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ABSTRACT

An analytical method for computing the speed at which the nose of a light (rotating) intrusion advances
along a continental shelf is proposed. The nonlinear model includes two active layers; the intrusion itself, which
occupies the entire shelf (and extends beyond the shelf break), and the heavy fluid situated both ahead of the
intrusion and in the deep ocean. The section of the intrusion which extends beyond the shelf break overlies an
infinitely deep ocean. Friction is neglected but the motions near the intrusion’s leading edge are not constrained
to be quasi-geostrophic nor are they constrained to be hydrostatic.

Solutions for steadily propagating currents are constructed analytically by taking into account the flow-forces
behind and ahead of the nose, and considering the conservation of energy and potential vorticity. This procedure
leads to a set of algebraic equations, which are solved analytically using a perturbation scheme in ¢, the ratio
between the internal deformation radius and the shelf width.

It is found that all the heavy fluid ahead of the intrusion is frapped and cannot be removed from the shelf.
Namely, it is pushed ahead of the intrusion’s leading edge as the gravity current is advancing behind. Unlike
intrusions without a shelf, which can never reach a truly steady propagation rate (in an infinitely deep ocean),
the intrusion in question propagates steadily when ¢ = 0. Under such conditions, the propagation rate is given
by (2g'D)", where g’ is the “reduced gravity” and D is the intrusion depth at the shelf break [note that D > H,
where H is the (uniform) shelf depth, so that at the shelf break the intrusion is deeper than the shelf].

Possible applications of this theory to various oceanic situations, such as the Skagerrak outflow, are mentioned.
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1. Introduction

When light fluid is released along a coast, an intru-
sion is formed due to the impossibility of balancing
the pressure gradient (along the wall) with the Coriolis
force. Conceptually, one can visualize that such a sit-
uation is created when a dam containing light water is
suddenly broken and the water rushes into the sea (Figs.
1, 2, 3). Equivalently, one can think of changes in the
atmospheric conditions (e.g., pressure or wind direc-
tion) which allow the penetration of light water from
marginal seas.

The intrusion advances in a similar fashion to Kelvin
waves in the sense that it can only propagate with the
coast on its right hand side (looking downstream in
the Northern Hemisphere). The present paper focuses
on intrusions along continental shelves with uniform
depth (Figs. 1, 2, 3). We shall see that the relatively
heavy oceanic water is trapped on the shelf and cannot
be removed from it, i.e., the intrusion pushes fluid
ahead of its nose.

Although the general properties of the intrusion are
relatively simple, it is quite difficult to compute the
actual advancement rate and the intrusion width be-
cause of the inherent nonlinearity, the nonhydrostatic
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motions near the nose, and the difficulty in finding
steadily propagating solutions. The nonlinearity results
from the fact that both the Rossby number and the
depth variations are of order unity and the nonhy-
drostatic motions are a consequence of the conditions
in the vicinity of the intrusion’s nose where the vertical
scale and the horizontal scale are of the same order.
Our study has been motivated by: (i) the fact that
most intrusions in the ocean take place over continental
shelves (rather than next to straight vertical walls), and
(ii) the interesting laboratory experiments of Whitehead
and Chapman (1986) which clearly demonstrate the
trapping of shelf fluid ahead of the intrusion nose.

a. Previous investigations

As just mentioned, the investigation which is most
closely related to our present problem is that of White-
head and Chapman (1986). Using a rotating table they
observed the behavior of a gravity current propagating
along a sloping bottom. They found a propagation rate
slower than that corresponding to a vertical wall and
found that, under some conditions, shelf waves were
generated ahead of the intrusion. From a theoretical
point of view, they attempted to determine the cross-
shelf structure and the conditions under which there
is shelf trapping; they did not focus on the intrusion
propagation rate although data were reported. Specif-
ically, they viewed the disturbance ahead of the nose
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FIG. 1. Schematic diagram of the dam whose breakage forms
an intrusion along the coast.

in terms of continental shelf waves and argue that shelf
trapping is only possible when the waves travel faster
than the intrusion. For a uniform depth shelf (H), the
Kelvin waves ahead of the intrusion travel at (gH)!/?
whereas the intrusion propagation speed is always
much slower, O(g’H)'?, so that trapping is inevitable.

