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ABSTRACT

Intense cooling of a warm-core ring or warming of the fluids surrounding a ring can increase the density of
that ring relative to the surrounding fluids. This increase in density can cause the ring to sink under the surrounding
fluids. A simple model of this process in a two and one-half layer (two active and one passive layer) ocean
consisting of an inviscid Boussinesq fluid on an f~plane is presented. The model assumes that the cooling or
heating occurs in such a way as to maintain a uniform density throughout each of the active layers. This special
form of the heat flux allows the results for various relative ring densities to be connected through the conservation
of potential vorticity. Analytic solutions are constructed and their structure helps to establish the physical
processes accompanying the sinking of a ring.

Results show that warm-core rings can sink in a matter of weeks when exposed to typical cold-air outbreaks
of —1000 W m™2 surface heat flux. The model predicts that when the ring sinks it is overwashed completely,
but this overwashing layer is very thin near the center of the ring. It is suggested that the convective mixing
associated with continued cooling will act to suppress any surface signature of the overwashing. Applying the
same model to the process of differential warming of the surrounding layer, leads to similar results, except that
any surface signatures of overwashing will be visible due to the lack of convective mixing. The main difference
between cooling the ring and warming the environmental fluid is that, in the former case, the model breaks
down when the ring is capped whereas, in the latter case, the ring continues to sink as the warming continues.
It is proposed that the above mechanism can lead to the formation of streamers when one portion of the
overwashing fluid has been passively marked with a visible tracer such as temperature or chlorophyll.

It is shown that the fluid that initially overwashes the ring originates under the ring, and not from outside
the ring. When the ring sinks, this fluid is pushed out to the edge of the ring and spun up in the process. The
theory further provides a mechanism for the entrainment of shelf-water organisms that are observed in warm-
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core rings.

" 1. Introduction
a. Background

Warm-core rings are highly energetic structures that
occur in most of the world’s oceans. The structure and
dynamics of warm-core rings have been studied for a
number of years. Still, there are certain observations
for which no satisfactory explanation has been devel-
oped. For example, thin cold-water intrusions, called
streamers, have often been observed from satellite
photographs to spiral in towards the center of warm-
core rings (Fig. 1). The dynamics of these streamers
have yet to be explained. Also, the surface temperature
signature of rings have been observed to disappear for
several days after the passage of a cold air outbreak
(Shay and Gregg, 1986). Again, the dynamics of such
an event have not been explained.

The cooling of warm-core rings has been examined
by a number of researchers from differing perspectives.
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Within recent years an extensive set of measurements
in and around several warm-core rings have been made.
Measurements were made in ring 82B (the second ring
formed during 1982) over an interval of five months
in an effort to understand its temporal evolution. Pa-
pers by Evans et al. (1985), Joyce and Stalcup (1985),
Olson et al. (1985), and Schmitt and Olson (1985) rep-
resent the results of these measurements. Each of these
analyses was restricted to either simple chronological
descriptions of the changes observed in rings, or one-
dimensional models of the convective processes re-
sponsible for the gross ring changes observed. Schmitt
and Olson (1985) did show that lateral entrainment of
shelf water was required to explain the changes ob-
served in ring 82B, but offered no detailed explanation
of how that entrainment might occur.

Later attempts to model ring evolution have been
more sophisticated. Olson (1986) further examined the
lateral entrainment required in 82B. His analysis of
the salinity changes in the upper 50 m of the ring sug-
gested some combination of an advective radial inflow
of fresh surrounding fluid and horizontal diffusivity.
Olson states, “The dynamics behind such an inward
surface flow, however, are not obvious since this de-
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mands flow up the pressure gradient.” Olson’s calcu-
lations show that a purely diffusive mechanism for the
influx would lead to an e-folding time for the surface
salinity anomaly in the ring of just 84 days, but such
fast processes have not been observed. Olson then states
that shear dispersion, as described by Dewar and Flierl
(1985), could reduce the required lateral diffusivity by
increasing the diffusive flux. Flierl and Mied (1985)
examined the effects of secondary circulation in a fric-
tionally-decaying warm-core ring. Their results can ac-
count for the observed mixed-layer shallowing within
a ring (assuming an unusually large vertical mixing
coefficient of 100 m? s!), but they do not generate
sufficiently fast radial velocities to explain streamers.

All of the previously mentioned studies were of sur-
faced warm-core rings. The structure of submerged
rings has been described by Ikeda (1982) using a nu-
merical model. Gill (1981) described the form of a ho-
mogeneous submerged ring that was injected into a
uniformly-stratified, infinitely-deep ocean. For other
aspects of ring dynamics, the reader is referred to the
Warm-Core Rings Collection appearing in the Journal
of Geophysical Research (Vol. 90, No. C5, 1985) and
the Warm-Core Ring issue of Deep-Sea Research (Vol.
33, Nos. 11/12, 1986). These two special issues contain
numerous articles on the physics, chemistry, and bi-
ology of warm-core rings.

The present research is an attempt to link together
the observations by examining the dynamics of a warm-
core ring that becomes denser than the surrounding
fluid. The conjecture is that a cold-air outbreak could
cool a warm-core ring to the point where it would sink
and be overwashed by the surrounding fluid. Alter-
natively, differential vernal warming of the fluids sur-
rounding a warm-core ring could cause those fluids to
become less dense than the ring, again leading to the
overwashing of the ring. It is further speculated that,
in some cases, this sinking can lead to the formation
of streamers through the spiral inward flow of a passive
tracer (e.g., heat or chlorophyll) in the overwashing
fluid. In order to simplify the discussion, the model is
presented in terms of the effects of ring cooling. A dis-
cussion of the alternative of differential warming ap-
pears towards the end of the paper.

b. Model overview

The model in the study consists of three layers under
a rigid lid: a shallow upper layer (hereafter referred to
as the mixed layer), an infinitely deep bottom layer,
and a zero-potential vorticity layer which comprises
the ring itself (Fig. 2). The fluid is assumed to be Bous-
sinesq and the flow to be hydrostatic. Asin Gill (1981),
the ring is modeled as if it were formed through an
injection of fluid into a resting two-layer system. The
ring starts out lighter (but more saline) than the shallow
mixed layer but then is cooled to become heavier than
the mixed layer. Note that this cooling need not be to
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FIG. 2. Conceptual drawing of a warm-core ring (a) before and (b)
after the ring has (due to differential atmospheric cooling) sunk below
the surrounding mixed layer.

a temperature below that of the mixed-layer since
warm-core rings are considerably more saline than the
mixed-layer.

