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" ABSTRACT

The scattering of barotropic shelf waves by an abrupt jump in longshore topography is examined for unbounded
and bounded exponential shelves by matching modal representations for longshore transport and sea level.
Estimates of the ratio of transmitted to incident energy flux, Fy/F;, are obtained for a bounded shelf (i.e., with
coastal and offshore walls) using an asymptotically exact first-order differential equation for streamfunction that
is derived from the matching conditions at low frequencies. The equation is shown to represent the production
of relative vorticity, manifest as backscattering waves, due to vortex stretching induced by flow over the jump.
At low frequencies, low mode waves exhibit a strong tendency to propagate along /7 contours even as the jump
is crossed and scattered energy is found to reside mainly in the gravest reflected and transmitted modes. Results
agree with corresponding low frequency solutions derived using a direct mode-matching procedure. At higher
frequencies the solutions determined using the mode matching procedure fail to conserve energy: possible
explanations are discussed. For unbounded shelves a simple analytical expression for the ratio of transmitted
to incident energy flux, Fy/F;, is derived and used to show that (i) transmission decreases with increasing jump
size, (ii) a topographic jump acts to pass (retard) incident modes which have cross-shelf scales that are larger
(smaller) than that of the topography, (iii) Fy/F; is a maximum and essentially constant at frequencies much
less than that of the zero in incident wave group speed, o;, and (iv) that Fy/F; monotonically decreases to zero
as frequency approaches o;. These results also summarize the qualitative nature of the approximate solutions
for & bounded shelf determined using the mode matching technique. The analysis suggests that results may be
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applicable to scattering by smooth jumps provided the longshore topographic scale is less than half the

shelf width.

1. Introduction

The scattering of continental shelf waves by long-
shore variations in bottom topography has been the
subject of several theoretical investigations over the past
decade. Allen (1976), for example, showed that under
the long-wave approximation shelf waves can be scat-
tered into other forward propagating modes by small
longshore variations in bottom topography. Where the
long-wave approximation is not made, energy may be
scattered into both forward and backward propagating
modes and preferentially into the highest of modes if
the topographic variation is manifest as a small isolated
bump (Chao et al., 1979). The scattering of wave energy

by an ensemble of small bumps was later considered -

by Brink (1980) and shown to result in a damping of
the coherent wave field that may be comparable with
that due to turbulent bottom friction.

The scattering by large longshore topographic vari-
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ations was addressed with the long-wave approximation
relaxed in the numerical study by Wang (1980). In
particular, Wang found that little scattering results from
the convergence/divergence of depth contours provided
that the longshore topographic scale is of the order of
the shelf width or greater. Such a result was also dem-
onstrated by Hsueh (1980) and Davis (1983) for shelves
where longshore variations in both depth and width
occur in a self similar manner. More recently, however,
Webster (1987) has shown that considerable wave scat-
tering may occur if the longshore topographic scale is
less than half the shelf width.

In this paper we shall consider the scattering by a
large, abrupt change in depth, on a shelf that is oth-
erwise uniform in the longshore direction and increases
exponentially in the offshore direction (see Fig. 1). Such
topography, while.idealized, is perhaps exemplified by
the Labrador Shelf where severe glaciation has resulted
in a sequence of banks and saddles for which the depth
may vary from 200 to 400 m in 90 km or about half
the shelf width. In addition, the idealized topography
will permit the streamfunction to be simply determined
as a sum of wave modes on each side of the topographic
jump, and matched assuming continuity of sea level
and longshore transport. The mode matching tech-
niques used are similar to those employed by Wilkin
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(b)

FIG. 1. Exponential shelf bathymetries for (a) a nearshore abrupt
topographic jump and (b) a jump that is most abrupt at the offshore
boundary. In the consideration of bounded shelf solutions, a wall
which is not indicated is included at x = L.

and Chapman (1987) who examined the shelf wave
scattering due to an abrupt increase in shelf width.

In section 2, wave mode solutions are obtained for
exponential shelves that are either bounded by coastal
and offshore walls or unbounded in both onshore and
offshore directions. In section 3 the scattering by an
abrupt topographic jump is examined for shelves which
are bounded in cross-shore extent. At low frequencies,
an asymptotically exact differential equation in
streamfunction at the jump is derived and results for
scattered wave amplitude and net transmitted energy
flux are obtained for the case of an abrupt jump in
shelf depth. These results are validated in section 4
where estimates of transmitted flux are obtained for
frequencies up to that of the zero in group speed of the
incident wave. The utility of the asymptotically exact
differential equation is demonstrated again in section
5, where near exact, analytical results are obtained for
the low frequency scattering due to an abrupt jump in
shelf width. In section 6, the modal solutions appro-
priate to an unbounded shelf, in both on and offshore
directions, are used to examine the scattering by both
an abrupt and smooth topographic jump. The analyt-
ical results obtained provide further insight into scat-
tering on the more realistic bounded shelf topographies
as well as indicating the applicability of abrupt topo-
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graphic results to situations where longshore depth
variations occur over a finite distance.

In the following analysis we neglect the effect of stra-
tification which, if sufficiently strong, may act to pre-
vent all backscattering of energy through the effective
elimination of the short wave modes, (see Huthnance,
1978; Chapman, 1983). The important restrictions
which this places on the applicability of the results to
stratified shelf regions will be discussed in section 7.
However, an understanding of shelf wave scattering in
a barotropic fluid would seem essential and, as will be
seen, the results below provide a near analytical de-
scription of low frequency scattering by abrupt topog-
raphy.

2. Modal solutions and fluxes

We consider barotopic wave propagation along a
shelf where depth increases exponentially from the
coast, located at x = 0,

j = [ho exp(2bx) y>0 @.1)

ho exp(2bx) y <0

and where hg, hy and b, b may differ so that the long-
shore topographic variation is manifest as a jump at y
= 0, (see Fig. 1). The depth parameters Aqg, b, etc. will
be specified below.