For studies of other intrusions the reader is referred
to Stern (1980), Stern et al. (1982), Griffiths and Hop-
finger (1983), Kubokawa and Hanawa (1984a,b), Grif-
fiths (1986) and Nof (1987) which address intrusions
along straight vertical walls, With the exception of Nof
(1987) which has equated the flow-force behind and
ahead of the intrusion leading edge, these theoretical
and experimental studies have considered the intrusion
to be a long-wave. In general, a long-wave approach
has two main weaknesses. First, the long-wave solutions
correspond to hydrostatic pressure whereas the flow in
the vicinity of the nose is not hydrostatic due to the
stagnation point and the resulting fact that the vertical
scale is of the same order as the horizontal scale (e.g.,
see Griffiths, 1986). Second, top photographs of labo-
ratory experiments showing the leading edge, head and
nose indicate that near the nose the width and length
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are of the same order suggesting that the long-wave
approximation may not be valid.

b. Methods

The approach which will be taken in this paper is
similar to that of Nof (1987), i.e., we shall equate the
flow-force behind and ahead of the intrusion leading
edge. This procedure provides a direct connection be-
tween the downstream and upstream fields and, to-
gether with conservation of energy and potential vor-
ticity, enables one to compute the desired propagation
rate and the intrusion width without assuming that the
pressure near the nose is hydrostatic. The main weak-
ness of our method of solution is that only cases which
do not involve breaking waves can be investigated. The
present solution can be thought of as an extension of
Nof’s (1987) vertical wall analysis to intrusions along
shallow continental shelves. There is some (limited)
overlap between the two studies because an attempt
has been made to make the present paper self-con-
tained.

Our mathematical treatment involves integration of
the momentum equations across the shelf. The poten-
tial vorticity equation for the intrusion and the ambient
fluid are then solved and the procedure provides a set
of algebraic equations. These algebraic equations are
then simplified using a perturbation scheme in ¢, the
ratio between the deformation radius and the shelf
width. ‘

This paper is organized as follows. In section 2 the
formulation of the problem is presented; the governing
equations are given in section 3 and the relationships
between the fields behind and ahead of the leading edge -
are considered in section 4. The expansions and so-
lutions are presented in sections 5 and 6; section 7
gives the analysis and a discussion of the problem, and
the results are summarized in section 8.

2. Formulation

As an idealized formulation of the problem consider
again the advancement of a light current with a front
as shown in Fig. 2. As mentioned before, conceptually,
the establishment of such a current can be thought of
as being the result of a dam which has been broken
(Fig. 1). The intrusion is advancing along a continental
shelf with a uniform depth (H); for simplicity, it will
be assumed that, as the heavier shelf fluid, the intruding
current has a uniform potential vorticity (f/H). It will
become clear later that such an assumption is plausible
because currents with potential vorticities different
from f/H will intrude in a very similar fashion. Also,
our techniques can be used for any uniform potential
vorticity.

The xrand yraxes are directed along and across the
intrusion and the system rotates uniformly at f72 about
the vertical axis (z;). Here, the subscript f indicates
that the variable in question is associated with a fixed
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shelf break (p*&p)

SIDE VIEW

FIG. 2. A sketch of the intrusion under study. Near the intrusion
nose (point E) the flow is nonhydrostatic. Straight arrows correspond
to particle speed and “wavey” arrows denote propagation rate. Cross
sections “u” and “d” (dashed-dotted lines) are associated with the
upstream and downstream fields, respectively. Note that we view
those fields as they relate to the intrusion and not the ambient fluid.
For a three-dimensional view see Fig. 3. The dashed double-dotted
line denotes the shelf break; the dashed line corresponds to the in-
tersection of the intrusion interface with the ocean bottom. The

sketched particle speeds correspond to the translating coordinate sys-
tem.

