 5 = 3w /2. Numerical integrations performed for
the nonsymmetric case (0 # 7 + 2u) yield simi-
lar estimates of the backscattered energy flux. We can
compare AP, to the time-averaged energy flux P;
which is incident over one wavelength:

Pow COtu

2 L, Im{ypi*}do- (4.15)

_ U?pow cotu J'”/K
2K -

P; = —7 UK %pgw cotp.

P =

do.

/K

(4.16)

Dividing (4.14) by (4.16), we find that the total back-
scattered energy flux (integrated from o_ = —c0 to o_
= +o0) is equivalent to only 1.5% of the energy flux
incident in a beam of width equal to one wavelength.
On that basis alone, we may be justified to say that
APC2 is small enough to be neglected, especially as it
represents an upper bound for the energy flux that
might be backscattered from a rounded convex corner.

However, we note that the dissipated energy flux F,
(Fig. 1), as evaluated by GG, also represents only a
small percentage of the typical downward incident en-

DENIS GILBERT AND CHRISTOPHER GARRETT

1725

ergy flux of about 20-30 mW m ~2in the ocean (Eriksen
1985). Consequently, if the total backscattered energy
flux for a rounded convex corner were as large as for
a sharp convex corner, and if it occurred mostly in the
region where dh/dx ~ s, large wavenumber amplifi-
cations (3.18) may no longer be possible, and this
would affect GG’s estimates of F,. To illustrate this
point for the specific case of the rounded convex corner
drawn on Fig. 4, we shall assume that the total back-
scattered energy flux has the same magnitude as (4.14),
and further assume that it all occurs within +0.015/2
wavelength of the £ = 0 characteristic. For this hypo-
thetical, worst case scenario, the incident waves are
completely backscattered in a beam of width 0.015
wavelength centered about £ = 0, and are specularly
reflected outside that region. The largest wavenumber
amplification then possible (3.16) would be

85s2(KR)

K| _ 855°(KR)
~(1+S2)3/2'

K (4.17)

Now in the model of GG, where j denotes an incident
vertical modenumber, and j, denotes the cutoff mode-
number such that Ri~*(j,) = 1, the only waves assumed
to break and dissipate are those for which |K'/K| > j,/
Jj. According to that model then, energy dissipation

requires
. l+ 2\3/2
KR > (Jj—”) (—?Ssz)— (4.18)

For typical values of j, ranging from 30 to 100 (GG,
Fig. 5), low modes j, and small values of the wave ray
slope (0.01 < s < 0.10, say), (4.18) then suggests that
we need KR > 1 in order to avoid significant reductions
of the dissipated energy flux F,. For the lowest vertical
modes of the incident wavefield (Munk, 1981) which
carry most of the incident energy flux, K = O(1073
m '), and this requires a radius of curvature R of the
order of several tens of kilometers or more. Thus ac-
cording to the worst case scenario presented above,
very large values of R would seem to be necessary if
we wish to totally ignore scattering effects in evaluations
of Fd.

A more generous criterion than (4.18) can probably
be obtained, provided (i) the total backscattered energy
flux for a rounded convex corner is less than (4.14)
derived for a sharp convex corner, and (ii) does not
occur exclusively near § = 0 (where dh/dx ~ s), but
is more evenly distributed over the entire region of
nonuniform slope (e.g., &2 < £ < {5 for Fig. 4).

The work of Sandstrom (1972) lends some credence
to (i). It does not allow us to make any statement
about (ii) however, because the topography profile
considered in his paper has dh/dx < s everywhere, and
is locally concave. Yet it can be argued that for a
rounded corner, since the change in bottom slope oc-
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curs over a broad area rather than at a single location,
the backscattered energy flux should be more uniformly
distributed in space than for a sharp corner, so that (ii)
seems plausible too.

As a rough criterion, the results of Sandstrom (1972)
suggest that internal wave scattering off an isolated,
rounded corner, can be adequately described by spec-
ular reflection theory when R is comparable to or larger
than the incident wavelength (KR = 1). We do not
know whether this criterion would remain valid for
more realistic topographic shapes, where several ““cor-
ners” with different radii of curvature may be present
at once for instance. If it did, the implications for ocean
mixing would be important. For the typical oceanic
internal wavefield (Munk 1981), we would expect all
incident waves to be specularly reflected when R is
only of the order of a few kilometers or more. An in-
teresting question then is to ask how the reflected
wavefield might vary with height above the bottom over
a convex portion of the topography.

5. Kinematic effects of finite topography

Referring to Fig. 6, we suppose the anchor weight
of a mooring line is at A, where the bottom slope is
tana and the local radius of curvature is equal to R.

FIG. 6. A mooring line is deployed over locally convex topography.
Its anchor weight lies at A, where the bottom slope is tana and the
radius of curvature is équal to R. A wave ray inclined at an angle »
with respect to the horizontal impinges on the bottom at B, where
the local slope is tang. The reflected wave ray intersects our mooring
line at C, some height /# above the bottom.
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For the sake of simplicity, we assume R = const, and
allow a single azimuthal angle of incidence (¢; = 0 for
ounshore propagation of energy, following Eriksen
1982). All internal wave frequencies (f < w < N) are
allowed to be incident on the bottom however.