We define u and v to be cross and longshelf velocities
so that with a rigid lid a transport streamfunction sat-
isfying, ¥, = hv and ¥, = —hu may be introduced.
The vorticity equation on either side of the jump may
then be written as

[(Os/)x + h1,) — fE (/R =0 (2.2)

where f, the Coriolis frequency, is assumed constant.
The modal solutions to (2.2) are assumed to be of the
separable, wavelike form

¥ = ¢(x) explitky — wi)], 2.3)

where w and k denote frequency and longshore wave-
number, and with (2.2) result in the differential equa-
tion for the cross-shelf amplitude:

(h ')y — (K% + 2bkflw)h™'¢ = 0 (2.4)
where b should, of course, be replaced by b for y < 0.

a. Modal solutions

To solve (2.4), boundary conditions on ¥ and hence
¢ must be specified at both x = 0 and x = L. Here
results will be presented using two distinct sets of
boundary conditions, the first of which is obtained by
imposing a wall at both the coast and offshore boundary
at which the offshore transport, sz = —¥,, must then
vanish. The assumed solution (2.3) then implies that

¢=0 at x=0,L (2.5)
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FIG. 2. Dispersion curves obtained from (2.8) assuming a wall at
the shelf break and the slope parameters b = 2L™! (solid) and b
= 1.5L"!, (dashed). The first three modal curves are numbered and
the cross-shelf wavenumber m is a multiple of .

and with (2.4), leads to an infinite number of modal

solutions of the form )
¢ = h'? sinmx (2.6)

where an arbitrary constant, with dimension L*H/
(time), has been suppressed,

m=jxL™!, j=1,2,3,+-
k? + 2bkflw + m? + b* = 0.

The dispersion relation (2.8) implies that there exists,
for each mode (or value of ), two wavenumbers given
by

Q2.7

= ~o B[l F (1 — 0?67 2.9)
where

o= ~f(1 + mb) 2 (2.10)

denotes the frequency of zero group speed, where dw/
dk = 0 and k™ = k*. (We shall adopt the convention
that the wavenumbers, k¥, are positive so that, by (2.9)
w is negative for £ > 0). For |w| < ||, the wavenumbers
k™ are real and distinct, (see Fig. 2) and correspond to
long (—) and short (+) propagating waves. For |w| > |a]
the wavenumbers k¥ become complex so that modes
are evanescent and either grow or decay in the long-
shore direction.

The assumption of an offshore wall, leading to (2.7),
is unrealistic although the dispersion curves and wave
characteristics so obtained are similar to those found
when a finite, depth H, ocean is imposed beyond x
= [ (Wilkin and Chapman, 1987). Indeed, for the
finite depth ocean case, the modal solutions on the
shelf are again given by (2.6) while beyond x = L,

JOURNAL OF PHYSICAL OCEANOGRAPHY

(2.8) .

VOLUME 18

¢ = H"?sin(mL) exp[—k(x — L)}, (see Buchwald and
Adams, 1968). However, solutions for wave scattering
by a topographic jump may rot be obtained by match-
ing series solutions consisting solely of such modes since
for x = L, the gravest exponential mode, with smallest
k, will dominate all others present. Presumably, the
complete solution will involve additional modes, which
are not of the separable form considered.

In the subsequent analysis we shall exploit the low
frequency properties of the modal solutions (2.6) and
wavenumbers m and k from (2.7) and (2.8). We note
here that the cross-shelf momentum balance, u, — fo
= —gny, Or 7, = (gh) '[kw¥ + f¥,], will become in-
dependent of w if the low frequency limit condition

w?o? < 1 (2.11)
is satisfied. The long waves become geostrophically
balanced since from (2.9) JwkV| < fb so that, 7,
~ (gh)"'f¥,. The short wave momentum balance,
while not geostrophic, is also independent of w since
wk* ~ —2bf'so that n, ~ (gh)"![ /¥, — 2bf¥]. These
asymptotic forms will be exploited in section 3 where
scattered wave solutions are obtained at low frequencies
by matching modal representations for longshore
transport and sea level gradient, n,. _

The second set of boundary conditions considered
corresponds to a disturbance on an exponential shelf
that extends to infinity in both on and offshore direc-
tions. No coastal or shelf break conditions are assumed
so that m is no longer discrete or dependent on w. So-
lutions to the vorticity equation (2.2) may be written
as

¥ = h'%(x) f_oo Q(m, k) exp[i(mx + ky — wt)ldm
(2.12)

provided k is related to m by the dispersion relation
(2.8). The utility of these somewhat unrealistic con-
ditions and topography will become apparent in section
6 where (2.12) will permit a simple analytical explo-
ration of shelf wave scattering by both an abrupt and
a smooth topographic jump.

b. Energy fluxes

Of particular interest here will be the time-averaged
net longshore energy flux defined by

F=-pg L h(v*n + vn*)dx (2.13)

1
3
where the asterisk denotes a complex conjugate and R
the cross-shelf section of interest. Where the shelf is
bounded at x = L by a wall, a net flux over [0, L] due
to each propagating mode may be determined from
(2.13) and written as
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F = - pB(wk + fb) (2.14)

N =

where

L
B= J; h'*dx. (2.15)
The net flux due to each evanescent mode may be
shown to vanish using the orthogonality properties of
(2.4). In addition, at sufficiently low frequencies, where
the condition (2.11) applies, the flux due to the long
(-) and short (+) waves become equal and opposite
and may be approximated by

1
prfB

since, again, wk™ ~ —2bfand |wk™| < bf.

Finally, the net flux corresponding to the unbounded
shelf solution (2.12) may also be determined from
(2.13) and written as

F.=%F (2.16)

F=—pr f: [wk + B10Q*dm  (2.17)

where k = k(m) is real and given by (2.9). If k is com-
plex, corresponding to evanescent waves, the bracketed
term in (2.17) should be replaced by 4 [w(k + k*) + 2bf]
which from (2.9) is zero so that again only propagating
modes may contribute to the net flux.

3. Low frequency solutions for a jump in depth

For the case where the shelf is bounded at x = L by
a wall, asymptotically exact solutions may be obtained
at low frequencies by matching both sea level and
longshore transport. The solutions for ¥ on either side
of the jump will consist of an infinite sum of the discrete
modal solutions, (2.6) and the condition for continuity
of ¥ at y = 0 may be written as

’ © ] .

1+ 2 ag— 24 =0
J=1 J=1

where ¢;, ¢; and rf),- denote incident, reflected and

transmitted waves respectively and a;, d; are undeter-

mined coeflicients.