(but rotating) coordinate system. Later on we shall
transfer the equations of motion to a translating co-
ordinate system and (in order to distinguish between
the systems and keep our notation simple) use variables
without any subscript. The intrusion width and depth
are denoted by / and A, (respectively) and the “nose”
of the intrusion is defined by / = A, = 0.
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In a similar fashion to intrusions along a straight
vertical coast (Stern, 1980; Stern et al., 1982; Griffiths,
1986; Nof, 1987), there is a stagnation point at the
nose because a cross section in the xz plane indicates
the presence of a discontinuity in the slope of the
streamline associated with the surface ahead of the in-
trusion. Note that this implies that the flow in the vi-
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FiG. 3. A three-dimensional view of the intrusion under study.

cinity of the nose is nonhydrostatic (e.g., see Griffiths,
1986) because the horizontal scale is not larger than
the vertical.

3. Governing equations for the upstream and down-
stream regions

We shall now determine the equations governing
the flow several deformation radii away from the lead-
ing edge [i.e., sections “u” and “d”, (Fig. 2)]. As men-
tioned, we shall deal with a coordinate system moving
with the intrusion at its own speed C and assume that
the intrusion is moving steadily without changing its
shape and structure with time. The equations of motion
in this translating system are obtained by using the
transformations x = x; — Cts; y = yr; t = ty where, as
mentioned earlier, the subscript f denotes that the vari-
ables are viewed from a fixed coordinates system and
its omission indicates association with the moving
system.

Ahead of the intrusion’s nose (in region 4) the water
on the shelf must be trapped and, consequently, it is
pushed forward by the intrusion behind so that

us = 0; ﬂd=—f§(y_L)§ hi=H; 0<y<L

Ug=-C; 14=0; hg—> o0; L<y<oo,

(3.1)

where the subscript 4 indicates association with the

downstream area. [We shall later use the subscript u
to indicate association with the upstream field. Note
that the upstream and downstream fields are defined
on the basis of their relationship to the intrusion (as
viewed in the moving frame) and not the ambient flow.]
Here, u, 2 and 5 are, the x velocity component, the
total depth and the free surface displacement. Since
the model is inviscid, there is a discontinuity in the
speed at the shelf break (y = L); in reality, friction will
smooth this discontinuity. The shelf trapping results
from the fact that it is impossible to force fluid from
the shelf to the infinitely deep ocean. Because of po-
tential vorticity conservation, such a movement would
cause infinite relative vorticity and infinite velocities
which are, of course, impossible.

Behind the nose (upstream), in region “u”, the in-
trusion is one-dimensional and geostrophic (due to the
presence of the wall) and, as mentioned earlier, has
uniform potential vorticity f/H. With the rigid lid ap-
proximation this gives

U, =U—-C, h,=H, 0sy<sL (32

where U is the absolute velocity at the wall (y = 0).
The subscript # indicates association with the upstream
field, and the subscript 2 denotes association with fluid
2 (i.e., the intrusion), respectively. The momentum
balance for the upstream intrusion over the shelf is

anuz

Sty + C) = —g
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so that
SfUy
Nuy = — ?’ + nuz
Yo, = 8, — N)H/f+ CHy, 0<y<L (3.3)
where 7, = 7,,(0) and we have used the condition
Vu(l) = ¥ (0) = O (where ¢, the stream function, is

defined by /0y = —uh; d¢/0x = vh) which results
from continuity.

Similarly, the potential vorticity equation and the
momentum balance for the upstream portion of the
intrusion that extends beyond the shelf break (hereafter,
referred to as the “overhang”™) are

ou h,
———a;’+f=f7{3, L<y<] (3.4)
, 0hy,
fu,+C)=—g —ay , L<sy<] 3.5)

where /; is the entire intrusion’s upstream width (see
Fig. 2). These equations can be easily combined to

Ph,, h

o Re- e L<y<h (36
where R = g'H/f?. The solution of (3.6) s,
hy, = AeVRay Be¥Ra+ g L<y<l (3.7

Uy, = (Ae'y/R"—Bey’R") C, L<y<l (3.9

f R,
where 4 and B are integration constants to be deter-
mined.