Suppose our mooring line has a sensor (¢.g., current
meter) at C, some height /4 above the bottom. Not all
reflected rays will intersect our sensor, but one that
does is drawn on Fig. 6. It is inclined at an angle u with
respect to the horizontal determined by its frequency,
and impinges on the bottom at B where the bottom
slope is tanB. Simple geometry shows that the angle 8
is given by

h
g = cos“{cos(a —u)+ 2 cosu] +u (5.1)

For any specific instrument on a mooring line, the pa-
rameters tana and 2/ R are constant, so that (5.1) es-
sentially gives us 3 as a function of u. Critical reflection
occurs when 8 = u = u,, in which case (5.1) reduces
to

h
cos(a — ) + Ecosuc = 1. (5.2)

Right on the bottom (~2 = 0), this yields u. = «, as
expected. However, at some height 4 above the bottom,
u.can take two values. The smaller one (u. < a) results
from critical reflection at a point shallower than A,
whereas the larger one (u. > a) results from critical
reflection at a point deeper than A. Both values of u,
satisfy (5.2) and can be found by iteration for given
values of tana and 4/ R. The frequencies corresponding
to these values of u are easily obtained from the dis-
persion relation, which we write as

o _[1 + (N/f)? tan?u]!/?
f B 1 + tan?u ’

(5.3)

The linear inviscid theory of Phillips (1977) predicts
an infinite wavenumber amplification (3.19) for critical
reflection (u# = B), and therefore an infinite energy
density amplification E'/E. Figure 7 shows how the
frequency of critically reflected waves varies with height
above the bottom, for the particular case where N/ f
= 13.1 and tana = 0.30, as proposed by Eriksen (1982)
for Muir Seamount mooring 518. Using (5.1), we can
also find two values of x (and hence w) for which the
wavenumber amplification (3.19) equals VI_O, so that
the reflected energy density E’ is 10 times greater than
the incident energy density E. The frequency for which
E'/E = 10 varies with height above the bottom, and
this is also shown on Fig. 7.

Figure 8 presents the same information as Fig. 7,
but for tana = 0.125 instead of 0.30 [ the bottom slope
at mooring 518 probably lies somewhere between 0.10
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FIG. 7. Variation of the reflected energy spectrum with height above
the bottom for the idealized topography shown on Fig. 6, taking tana
= 0.30 and N/f = 13.1, as proposed by Eriksen (1982) for Muir
Seamount mooring 518. The energy density amplification E'/E is
given by the square of the wavenumber amplification (3.19).

and 0.20 (Wunsch 1976, Fig. 5)]. On linear inviscid
grounds alone, both figures predict a rapid evolution
of the reflected energy spectrum with height above the
bottom, with some sensitivity on the choice of tana.
For tana = 0.125 for example, the critical frequency
at h = 0is w. = 1.9f, close to the M, tidal frequency.
Merely 100 m above the bottom, taking R ~ 30 km
yields 4/ R =~ 0.003, and Fig. 8 then predicts enhanced
energy densities over a broad range of frequencies for
w = 2.8 f, and over a very narrow range of frequencies
for w = 1.2f.

It could be argued that the singularities associated
with critically reflected wavesat w = 1.2 fand w = 2.8 f
are wiped out immediately upon reflection due to shear
instability, following the scenario proposed by GG. The
elimination of those shear unstable waves would leave
a residual energy spectrum very different from the ca-
nonical Garrett—-Munk spectrum, in both wavenumber
and frequency space (e.g., GG, Fig. 8). Nonlinear in-
teractions among internal waves could then start re-
shaping this perturbed spectrum before its energy sig-
nature has time to reach our sensor. The extent of the
spectral readjustment would presumably depend in
some complicated way on the oblique distance (e.g.,
BC on Fig. 6) between our sensor and the underlying
bottom, itself a function of frequency.

The observed spectrum (Eriksen 1982, Fig. 3) has
enhanced energy densities over a broad range of fre-
quencies starting at about w = 2.8 f, but centered at w
= 4f. It also has enhanced energy density over a very
narrow range of frequencies near w ~ 1.7f, perhaps
due to local generation of the M, internal tide. Those
observations do not agree in detail with the prediction
of Fig. 8 for #/R ~ 0.003, but the gross pattern of
spectral enhancement agrees reasonably well though,
given the simplifications made about the shape of the
topography.
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Our main objective in presenting the above model
was simply to point out that current meters (or other
sensors) placed at different heights above a nonuni-
formly sloping bottom do not feel the same topography.
Therefore, in addition to nonlinear and viscous effects,
finite topographic effects could play a role in the rapid
change with height of internal wave spectra observed
by Eriksen (1982) at a few mooring sites. To carefully
determine the importance of finite topographic effects
at a particular site (e.g., mooring 518 above), we would
have to relax our assumption that R = const. We may
also have to consider the truly three-dimensional nature
of the topography and the incident wavefield, which
we ignored in this paper. Since the Garrett—-Munk in-
ternal wave spectrum is isotropic, that would imply
allowing for waves to be incident at any angle with
respect to the isobaths (i.e., ¢; = — =, = instead of just
¢; = 0). It would also imply allowing for alongslope
variations of the topography.