Sea level may be matched to within a time dependent
constant (say Ce™*’) by matching 5,. The constant C
represents the difference in the amplitudes of Kelvin
waves which may exist on either side of the jump but
which are of little interest here, as their associated ve-
locities and energy fluxes are zero under the rigid-lid
approximation. The condition for matching 7, may
also be written as a sum of modal contributions

3.1

) )
Nix + E amjx — 2 afﬁjx =0
Jj=1 j=1

(3.2)

where
Nix = (gh)-l[kj+w¢j +f¢jx] (3.3)

and so on.
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Now at the low frequencies of interest here, we shall
assume that the dominant reflected and transmitted
modes in (3.1) and (3.2) are propagating rather than
evanescent, since an increasingly large number of the
former are available to match both sea level and trans-
port as w/f vanishes. The reflected propagating waves
become extremely short at low frequencies, and if w?/
¢%(m) is small for each mode of significant amplitude,
then as shown in section 2, wk;* ~ —2bf and nj
~ (gh)"'f¢;x — 2b¢;). The incident and transmitted
waves, on the other hand, become very long and geo-
strophically balanced so that 5, =~ (gh)"*f¢1x, and so
on. The condition (3.2) may now be rewritten as

h_l{d’lx + Z aj(d’jx - 2b¢’1)} = h-‘l 2 d]¢jx (34)

j=1 j=1
and with (3.1) is independent of frequency as ¢[x),
¢;(x) etc. depend only on cross shelf wavenumbers
which are simply multiples of = for a bounded shelf.
Further, upon rearrangement, (3.1) and (3.4) yield the
first-order differential equation in fotal streamfunction,
¢, aty =0

(1/h = 1/h)oy = 2b(¢ — d1)/h (3.5)

which may be simply solved once A, A, b and ¢, are
specified!

To interpret this remarkable result, we note that the
linearized vorticity balance

[(¥x/h)x + (¥y/h))e = STY(1/h)x — U(1/h),]
(a) (b)

will be dominated by the terms (a) and (b) in the vi-
cinity of the jump since these involve the derivative,
hy, which is infinite at y = 0. Integration of these terms,
from y = —e to +e results in

~fUA/h)- = [¥,/h)- (3.52)

where the left-hand side may be clearly identified with
that in (3.5), and represents the net production of rel-
ative vorticity by flow across the jump. The right-hand
side of (3.5a) represents the rate of change of relative
vorticity, and will be dominated by the reflected wave
modes since the incident and transmitted waves are
very long at the low frequencies assumed: ¥,, ~ wk*¥
> wk V. Further, for each reflected mode we have,
wkt =~ —2bf, so that the right-hand side of (3.5a) may
be written as [V¥,/h]_*¢ ~ —2bfWr/h where ¥y de-
notes the total reflected wave streamfunction at y = +e
and is equal to ¢ — ¢;. The right-hand side of (3.5a),
—2bf(¢ — ¢;)/h, may now be identified with that in
(3.5) which thus represents the rate of change of relative
vorticity of the reflected waves, due to production by
flow over the jump. ‘

Solutions for ¢-obtained from the vorticity balance,
(3.5), will also permit immediate determination of the
net transmitted energy flux since from (2.14) and (2.15)
we may write
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L
Fr=— % pi)fJ; h'¢%dx.

In addition, the first N coefficients g;, d;, and hence
total streamfunction, ¥(x, y, f) may be determined by
solution of the system of equations that result from
taking the inner product of (3.1) with 4~'¢; and
h~'¢;. For example, where a wall is assumed at x = L,
and all modes are orthogonal, the a;, d are given by

(3.6)

L -1 pL
dk=[ f h“qbkzdx] f h'oddx  (3.7)
0 0

etc., and V¥ is reconstructed from

N
¢z explitk; y — )] + 2 a;¢;

J=1

X explitk;'y — wf)], y=0 (3.8)

N
2 4 explilky — )], y<O.
=t :

Inspection of (3.5) and (3.7) also shows that if ¢; is
real, then so must be ¢, a; and 4; so that the incident,
reflected and transmitted waves must be either in or
out of phase with each other.

a. Results Jor a nearshore jump: Propagation from deep
to shallow water

Here the backward (y > 0) and forward (3 < 0) to-
pographic parameters in (2.1) are chosen such that

h = H exp[2b(x — L)}, h = H exp[2b(x — L)), (3.9)

‘so that the jump is most abrupt at the coast and van-
ishes at x = L, (see Figs. 1a or 3a, b).

The slope parameter b is assumed larger than b, so
that the incident wave propagates from deep to shallow
water. With (3.9), Eq. (3.5) may be integrated to yield

$0) = $ihh — hK fo * KPR D], dr

(3.10)

where
" K(o) = kATt -1

and d = (1 — b/b)~! is negative. The function X ~9(x)
vanishes at x = L and will dominate the integral in-
volving K¥(r) as x approaches L so ¢ = 0 at x = 0 and
L as required. [Note that K%r) ~ [2(b — b)]4r — L)*
near r = L while the remainder of the integrand in
(3.10) is a bounded function of r. The second term in
(3.10) is thus O(x — L) near x = L.] For a vanishingly
small topographic jump, where h ~ h, nearly perfect
transmission results and ¢(x) ~ ¢4x). On the other
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F1G. 3. Profiles of the bathymetry shown in Fig. 1 where for (a)
and (c) the jump size from backward (solid) to forward (dashed)
topography is large and > & ~ O(1). In (b) and (d) both slope
parameters are large of similar order and the topographic jump ef-
fectively small.

hand, where b > b, the integration in (3.10) may be
immediately performed to show that ¢(x) =~ 0 corre-
sponding to perfect reflection by a wall (see Fig. 3a).

For illustrative purposes, we have determined the
total streamfunction ¥(x, y, ) from (3.7)-(3.10) for
the case of a wall at x = L and an incident first mode
wave. All integrations were accomplished using the
rectangle rule and 1000 subdivisions of the interval,
[0, L]. The slope parameter values b = 2b = 2L™! were
assumed and at the frequency —0.1fchosen, there exist
six transmitted and three reflected propagating waves.
The number of propagating waves here is certainly not
large, and with the amplitudes a;, d; determined from
(3.7), may be insufficient to fully represent the solution
for ¢ that is only asymptotically valid as w/f vanishes,
and formally given by an infinite sum of modes. A
measure of this truncation error is given by

UOL 4¢2dx}_l/2 { fo 26— o

- 2ab— 2 dj&:,-)zdx]
(3.11)

where the sums are only over the wave modes which
exist at the chosen frequency. For w = —0.1f, an error
of less than 2% was indicated by (3.11) so that the so-
lutions presented are apparently valid. In addition,
most scattered energy was found to reside in the two
gravest reflected and transmitted modes, suggesting that
the (neglected) contribution to ¥ made by the evanes-
cent modes may be ignored. Indeed this will be shown
in section 4 (see also Wilkin and Chapman, 1987)
where both propagating and evanescent modes are in-
cluded in the representation for ¥(x, y, ?).