There are two boundary conditions for 4,,

hy=D, y=L (3.9)

By =0, y=1. (3.10)

The first condition reflects the fact that the depth at
the shelf break (D) is known in advance (i.e., as we
shall see later, it can be expressed in terms of the trans-
port when the transport is given) and the second in-
dicates that the intrusion depth vanishes at some point
that is not known a priori. We shall also use two
matching conditions on 7 and u,

M =Ty Y=L (3.11)

y=1L, (3.12)
where the + and — signs indicate that the variable is
just inside or outside the shelf. These conditions state
that, within the intrusion, the pressure and velocity are
continuous.

Relationships (3.9)-(3.12) provide the following al-
gebraic equations,

Ae URiy BelRa f H=D
Ae™WRi + BeliRa o H = (

Fom g
uuz - uup

(3.13a)
(3.13b)
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%D= —f-gému, (3.13c)

fi (de~URi — BelRay = U, (3.13d)
d i

This completes our derivation of the general solution
for the upstream and downstream regions; the detailed
solution will be derived in the next sections.

4. Connecting the upstream and downstream fields

As mentioned, we shall obtain the desired solution
to the problem without solving for the complicated
nonhydrostatic (three-dimensional) field near the lead-
ing edge. We will accomplish this by using the following
connection principles.

a. The flow-force

This is obtained by integrating the x momentum
equation from the shoreline to the intrusion edge. The
integration is done away from the intrusion’s nose,
where the flow is nonhydrostatic; we do not assume
yet, however, that the flow is one dimensional (i.e.,
independent of x). We have

f f ( %+ zauz)dydz —f f f vydydz
—ffsga—;’cdydz .1

where s is the intrusion’s cross section. Since u, and
v, are hydrostatic and independent of z, (4.1) can also
be written in the form

f L ) + 2 oy |a
-— + — v
A [ax( 2Us”) ay( 2U2 2)] y
i(x) ix) dn
- fvzhzdy + ghz -— dy = 0, (42)
(i ()} ox
where /(x) is the intrusion width and the continuity
equation [d(hu)/dx + (hv)/dy = 0] has been used to
simplify the expression for the nonlinear terms. Recall
that 4, is the intrusion depth so that A, = H on the
shelf and 4, > H otherwise.
Equation (4.2) can also be written as
/(x) J~l(x) 9 5 ) d
+ —_ — 3
o [ 0x( 2U2 ﬁPz)] y

h2u2v2

0
i(x) an
+ dy=
J; gh; ox y=0

which, since 4, = 0 along y = /x) and v, = 0 along y
= 0, reduces to

I(x) i(x) an
[ [— (haty? —ﬁh)]dy+ [T emSay=0

0
(4.3)
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Note that the streamfunction y, is defined by dy¢,/dy
= —wyhy; Aa/dx = V25, It is convenient to split (4.3)
into two integrals, one over the shelf and the other for
the “overhang’:

LT g
fo [& (Hu? _cﬁh + an)de

1(x) 9
+ f [— (h2u22 —ﬂz + g’h22/2)]dy =0
L |0x

which can be further simplified by using the Leibnitz
rule for the differentiation of an integral,
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a 'L
Py [ fo (Hus® = fi + an)dy}

9 i(x)
+ o [f (houg® — fb + ghzn)dy}
x |JL

al
— [hou? — b + g'h22/2]y=l(x>'£c =0. (4.4

Note that the term in the square brackets is to be eval-
uated along the edge.

By defining ¢ to be zero along the edge (h; = 0),
(4.4) takes the form:

(hais® — fis + g'hzz/z)dJ’] -0

~

I

which states that the flow-force (I') does not vary from
one cross section to another. Recall, however, that
strictly speaking, (4.5) was derived only for hydrostatic
flows. -

Since fluid is pushed ahead of the intrusion nose, it
is straightforward to show that in region “d” the flow-

force is simply .