6. Discussion and conclusions

Internal wave measurements made in the first 100
m or so above sloping bottoms often depart noticeably
from the canonical Garrett-Munk model spectrum
(Wunsch 1976; Wunsch and Webb 1979). However,
the extent of this departure is highly variable, presum-
ably because of the often complicated shape of the un-
derlying sea floor. This is especially true in the neigh-
borhood of the critical frequency w.; there are locations
where energy enhancement near w, is very noticeable
(Eriksen 1982), and others where it is absent ( Thorpe
1987). We believe some of this variability can be ex-
plained in terms of the solutions found by Baines
(1971b, 1974) for the idealized bottom shapes of sec-
tion 3. Those solutions lead to (3.29), which suggests
that internal wave measurements made above locally
concave topography are less likely to show energy en-

o.0l0}
o008}

0,006

P =g

0.004

0.002}F

FiG. 8. As in Fig. 7, but for tana = 0.125.
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hancement near w, than similar measurements made
above convex topography.

There is at least some observational support for this
claim. Thorpe (1987) made detailed near-bottom
measurements of temperature, salinity, and currents
in a locally concave portion of the continental slope
southwest of Ireland, and found no statistically signif-
icant enhancement of energy density near w,. Similarly,
the measurements of Wunsch and Hendry (1972)
showed no obvious energy enhancement near w. over
the concave portion of the continental slope (e.g., at
moorings 352 and 351) south of Cape Cod. On the
other hand, measurements made above a convex por-
tion of the very same continental slope (e.g., at mooring
348 where the distance between isobaths increases
shoreward) exhibit enhanced energy density near w,
(Eriksen 1982, Fig. 4).

The most convincing evidence of energy and shear
amplification near w.( Eriksen 1982) comes from a site
which does not appear to be either concave or convex,
however. Mooring 636 of the Western Boundary Sill
Experiméent (WBSE) was deployed at 4°2.5'N,
39°40.5'W, near the midpoint of a 10 km long stretch
of sea floor with “constant” slope dh/dx ~ 0.015
(Whitehead and Worthington 1982, Fig. 4). The radius
of curvature R of the topography is probably of the
order of several tens of kilometers there, although a
reliable estimate of it cannot be obtained from available
bathymetric data. With KR > 1 for the whole incident
internal wave spectrum, all incident waves should be
reflected as if from an infinite sloping plane. Conse-
quently, GG’s estimate of the dissipated energy flux
(F,;) should be unaffected by diffraction at moor-
ing 636.

This example illustrates the fact that even abyssal
hills of modest height ( =300 m in the above case) can
exhibit significant energy and shear enhancement near
the critical frequency, provided they have large radii
of curvature. Figure 9 of GG thus overemphasized the
reductions in F,; that might result from internal wave
reflection off the side of small-scale features on the
ocean floor. The immediate implication of this for
ocean mixing is that it may be possible to obtain a
reasonably high basin-averaged value of F, due to the
steepness of abyssal hills, with much of the sensitivity
coming from the f/N dependence of F; (Fig. 1). A
rough measure of the steepness of random abyssal hills
can be obtained from the empirical topographic spec-
trum of Bell (1975b, p. 884), which suggests an rms
bottom slope of 0.03, 0.07, and 0.16 when integrated
up to wavenumbers 0.1 cycle km™!, 0.5 cycle km™,
and 2.5 cycle km™! respectively.

We now summarize the main conclusions of our

paper:

1) Close to the bottom, locally convex sites are more
likely to show energy enhancement near w, than con-
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cave sites, suggesting that energy dissipation rates as-
sociated with the breaking of internal waves should
also be higher above locally convex topography.

2) The total energy flux backscattered from a sharp
convex corner amounts to 1.5% of the energy flux in-
cident over a single wavelength. A worst case scenario
based on this result suggests that energy backscattering
can be safely ignored in estimates of F; only when KR
> 1. However, we point out that if the results of Sand-
strom (1972) can be extended to the case of a rounded
convex corner, we might be allowed to neglect scatter-
ing effects for KR = 1, a clearly more generous criterion.

3) For nonuniformly sloping topography, rapid
variations of the reflected energy spectrum with height
above the bottom can be explained in terms of linear,
inviscid, specular reflection theory. Therefore, in ad-
dition to nonlinear and viscous effects, the finite scale
of topography could play a role in the rapid change
with height of internal wave spectra observed by Er-
iksen (1982) at a few mooring sites.

As a rough working hypothesis, we suggest that to-
pography be smoothed over a scale of a few km, and
that the dissipated energy flux F, then be taken as zero
in concave regions, and given by the GG formula (see
Fig. 1 here) in convex regions. Further energy dissi-
pation may, of course, occur due to the non-linear re-
laxation of the GG residual spectrum.
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