The amplitude of the streamfunction obtained by

1/2
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the method outlined above is plotted in Fig. 4. We note
the apparent tendency for waves to propagate along
f7h contours even as the jump is crossed. All f/4 con-
tours in the region y = 0 are continued across the jump,
and as shown a region of quiescence exists on the for-
ward (y < 0) side where incident wave energy is unable
to propagate. The reflection due to the jump is marked,
and the 0.6L wavelength pattern shown is primarily
due to interference between the incident and two grav-
est reflected modes which have wavelengths of
aroundl 1L and 0.3L respectively. The two gravest re-
flected waves (and second mode transmitted wave) were
also found to be out of phase with the incident and
gravest transmitted waves. The ratio of total transmit-
ted to incident energy flux was estimated at 0.38. Fluxes
were estimated individually for the first three reflected
waves, (0.565, 0.037, 0.009)F; and transmitted waves,
(0.259, 0.099, 0.014)F; and show that most energy is
scattered into the gravest modes. Indeed, the first two
gravest transmitted and reflected waves account for

yor

p e

FIG. 4. Streamfunction amplitude for the scattering of a first-mode
incident wave by a nearshore jump (Fig. 1a) with a wall at x = L.
Contour values have been normalized by the incident wave amplitude
and the results were obtained from (3.7)-(3.10) for a frequency of »
= —0.1fand the slope parameters b = 2b = 2L, The tendency for
waves to propagate along the dashed /4 contour is apparent as is the
strong reflection by the jump. The vertical arrow indicates the first
reflected mode wavelength.
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I 5
A
ho/ho

FIG. 5. The flux ratio Fy/F; vs the nearshore jump size Ag/hq for
the scattering of a low frequency, first mode wave with a wall at x
= L. These results (dot-dashed) were obtained from (3.10) for the
backward slope parameters, bL, indicated and may be compared
with those, (solid), for the scattering by an offshore jump: in the latter
case the horizontal axis should be relabeled as A(L)/A(L).

more than 93% of the total transmitted and reflected
fluxes, respectively.

As an initial examination of the sensitivity of trans-
mitted flux to the details of the topography, solutions
for ¢ were also obtained for the slope parameters bL
= 0.1, 0.5 and 2 using first mode incident waves, and
results for the ratio of transmitted to incident flux, Fr/
F,, are presented in Fig. 5. Apparent from the figure
is a general decrease in transmission as jump size in-
creases and, where hy/h, is near zero, the forward side
topography becomes wall-like (Fig. 3a), and total re-
flection obtains. The results also show an increase in
Fr/F;with the slope parameter b, as the effective jump
size becomes smaller and the shelf depth at the coast
ho = He L vanishes (see Fig. 3b).

Results for the scattering of second and third mode
incident waves have also been determined for the slope
parameter bL = 0.5. The estimates of F7/F; obtained
are presented in Fig. 6 and show a decrease in trans-
mission as mode number is increased so that a topo-
graphic jump acts to low pass the gravest mode waves,
where m is smallest.

b. Results for an offshore jump: Propagation from
shallow to deep water

The preceding solutions were obtained for a topog-
raphy, (3.9), for which all f/4 contours in the backward
region are continued across the jump. However, if
ho/ho is chosen to be greater than one, so that waves
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now propagate from shallow to deep, all f/A4 contours
are not continued across the jump and the solution
3. 5) becomes unbounded at x = L. (The function K(x)
again vanishes at x = L, but since d = (1 — b/b)"" is
now positive, the term K 'd(x) in (3.10) becomes infinite
while the integral remains finite.) Possibly the solution
fails because some f/h contours now disappear into the
coast so that some fluid columns are left without a rest
position after crossing the jump. In addition, no gravity
waves exist to permit geostrophic adjustment of the
new “unbalanced” state, and no wavelike solution of
the form assumed here seems possible.

Solutions for wave propagation from shallow to deep
water may still be found, but with a topography now
given by

h = H exp[2b(x — L)], h = H exp[2bx — 2bL]

(3.12)

where b > b. The maximum jump occurs offshore,
(Figs. 1b and 3c, d), and all f// contours in the region
y > 0 are continued across y = 0. Solutions to (3.5)
may be obtained and written as

6(x) = hufh — hK fL " KD )b dr

(3.13)
where

K(x)=1-hh!

and d is again given by (1 — b/b)™! and is negative. In
.obtaining (3.13) we have integrated from x = L so as
to avoid the singularity in K%(x) at x =.0 and used the
fact that ¢(L) = ¢(L) = 0 for a wall at x = L. (We also
note that the solution (3.13) is unbounded for b < b

'R?'\.
\NRN (
\ ]
\‘\‘\ \{\
\ N\ AN
b NN\ AN
Frst \‘ ‘\./2 N
\\ \.\ AN
N\ \‘\
3/\ ~.. . \
.- .
\_\~.\.\'
oI A.IS - [o]
ho/ho

FIG. 6. As in Fig. 5 but for second and third mode incident waves
on a bounded shelf. The backward slope parameter is fixed at b
= QL)

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 18

where all f/4 contours are not continued across the
jump.) The solution (3.13) satisfies the coastal bound-
ary condition, ¢(0) = ¢0) = 0, since the second term
in (3.13) is O(x) near x = 0.

Results for the ratio Fr/ F;ywere obtained from (3.13),
(F1g 5), and again show a decrease in transmission as
jump size increases and h(L)/h(L) becomes small (see
Fig. 3c). The ratio F7/Fy also increases with b since
wave propagation is eased over a smaller jump (Fig.
3d). Results for propagation from deep to shallow or
shallow to deep water are qualitatively consistent but
it is apparent from Fig. 5 that transmission for a given
jump size, ko/hy = h(L)/k(L) is generally greater for
the case of an offshore jump than for a jump at the
coast. This is consistent with the results of Chao et al.
(1979) who showed that small topographic features near
the coast scattered wave energy more effectively than
a similar feature offshore.

4. A direct mode matching approach for arbitrary fre-
quencies

Here we shall examine the scattering of a first mode
incident wave by a topographic jump which is most
abrupt at the coast (Fig. 1a), with a wall at the shelf
break. As we shall no longer demand that w/f be small,
the matching conditions (3.1) and (3.2) may not be
rearranged to yield a differential equation in total
streamfunction, ¢, at y = 0. Further, few propagating
waves may exist so that those which are evanescent,
and decay away from the jump, will be important in
the modal representation, (3.8), for ¥(x, y, f). We shall
assume here that ¥ on either side of the jump may be
adequately represented by the 20 gravest propagating
and evanescent modes and seek to determine the coef-
ficients a;, 4; by minimizing the sum of squares of
matching conditions

L
R? = f {13.11% + wi3.2|*}dx 4.1)
0 .

with respect to each a; and 4;. The parameter w was _

chosen as
L -1 pL
w= [J; mxzdx] J; bifdx

so that similar weight is given to both matching con-
ditions; the following results were found to be insen-
sitive to arbitrary order of magnitude variations in w.