J; gHndy.

(Note that at “u” and “d” the flow-force of the infinitely
deep ocean is, of course, identical.) Following Benjamin
(1968) and Nof (1987), it is permissible to equate the
hydrostatic flow-forée on the two sides of the leading
edge even though the flow in between is nonhydrostatic.
In view of this and (4.5) the flow-force constraint can
be written as

L I
.[) (Huy,” — fbu, + gHn)dy + fL (Pugthu

L
gHnady (4.6)

o+ gDy = [

0

where, as before, we have incorporated the subscripts
u and d for the upstream and downstream regions (Fig.
2). Equation (4.6) can be further simplified by taking
into account the upstream and downstream solutions
on the shelf, (3.1) and (3.2). This gives

H(U = CYL + gHiL
/ I
+ L i [huzuuf +fC f h,,zdy]dy — fCHI2. (4.6a)
) y )

b. Continuity

For the intrusion, the continuity equation [3/dx(hu)
+ 9/3y(hv) = 0] gives

— 4.5)
]
A Ry, dy = 0
which, in view of (3.2), can also be written as
I
HWU—-C)L+ | hyu,dy=0. 4.7)
L

¢. Energy

Since we are seeking solutions for energy conserving
flows, we may apply the Bernoulli integral. For hydro-
static motions in a steadily moving coordinate system,
the Bernoulli invariant is

(@ +v)/2 + plp + gz + fCy = BWY), (4.8)

where p is the pressure. Application of (4.8) to the
streamline connecting points C and F (Fig. 2) gives,

(D2 + fCli = (U — CV/2 + gihu,  (4.9)

where, as before, 1, = 1,(0).

d. Stagnation point at the nose

In addition to the constraints mentioned above, there
is a constraint resulting from the fact that the nose is
a double stagnation point. Specifically, as the relatively -
heavy fluid dives below the nose it senses a disconti-
nuity in the slope of the intrusion’s lower surface im-
plying that the speed of the heavy fluid vanishes at the
wall (e.g., see Von Karman, 1940; Benjamin, 1968;
Stern et al., 1982; Griffiths, 1986; Nof, 1987). Because
of the wall, the light intruding fluid must also feel such
a discontinuity and, therefore, it must also stagnate at
the nose (e.g., see Stern et al., 1982; Griffiths, 1986;
Nof, 1987). Even though the flow near the nose is non-
hy(/irostatic, it is possible to use the information asso-



MARCH 1988

ciated with the above stagnation points because the
most general form of the Bernoulli invariant is not
restricted to hydrostatic flows. This general form is

W+ v+ w?/2+p/p+gz+fCy=B, (4.10)

where the pressure (p) is not necessarily hydrostatic
and B is a constant that varies from one streamline to
another. Note that because of the three dimensions, B
cannot be written in terms of a streamfunction.
Application of (4.10) to the ambient fluid along the
streamline connecting the stagnation point and point
D (Fig. 2) gives
gne = C*/2 + gp(t2p + np)/(p + Ap) + fCL — géap.
4.11)
Similarly, application of (4.10) to the intruding fluid
along the streamline connecting ED gives,
gne = [un(L)*/2 + g(é2p + np) + fCL — gkap.
- (4.12)
By subtracting (4.12) from (4.11) and, in accordance
with the Boussinesq approximation, neglecting terms
of O(nAp/p) one finds,
C*2—-gD= [uuD)1?/2 (4.13)

where, as before, D is the upstream intrusion depth at
the shelf break (D = H, see Fig. 2).

We shall see in the next sections that the derived set
of constraints, boundary conditions and matching
conditions is sufficient for solving the problem. Al-
though not a priori obvious, some of the constraints
associated with the conservation of energy are redun-
dant, as we shall see shortly.