The least-squares procedure above differs somewhat
from other mode fitting techniques (Yeh, 1975; Wilkin
and Chapman 1987) where a unique set of equations
for a;, d; may be obtained by taking the inner product
of the matching conditions with the modes, /™' ¢; and
h d;, The choice of inner product in these analyses is
unambiguously dictated by a change in domain size.
Here, however, both matching conditions and modes
pertain over the same domain, [0, L], and no unique
choice of inner product is evident. Indeed, solutions

4.2)
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FIG. 7. The ratio F7/F; for the scattering of a first mode wave by
a nearshore jump with a wall at x = L. Results for both F;/F; (lower
curve) and (Fx + F;)/F; (upper curve) were determined by minimizing
{(4.1) and the difference indicates the net error in the estimated fluxes
for each of the indicated slope parameters, bL. At frequencies below
o1/3 (the vertical dash), the errors are small and results for F;/F; near
constant and equal to those that may be obtained from (3. 10). In all
cases, bL = 2, and perfect transmission results when b = b and no
jump exists.

for first-mode scattering by the topographic jump
shown in Fig. la, were obtained using several combi-
nations of inner product, but all found to be grossly in
error in either one or both matching conditions.
Solutions were obtained, however, by minimizing
(4.1) for the case of an incident first-mode wave prop-
agating from deep to shallow water (Fig. 1a) for which
all f7h contours in the region y = 0 are continued across
the jump: the obtained matches for ¥ and 73, were
found to be accurate to within 2%. Continuity of f/h
contours again seems necessary since solutions ob-
tained with the nearshore jump topography were found
to be grossly in error for the converse case of wave
propagation into deepening water. Thus, results are

only presented for the former case. Estimates of the 40 ~

coefficients a;, 4; were determined for the three sets of
slope parameters L(b, b) = (1, 2), (1.5, 2) and (1.75, 2)
and at 20 frequencies between —0.01f and o; = o(m)),
the frequency of zero group speed of the incident wave.
The total reflected and transmitted energy fluxes were
then obtained from (2.14) and results for Fy/F;, and
(F; + Fg)/Fare presented in Fig. 7 where the difference
in the pairs of curves corresponds to the normalized
error, (F] + Fr— Fp)/Fy.

As shown, the errors while small at low frequencies,
are somewhat larger at frequencies above o;/3. Small
errors are not manifest in the 2% accurate matches
obtained for ¥ and 7, in part because these quantities
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are determined from a large sum of coefficients, a;, dj,
while the fluxes are determined from only those which
pertain to the (few) propagating waves. However, no
reduction in flux error was found upon doubling the
total number of modes present, suggesting that the so-
lution for ¥, at frequencies above o;/3 may not be
exactly represented by a sum of the separable wave
modes assumed here. Inclusion of the Kelvin wave
mode, n = Ce™™, through matching » rather than »,
in (4.1) was also found not to reduce the errors in the
flux estimates. This result is puzzling, since Wilkin and
Chapman (1987) have shown the Kelvin wave mode
to be important in the conservation of energy for scat-
tering by an abrupt jump in shelf width. Further, min-
imization of (4.1) subject to the constraint that the net
energy flux be equal on either side of the jump pro-
duced unacceptable root-mean-square errors {(~ 10%)
in n,and ¥ at the middle-range frequencies where Fig.
7 indicates problems. Clearly at higher frequencies there
is some basic problem with either the assumed physics
or the variety of mode matching solution techniques
tried (see section 7 for further discussion). Although
we cannot state conclusively what the source of the
problem is, the fact that near exact solutions do not
seem possible for such an apparently tractable problem,
is in itself noteworthy.

With a caveat on the high frequency results, it is
apparent from Fig. 7 that the transmitted energy de-
creases with increasing frequency and in agreement
with the results of Wang (1980), at w = —g; total re-
flection results since the first mode incident and re-
flected waves are then identical in both cross and long-
shelf structure. In general F7/F; increases as the jump
size is decreased, and where b = b perfect transmission
must result, at all frequencies below o;.

While we have commented in detail upon the valid-
ity of the high frequency results, it should also be noted
that the errors in total flux are, in general, small at
frequencies below ¢;/3 and indeed vanish as w ap-
proaches zero. In this parameter range, the estimates
of F7/F; are nearly constant, independent of frequency
and in fact equal to those that may be obtained from
the differential equation (3.5). The results obtained
here, for w = —0.1fand AL = 2bL = 2, may also be
compared with the coefficients, a;, d; and streamfunc-
tion determined from the differential equation (3.5).
Remarkably, the coefficients a;, d; of the propagating
waves obtained from both (3.5) and (4.1) were found
to be within 1% of each other and the streamfunction
pattern in Fig. 4 indistinguishable from that based upon
the 40 propagating and evanescent modes assumed
here. Such agreement at low frequencies is a result of
the dominance of ¥ by the gravest propagating modes.
Indeed, the amplitudes of the evanescent modes were
found here to be an order of magnitude less than those
of the gravest propagating waves, suggesting that the
latter are most readily excited by wave scattering. Sim-
ilar results were also found by Wilkin and Chapman
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(1987) for wave scattering by an abrupt increase in

" shelf width and are in contrast with scattering by small
isolated bumps, where the highest propagating modes
are excited, (Chao et al., 1979).

5. Low frequency solutions for a jump in shelf width

In a recent paper, Wilkin and Chapman (1987) ex-
amined the scattering due to an abrupt jump in shelf
width using a mode matching technique essentially as
outlined in section 4. Here we show that many of the
low frequency results obtained by these authors may
be obtained analytically from the differential equa-
tion (3.5).

Following Wilkin and Chapman (1987), the shelf
depth is assumed continuous in the longshore direction
and the coordinate system is reoriented so that the or-
igin lies at the offshore boundary, with y directed
“dowmstream” and x directed towards the coast. At y
= 0, the shelf is assumed to widen abruptly from x
=L, to x = L, and the depth is given by h = Ay
exp(—2bx) for all y.

Now since there can be no flow through the cross-
shelf wall between x = L; and x = L,, the total stream-
function must vanish there. In addition, since depth is
continuous, ~# = h, equation (3.5) implies that ¢ = ¢,
between x = 0 and x = L, so that the total stream-
function of the transmitted waves is given by

¢ - d)l’
Oy

and no backscattered waves exist.