5. Scaling and perturbation expansion

a. Nondimensionalization

To obtain the solution we introduce the following
nondimensional variables:

C* = C/(g'H)'"; iy = w/('H)'"; iy = hu/H
nt = ngl/LEH)"  y* = y/L; Ry=@'H)'/f
€=R4L; U*=U/gH)" & =(i—L)/Ry
% = n(0)g/fL(g'H)%; D* = D/H

(5.1)

For convenience, we also introduce the following
transformation:

y=L+a o*=a/R;; y*=1+ea*
The scales 6f the various parameters are

C* ~ O(1); ug, ~ O(1); hi, ~ O(1); ni, ~ O(1)

y* ~0(l); U* ~0(1) & ~O0O(l) e<O(l)
a* ~ O(1); D* ~ O(1) '

(5.2)
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With the above definitions, the flow-force equation
(4.6a), the continuity equation (4.7), the Bernoulli in-

variant (4.9) and the double stagnation point constraint
(4.13) become

6-
awr - e vt e [ sy

o

's‘
+ C* f _h;',;da*]da* =C* (53)

6‘

U - C* + ¢ htutda* =0 5.4)

[uk (1 + €6%)/2 + (1 + &%) C*
= (U*? = (CH2 + 7% (5.5)
(C%22—(U*=CH}2—-D*=0. (5.6)

Similarly, the algebraic equations resulting from the
upstream boundary and matching conditions (3.13a- .
d) are,

A*¥ + B* + 1= D* (5.7a)
A*e™™ 4+ B*e™* + 1 =0 (5.7v)
(D*)? = —U* + %, (5.7¢)
A¥ — B* = U* (5.7d)

where the nondimensional constants 4* and B* are of

order unity and are defined by
A* = ge™MRiyfJ,  B* = Bel/Ri/H. (5.8)

b. Expansions

It is further assumed that all of the dependent vari-
ables possess power series expansions in e, the ratio
between the deformation radius and the shelf width,

* =86+ MW+ ...
u¥ = uuz(o) + fuuz(l) 4 e
C*=CO+CV+ ...
U*=U9 + UD + ... Lo
.;‘732 = ﬁuz(o) + Gﬁuz(l) + ...

~

*

(5.9)

A* = AD + 4D + ...
B*=B9+ B+ ...

Note that, as mentioned, D*, the nondimensional
depth at the shelf break, is taken to be given.

Substitution of (5.9) into the constraints (5.3), (5.4),
(5.5) and (5.6) gives the zeroth-order balances,

7, @ = CO (5.10)
U®=co (5.11)
CcO=4,® (5.12)

C® = (2D*)'2, (5.13)
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Evidently, to O(1), the flow-force constraint is identical
to the application of the Bernoulli invariant along the
intrusion’s boundary.

We proceed now by substituting (5.9) into the con-
ditions that govern the overhang (i.e., the portion of
the intrusion situated above the deep ocean), relations
(5.7a)-(5.7d). The zeroth-order balances are

AQ 4+ BO + | = p* (5.14a)
A®=® 4 pOL6° L — (5.14b)
vo = 4,© (5.14¢)

A9 _ O = O (5.14d)

We see that (5.14c¢), which originated from the con-
dition of matched intrusion velocities above the shelf
break, does not yield any new information—it is re-
dundant. Likewise, the Bernoulli invariant applied to
the streamlines connecting A and D gives no new in-
formation.

6. The detailed solution

The zeroth-order approximation of the constraints
(5.10)-(5. 13) gives immediately the solution for CcO,
U and 4,,%. The solution of (5.14a, b and d) will
give the constants A® B® and 69, We begin by ma-
nipulating (5.14a), (5.14d), (5.13) and (5.12) which
yields,

A9 =[2D*)'? + D* — 1]/2 (6.1)
B® = [D* — 2D%'? — 1]/2. 6.2)
We proceed by rewriting (5.14b) in the form:
B + ¢ + 4@ =0
which has the solutions
e = [~1 £ (1 — 449B®)'?2BO,  (6.3)