With a wall at x = 0 (the offshore boundary), the
jth incident and transmitted modes are given by A'/2
X sin( jwx/L,) and A'? sin(jxx/L,). The amplitudes d;
of each transmitted mode may be determined for an
arbitrary incident wave field since

=2 do;
and (5.1) together imply that

Ly R . -1 Ly R R '
éj= [J; h_l¢j2dX] J; h“d),-(b,dx. (52)

O0<x<L,

(5.1)

L1<X<L2,

The preferential excitation of modes whose cross-shelf
structure is similar to that of ¢; is immediately appar-
ent. Further, it is obvious from (5.2) that 4; is inde-
pendent of b so that the steepness of the topography
enters only through the structure of the eigenfunctions.

For the example of a first mode incident wave, (5.2)
reduces to

a = },‘; {sinfm(s — D}/ — 1)

— sin[x(u + D)/(n + 1)}

where u = jL,/L,. With L,/L, = 2.25, the amplitudes
of the seven transmitted propagating waves are given
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by [0.347, 0.461, 0.315, 0.084, 0.046, 0.040, 0.011]
which may be compared with the values [0.346, 0.461,
0.316, 0.085, 0.047, 0.043, 0.013] obtained by Wilkin
and Chapman (1987), Table 1, who chose v = —0.1f,
bL, = 1.0 and allowed for some 40 propagating and
evanescent waves in their mode matching procedure.
As shown in section 4, and by Wilkin and Chapman
(1987), the evanescent wave amplitudes are relatively
small at low frequencies and so contribute little to the
total solution for ¥(x, y, ). For the example above,
¥(x, y, 1) may be immediately reconstructed using (3.8)
and the seven dominant modal amplitudes determined
above. .

Finally, we note that in the preceding case, all f/h
contours in the backward region are continued across
the jump in shelf width. Solutions may not, however,
be obtained from (3.5) for the converse case of a nar-
rowing shelf, L, < L;, since evanescent waves would
clearly be required to satisfy ¢ = O along the wall at y
=, L, < x < L,. For this case we note that not all
J7h contours in the backward region, are continued past
the jump in width, since some will terminate at the
cross-shelf wall. Remarkably, Wilkin and Chapman
(1987) have obtained accurate low frequency solutions
for such topography (their Fig. 3), although they dismiss
them as unrealistic since short waves (which do not
exist for typical stratification conditions on shelves)
are required by the solution. Nevertheless, the existence
of solutions in a case for which f/A# contours in the
backward shelf region are not continued across the
jump is interesting,.

6. Unbounded shelf solutions
a. Results for an abrupt topographic jump

Presented below are exact analytical solutions for
the scattering of a spectrum of propagating, long waves
incident on an abrupt jump in longshore topography.
In particular, the topographic scales on either side of
the jump, A,/h and h,/h, are assumed identical and
equal to 2b, so that from(2.1), the jump size is a con-
stant fraction of depth and given by

s = ho/ho. (6.1)
We envisage some wave source at y > 0 so that both
the incident and transmitted streamfunctions will be
composed of long waves, for which k™ and m are related
by the dispersion relation (2.9), k= = k™ (m). The re-
flected streamfunction will, on the other hand, be
composed of short waves only for which k* = k*(m).
The streamfunction solution for incident (), reflected
(R) and transmitted (7') waves can be written as

¥, = h'2(x) J‘_w Qi(m, k) expli(mx + k™y — wi)ldm

Ve = h2(x) f_ ’ QOr(m, k¥ expli(mx
+kty — wt)ldm  (6.2)
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and
Vr= fz"z(x)f Qr(m, k) expli(mx

+ k7y — wi)ldm

where ¥, and ¥ are to be obtained as functions of
the incident spectrum by matching sea level, 5, and
longshore transport, hiv = ¥, at the jump so as to
ensure that the flux of energy, Y2pghvn, is there contin-
uous. From (6.2), the latter condition implies

Or+ Or = 5201 (6.3)

while to match sea level we need only match its gra-
dient, n, = (gh)"'[¥,, + f¥x], assuming n = 0 as
X = o0, so that

[wk™ + f(b + im)1Q; + [wkt + f(b + im)]Qr
= 52wk + f(b + im)Qr. (6.4)

The expressions (6.3) and (6.4) may be immediately
rearranged to obtain

Qr = T'(m, w)e "™4*Q, (6.5)
where
T = 4s[(1 + 5)* + (m/by)*(1 — 5)*1™'  (6.6)
plays the role of a transfer function and
mAx = tan"[mby) (1 — §)/(1 +5)] (6.7)

represents the cross-shelf displacement of streamlines
across the jump. The parameter v is given by

y=[1-w 2" (6.8)
and is real for the spectrum of propagating incident
waves assumed while the net transmitted energy flux

may be determined from (6.5) and (2.17) and written
as

Fr=—pr f_ " ok + B 1TOO M. (6.9)

To “flesh out” the above solutions, we consider the

scattering of a single incident wave of the form

¥, =~ h'2 sin(mx) explitk"y — wf)]  (6.10)

for which the spectrum Qy is strongly peaked at +m;

and approximated by —i{é6(m — m;) — §(m + mp)/2.

The transmitted flux (6.9) may in this case be approx-
imated by

FT% T(m,, w)FI (6.11)
so that the function T may be interpreted as simply
the ratio of transmitted to incident energy flux, F/F;.
The properties of the function T defined by (6.6) and
(6.8) thus imply that the ratio F7/F; will (1) decrease
with increasing jump size, where s = ho/hy may differ
appreciably from unity (2) be identical for wave prop-
agation from deep to shallow or shallow to deep water,
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since T is an identical function of s and 5!, and (3)
decrease as the cross-shelf scale m;~! of the incident
wave becomes small compared with that of the topog-
raphy 6~! = 2h/h,. In addition, at low frequencies,
where w? < ¢*%(my), both the transfer function T and
the streamfunction displacement become independent
of w/f as the parameter + is nearly constant and equal
to one. The transfer function and hence flux ratio Fr/
F; are also a maximum at low frequencies since 7(m,
) monotonically decreases to zero as w approaches
a(my), the frequency of the zero group speed of the
incident wave. These results are analogous to the de-
pendencies illustrated in Figs. 5-7 for energy trans-
mission across a jump on a bounded shelf. The cor-
respondence with the frequency dependence illustrated
in Fig. 7 is particularly interesting as it suggests that
the rectification of the indeterminate flaw in the so-
lution technique applied for bounded shelves should
not affect the qualitative nature of the estimated fre-
quency dependence of Fr/F;.

At low frequencies we expect waves to propagate
along f/h contours which suffer a displacement, Axy
= —(2b)! In(s), as the jump is crossed. Indeed, in-
spection of (6.7) shows this to be the case, Ax ~ Axr,
provided that the cross-shelf scale m;~! is of order or
larger than b™! = 2h/h, and s = h/h lies in the range
0.5 to 2. Where the incident wave scale m; ! is small
compared with 5~ the streamline displacement is less
than that required to follow f74 contours and, as noted
above, the transmitted flux is small.

The preceding comments on transmitted flux are in

7
j
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FIG. 8. Ratio of transmitted to incident energy flux F7/F; vs jump
size s = hofhq for a narrow band low frequency, incident wave spec-
trum centered on m;. Results, obtained from (3.6), are presented for
the slope parameter, bL, indicated and the first mode wavenumber,
my = wL™", that formally correspond to a wall at x = L.
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part summarized in Fig. 8 where the ratio F7/F; given
by (6.11) is plotted against jump size for low frequencies
where ¥ is near unity. Results were obtained using three
values of the slope parameter bL, (0.1, 0.5 and 2.0),
and the first mode wavenumber, m; = «/L, that for-
mally corresponds to a wall at x = L. We note that
while the results in Fig. 8 are qualitatively similar to
those presented in Fig. 5, the results for an unbounded
shelf do show significantly reduced transmission com-
pared to those obtained for a bounded shelf. This
quantitative difference might have been expected as
the relative change in depth indicated by the abscissa
in Fig. 8 is uniform in x, whereas that in Fig. 5 cor-
responds to the maximum depth change across the
shelf.

b. Results for a smooth topographic jump

The preceding results presented here are strictly valid
only for the case of an abrupt jump in bottom topog-
raphy. In reality, such a situation rarely, if ever, occurs
in the ocean so it is of interest to consider the parameter
range over which a smooth change in topography may
be reasonably represented by an abrupt jump. To ex-
amine this question, we consider results for the follow-
ing topography:

hy exp(2bx), =0
h= hyexp(2bx + 2¢cy), —a<y<0 (6.12)
ho exp(2bx), y<-—a

where hy = ho exp(—2ca). In the regions y = 0, and y
< —q, solutions are again of the form given above by
(6.2) since h is a function of x only. Within the region
—a < y< 0, his a function of both x and y so that the
vorticity equation (2.2) is replaced by

(—%(Vz\lf ~2b¥, — 2c¥,) + 2f(b¥, — c¥,) =0
which allows solutions of the form
¥ = h'(x, y) f {Q(m, k)

X expli(mx + K™y —wi)]
+ Q*(m, k*) expli(mx + k*y — wb)}dm  (6.13)

where k™ and k* are now determined from the disper-
sion relation

(m — fc/w)? + (k + fblw)? = (b2 + AN f2w™? —

As indicated by (6.13), both long and short waves are
present in the transition region, —a < y < 0, due to
reflection at y = —a.

The general solution is now easily determined by
matching transport and sea level across y = 0 and —a.
The solution for y < —a may be written as

. Qr = T,"%m, w)e "0y (6.14)
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FIG. 9. Contour of the flux ratio F7/F; given by (6.20) for a smooth
topographic jump where ca = } In(ho/hp) = £4. Also plotted is the
percentage difference between FT,’F, and that for an abrupt jump
where the longshore topographlc scale a, and hence 4 = —(ma)(ca)f]
w is zero.

where
Az 2 —1
T, = [coszAl + (——) sinzA,] : 6.15)
A
2 172
A = i[(ca)z ~ (—bl) 42— 2A] (6.16)
cam
—1
Ay = [(b—7 + (—[-’—"—) ] (6.17)
cam cam
. . by
8 = tan"(A.A,”! tanA,) + A( Ca) (6.18)
A = —(ma)(ca) flw. (6.19)

The transfer function (6.15) and phase shift (6.18) now
involve two new parameters 4 and ca, where the latter
is, by (6.12), a measure of the jump size, ca = 3 In(hy/
ho), and equal to the total displacement beT of flh
contours across the smooth jump. The parameter A is
proportional to the longshore extent of the jump region
and as A4 vanishes the transfer function (6.15) and phase
shift asymptote to those found for an abrupt jump.
To compare the wave scattering implied by (6.14)-
(6.19) with results for an abrupt jump, we consider an
incident wave of the form (6.10), so that O is narrow
band about +m; and implies a transmitted flux of
Fr =3 [Tu(my, @) + Ty(—my, o)IFy. (6.20)
A plot of the ratio Fr/F; is contoured in Fig. 9 for the
large jump, ca = 0.5 or hy/ho = (2.72)*'. The param-
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eter yb/my is chosen to vary from zero to one so as to
include typical values. The parameter, 4 = —(m;a)(ca)
X f/w, is chosen to vary from zero, (an abrupt jump),
to five so as to allow for a jump transition region, a,
that is of order the shelf width, for w ~ —0.2fand m; L
~ 2. Plotted also in Fig. 5 is the percentage error be-
tween the smooth topography flux estimates contoured
and those obtained for an abrupt jump, where A4 is
zero.

The results show the abrupt model flux (6.6) to be
within 20% of (6.20) provided that yb/m; and A4 are
respectively less than Y2 and 2. Such a parameter space
is not overly restrictive as yb/m; is typically 2 or less,
while for w/f = —0.2 and m;L ~ 2, the condition 4'
< 2 admits a transition region a, that is up to 0.4 shelf
widths in length. For a smaller jump, ca = 0.1, results
analogous to Fig. 9 may be determined which show
that the flux estimated for an abrupt jump will again
be within 20% of those obtained for A < 2. Here how-
ever, since ca is one-fifth of the value above, the cor-
responding transition region is equal to two shelf
widths. We note also that the permitted transition re-
gion will become larger at higher frequencies as both
vb/m; and A then become smaller. These results suggest
then that the bounded shelf results may apply in a
qualitative sense to the scattering by smooth jumps
where the length of the transition region is of order
one-half or less of the shelf width.

The condition that 4 be less than 2 here is analogous
to that established by Rhines (1969) for the propagation
of planetary Rossby waves over abrupt topography.
(Note that in his paper w/é should be replaced by é/w
in the third and fourth lines of pages 171 and 172 re-
spectively.) Indeed, the results of this section are, in
general, analogous to those presented by Rhines with
[hy/h playing the role of 8.