There are two conditions that must be satisfied in order
for our solution to be physically relevant. First, (1
— 449B®) > 0 and this requires.D* < 4. Second, 6
must be positive so that, [—1 * (1 — 44 PB®)1/2),2B©®
= 1; it is straightforward to show that this requires D*
< 2 + V3 and that the minus root must be chosen.
Because of our modeling requirement that D* = 1 (no
heavy water on the shelf), the final conditions on D*
can be written as,

1<D*<2+V3=3732 (6.4)

The complete zeroth-order solution can now be written
in the form,

C* = 2D®'2 + Oe) + + + » (6.5a)
U* = (2D®2 + O(e) + + - » (6.5b)
it = (@2D%'2+0(e) + « - - (6.5¢)
ut=0+0(++-+; 0<py*<1 (6.5d)
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ut,=11@D%" + D* — 1] = L p*
— (2]_)*)1/2 - l]e"" — (2D*)'/2 +0() + - - -

O<a*<o% (*=1+e* (6.5)
= 3 [@D%'2 + D* — 1]e™" + 1 [D*

- (2D*)1/2 - l]e"' +1+0()+ -+ -;
O<a*<é* (G*=1+e*) (6.5)
& =In{{—1 — [1 — [2D*)'? + D* — 1]

X [D* — 2D%)"? = 1]]'*}/[D* — (2D*)'?
— 1]} + 0@+ - -+ (6.58)
ut =0+ 0() + + - +; 0<y*<l (6.5h)
ur =—C*+0(e+ --+; 1<y*<ow (6.5])

It is convenient to present these final results in a di-
mensional form:

C=U=(2¢'D)” (6.6a)
u, = (2D/H)'*fL(g'H)"?/g (6.6b)
Uy = Uy, =0; O<y<L (6.6¢)
' 172
uq = E0 @D/ + D/ ) ~ 11670
(g,H)llz 1/2 L)/
[(D/H) — 2D/H)'? — 1]e¥~1/R
- QgD L<y<lI, (6.6d)
Uy =—Q2¢D)"% L<y<o (6.6
hy,=H, 0<y<L (6.6f)

Py = g [(2D/H)"> + D/H — 1]e"0~D/Ra

+ %I[(D/H ) — (2D/H)'? — 1]e~D/Ra + K,

L<y<l (6.6g)
8=1—L=RyIn{{—1~[1~[2D/H)'"?
+ (D/H) — 1][(D/H) — (2D/H)""?
— 111'2}/((D/H) — 2D/H)'?* — 1]}.

Within our order of approximation, the intrusion vol-
ume flux (Q) is,

(6.6h)

0 = (2¢'D)'?HL 6.7)
where H < D < 3.732H and (g'H)"?/f < L.

The minimum volume flux required for our solution
to be valid is, therefore, (2g'H)"?HL. Intrusions cor-
responding to fluxes smaller than that will not flood
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the whole shelf, i.e., they will not extend beyond the
shelf break. Such cases are beyond the scope of our
study. The maximum volume flux is theoretically
(7.464g'H)"*HL; however, our perturbation scheme
breaks down even for smaller fluxes because as D —
3.732H, the overhang width goes to infinity so that e
is no longer small. As far as the application of the model
is concerned, these limitations do not present a diffi-
culty because most outflows extend a distance of the
Rossby radius beyond the shelf break.

7. Discussion

The predicted velocities, depths and lengths are
shown graphically in Figs. 4 and 5. It is important to
realize that * — oo as D* — 3.732, i.e., under such
conditions, our perturbation scheme breaks down be-
cause ¢ = 0. A detailed comparison between the pres-
ent predictions and the laboratory observations of
Whitehead and Chapman (1986) is impossible because
the laboratory setup corresponds to a situation that is
quite different from that considered in our model. First,
the laboratory experiment corresponds to a sloping
bottom whereas our model addresses shelves with con-
stant depth. This implies that, in contrast to Whitehead
and Chapman where topographic shelf waves played
an important role, topographic waves cannot be present
in our case. Second, the intrusion in our model overlies
an infinitely deep fluid whereas in the laboratory the
lower layer is finite. Third, in the model the shelf is
much broader than the deformation radius whereas in
the laboratory the two were of the same order. Finally,
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friction is, of course, not entirely negligible in the lab-
oratory.

Despite these important differences, there is an en-
couraging qualitative agreement between our results
and the measurements of Whitehead and Chapman
(1986). Their results correspond to a propagation rate
of [0.90 + 0.10)(g’D)'/? (where D is the maximum in:
trusion depth) whereas our prediction is 1.41(g'D)"/2.
Note that Whitehead and Chapman’s value was ob-
tained from their initial propagation rates (¢;, given in
Table 2) where the maximum depth was estimated
from the intrusion width w, the shelf slope, and the
slope of the interface near its intersection with the bot-
tom and free surface [O(R/H)).

Our solution has two main weaknesses. The first is
associated with the fact that the model does not allow
for breaking waves and detrainment. With our method
of solution this is unavoidable because breaking waves
cause alteration of potential vorticity (Nof, 1987) and
a loss of energy. The second weakness results from the
integration technique. Specifically, since we have not
found the detailed solution for the intrusion head and
nose, we cannot really show that it allows for a steady
propagation rate.

8. Summary

The conclusions of our study are as follows:

1) When light fluid is released into a broad shelf
(i.e., L > R,y where L is the shelf width and Ry is the
Rossby radius) adjacent to an infinitely deep ocean,

|
304
2.04
1.0+
) o 2.0 30 3732

D" = D/H

FIG. 4. The dependence of (i) the intrusion propagation speed C* and the absolute particle
speed in the intrusion U* (solid line), (ii) the absolute particle speed at the intrusion edge (dashed
line), and (iii) the overhang width §* (dashed-dotted line) on the intrusion depth at the shelf

break (D*).
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FIG. 5. The absolute velocity profile in the overhang (@ and ¢), and the depth profile (b and d) for two different values of D/H
The value of 3.60 for (D/H) was chosen because it is close to the critical value (3.732).

and the mass flux is greater than (2g'D)?HL (where
H is the uniform shelf depth and g’ is the reduced grav-
ity), then, steady propagating solutions are possible.

" 2) Shelf water situated ahead of the intrusion’s
leading edge is trapped, i.¢., it is pushed forward by the
intrusion behind and cannot be removed from the shelf
(Figs. 2, 3).

3) The steady intrusion propagation rate-is simply
(2g'D)'? where D is the intrusion depth at the shelf
break (i.e., D = H, where H is the shelf depth). The
width of the overhang (i.e., the portion of the intrusion
that extends beyond the shelf break) ranges from one
to several deformation radii (Figs. 4 and 5).

4) Admissible intrusion depths at the shelf break

range from H to about 3.7H; when D — 3.732H, our
perturbation scheme in ¢ (=R,4/L) breaks down because
the overhang width goes to infinity so that it cannot
be scaled with Ry as originally assumed (Fig. 4).

The above results can have applications to numerous
intrusions in the ocean. Almost all outflows are asso-
ciated with shelves rather than straight vertical walls
which were previously considered (e.g., Stern, 1980;
Stern et al., 1982; Kubokawa and Hanawa, 1984a,b;
Griffiths and Hopfinger, 1983; Griffiths, 1986; Nof,
1987). The Skagerrak outflow (i.e., the outflow from
the Baltic into the Atlantic) is one example (Mork,
1981; Aure and Saetre, 1980); others are the so-called
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Kyucho (see e.g., Kubokawa and Hanawa 1984a,b),
the outflow from the Denmark Straits and the Ches-
apeake Bay (Boicourt, 1973). All of these outflows
should have trapped shelf water ahead of the intrusion’s
nose.

So far, there have been no recorded observations of
such trapping in nature. We suspect, however, that this
is probably due to the fact that there have not been
any direct attempts to look for it rather than due to
the lack of trapping. It is hoped that future observa-
tional programs will include such attempts as well as
attempts to determine whether the propagation speed
is indeed (2¢'D)'.
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