7. Summary and discussion

The scattering of barotropic shelf waves by abrupt
longshore jumps in topography was examined for
bounded and unbounded exponential shelves by
matching modal and spectral representations for sea
level and longshore transport.

At low frequencies it was shown that solutions for
the total streamfunction, ¢, may be obtained from the
differential equation.

(1/h = 1/h)$. = 2b(¢ — d1)/h (3.5)

which, as shown, represents the change in, or produc-
tion of, relative vorticity in the form of reflected waves
(the right-hand side) due to vortex stretching induced
by flow over the jump in depth (the left-hand side).
When all f/h contours in the backward region are con-
tinued across the jump in topography, (3.5) yields so-
lutions which are shown (for abrupt changes in depth
and width) to agree with those obtained by direct mode-
matching techniques: no solutions were obtained where
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f/h contours in the backward region were not continued
across the jump. For each case considered, incident
wave energy is predominantly scattered into transmit-
ted and reflected waves, with cross-shelf structures
similar to that of the incident wave. In addition, all
scattered waves were either in or out of phase with the
incident wave since their amplitudes a;, d; are deter-
mined from the real differential equation (3.5) and
modal functions ¢;, ¢;. Streamlines were also found
to follow f/h contours resulting in a quiescent or
shadow zone forward of the topographic jump.

Surprisingly, for the case of a jump in depth the
inclusion of evanescent modes in a direct mode-
matching approach did not result in accurate solutions
for the case where f/h contours are not continued into
the forward region. Further, the mode-matching tech-
nique failed to give accurate, energy-conserving solu-
tions at higher frequencies even in the case where f//
contours are continued into the forward region. In
contrast to the analyses of Wilkin and Chapman (1987),
the inclusion of the Kelvin wave mode did not reduce
the errors in total energy flux suggesting there to be
some basic problem in either the mode-matching tech-
niques tried or in the assumed physics. It is possible
that in the cases where energy is not conserved, wave
propagation across the topographic jump is necessarily
accompanied by loss of energy from the nondivergent
wave field either through frictional dissipation or
through the (nonlinear) transfer of energy to inertia-
gravity waves and a “mean” current [Haidvogel and
Brink (1986) give an interesting discussion of the gen-
eration of mean currents by the latter process]. In the
absence of these processes there may be no solutions
of the periodic form assumed here. Examination of
numerical model results could clearly shed light on the
foregoing conjectures.

In spite of the uncertainties discussed, it should be
noted that the solutions obtained by matching modal
representations of ¥ and n, did agree with those ob-
tained from (3.5) at low frequencies, and although only
approximate solutions were obtained at higher fre-
quencies, the resulting estimates of the transmitted to
incident energy flux ratio, Fy/F;, were in qualitative
agreement with the exact solutions obtained for an un-
bounded shelf.

In fact, for an unbounded shelf with constant jump
size, s = h/h, solutions are easily found for all cases,
and Fr/F; has been shown to be given by

T = 4s[(1 + s)* + (my/by)*(1 — sY°]™" (6.6)

for an incident wave of the form ¥; ~ ' sin(m;x)
X expli(k”"y — wt)]. The result (6.6) implies that the
ratio Fr/F;will decrease with increasing jump size and
be identical for waves which propagate from deep to
shallow or shallow to deep water since 7(s) = T(s™").
In addition, the ratio of fluxes given by (6.6) is a max-
imum at frequencies for which »? is much less than
that of the zero in incident wave group speed, o2, since
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v = (1 —w?e77%)'? is then near one. At such low fre-

quencies, waves were also found to propagate along f/
h contours, even as the jump is crossed, provided that
the cross-shelf wave scale m1; ! is larger than that of the
topography 4~! = 2h/h,. However, for high ‘mode’
waves, where m1;! is small compared with 57!, the dis-
placement of streamlines was found to be less than
that required to follow f// contours and the transmitted
flux much reduced. At higher frequencies, the param-
eter v and ratio Fr/F; given by (6.6) both monotoni-
cally decreases to zero as the frequency o; is ap-
proached.

Estimates of wave scattering by smooth topographic
variations were also obtained by assuming the shelf to
be unbounded in the on/off-shore directions. In brief,
the ratios of F7/F; obtained for smooth and abrupt
jumps were found to differ by less than 20% for low
mode, low frequency waves and longshore transition
regions less than about a half shelf width. At higher
frequencies, the “permitted” longshore transition re-
gion will be larger. These results should apply in a crude
sense to the scattering on bounded shelves since results
"obtained for the scattering by an abrupt jump on both
bounded and unbounded shelves are qualitatively sim-
_ilar. Indeed, the general conclusions obtained from the
abrupt jump analysis here are supported by the
bounded shelf results of Webster (1987) who considered
the scattering due to smooth self-similar changes in
shelf width and depth. In qualitative agreement with
the analysis here, he finds, using mode matching tech-
niques, that the transmitted energy decreases with the
length of the transition region and that severe scattering
does occur when this length is less than one half of the
shelf width. In addition, Webster also shows that most
energy is scattered into the gravest propagating modes
and that the longshore topographic variations act to
low pass filter incident wave energy in both frequency
and mode number spaces.

The results presented are of course strictly applicable
only to a barotropic ocean. Huthnance (1978) has
shown that stratification generally increases the phase
speed of each mode. Further, Chapman (1983) dem-
onstrates that if the maximum value of N, /f, evaluated
along the bottom (N is the Brunt-Viisild frequency),
exceeds one then w reaches fat a finite wavenumber
for each mode: no zero group velocity points exist and
consequently no shelf wave modes capable of trans-
porting energy in the backward direction exist. Thus,
while the qualitative nature of solutions for an abrupt
increase in shelf width (where no backscattering occurs)
will not likely be changed by the effects of stratification,
the results for an abrupt change in depth (where back-
scattering is typically strong) are expected to be sub-
stantially modified unless stratification is weak.

The present study was motivated by the desire to
model wave propagation down the Labrador Shelf
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where the wintertime stratification is believed to be
very weak. Even in this case quantitative details are
not expected to be accurate and qualitative conclusions
require verification. The results do, however, suggest
that wave scattering is important in this region. In view
of the demonstration by Brink (1986) that topographic
scattering of coastal trapped waves is not generally
weakened by the inclusion of stratification, it is unlikely
that this qualitative conclusion will be negated by the
inclusion of stratification.

Finally, we note that the difficulties encountered in
our attempts to determine barotropic solutions using
a straightforward mode-matching approach are likely
to be encountered in stratified models as well. It would
seem prudent to examine barotropic models further in
order to resolve the questions raised in the simplest

possible context.
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