The process of the ring cooling and sinking is shown
schematically in Figs. 2a and 2b. The interfaces in Fig.
2a show the ring to be initially above the mixed layer.
At a later time, after some cooling has occurred, the
ring will sink below the mixed layer and appear as
shown in Fig. 2b. It will be shown analytically that
when the ring is cooled below the density of the sur-
rounding mixed layer, it sinks completely below the
upper layer; partial sinking cannot occur. The mixed-
layer fluid, which was originally below the ring when
the ring was first formed, is initially displaced to the
outer edge of the ring as the ring sinks below the surface.
The mixed-layer fluid then overfloods the ring as the
ring continues to be cooled. The model concentrates
on the flow in the mixed layer during this cooling and
sinking process.

Following Nof (1983) and Adamec and Elsberry
(1985), the cooling is assumed to be tapered in such a
way as to increase the density of the ring uniformly
throughout its entire lifetime. This special form of the
cooling, shown schematically in Fig. 3a, and discussed
in detail in the following section, allows the results for
various ring densities to be connected through the con-
servation of potential vorticity. The cooling is further
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FIG. 3. Conceptual drawing of the heat flux (Q) used in the model.
The top panel, a plot of heat flux vs radial distance from ring center,
shows how the heat flux is tapered over the ring in order to maintain
a uniform ring density. The detailed dependence of Q on r is discussed
in section 2a. The lower panel, plotting heat flux vs time, shows the
periodic cooling structure used in the model. The time scale associated
with these cooling events is on the order of days.

assumed to be intermittent. That is, each cooling period
is followed by a period of at least one day where there
is no heat flux (Fig. 3b). Note that the intermittent
cooling episodes shown in Fig. 3b correspond to a finite
cooling time, but instantaneous cooling episodes of the
kind considered by Stommel and Veronis (1980) are
also applicable to our model. The intermittent nature
of the cooling permits any inertial-gravity waves gen-
erated during the process of cyclo-geostrophic adjust-
ment to propagate away. Thus the model can be solved
analytically in terms of a steady-state solution at each
ring density. All flows are assumed to be steady (at
least at times scales short with respect to the cooling)
and axisymmetric. (It is believed that these adjustment
waves are small if the cooling is slow enough, but a
proof of this conjecture is beyond the scope of this
analysis. In support of this conjecture, the analysis of
Veronis, 1956, suggests that adjustment waves of this
type are small if the forcing occurs over more than
one-half of a pendulum day, here about 17 h.)

The model is divided into two sets of equations, one
representing the case of a surfaced ring and one rep-
resenting the case of a submerged ring. In both cases,
the ring is assumed to have zero-potential vorticity
throughout. This assumption is a convenient one that
has been used in a number of previous studies (e.g.,
Nof, 1981; Killworth, 1983). The mixed layer is as-
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sumed to have a uniform potential vorticity of f/H,
corresponding to an initially resting layer of depth H.
As previously mentioned, the model assumes that the
ring was formed through the injection of the ring ma-
terial at a point on top of the previously resting mixed
layer. This formation process is consistent with the
above assumptions. Although other formation pro-
cesses can be envisioned, it is argued in section 6 that
this particular formation process is the most appro-
priate one to consider.

The remainder of this paper is organized as follows.
The next section discusses the formulation; sections 3
and 4 describe in detail the models and section 5 pre-
sents the results of the study with plots of ring interfaces,
velocities and fluid parcel trajectories. In the final sec-
tion the results are summarized and the limitations
and implications of the study are discussed.

2. Formulation

a. Fundamental equations

Consider the flow of an inviscid fluid in a shallow
upper layer on an f-plane. The origin of the cylindrical
coordinate system is located at the bottom of the layer
with undisturbed depth H and the system rotates uni-
formly about the vertical axis (see Fig. 4). Assuming
that the flow is hydrostatic and the fluid is Boussinesq,
the governing equations are

aV, 6V, Vo aVr ng N 1 6p
6t+V'6r+r66 r SVo==po or
(2.1a)
av, aVy VoV, V.V, i1 0p
— + r_+__ 7 = — 1.—-1 &
a o Ty e vy HIVm e
(2.1b)
ap
3 P8 (2.1¢)
14 1o
;E;(I‘V,h) + ;%(Vgh) =0 (2.1d)
dp op Vydp V,p ardF
— 4+ V=t ——+—=—-——, .
a T Tt G 9z 19

In these equations, V, and V} are radial and azimuthal
velocities, ¢ is time, fthe Coriolis parameter, p the den-
sity, po the mean density, p the pressure, g the gravi-
tational acceleration, /4 the depth of the layer, o the
thermal expansion coefficient for the fluid, ¢, the spe-
cific heat of the fluid, and F is the heat flux density.
It is now assumed that the layer is well mixed so
that its density is depth independent. This is a reason-
able assumption since convection will act quickly to
mix the effects of surface cooling vertically throughout
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the layer. Further assume that there is no heat flux
through the sides or bottom of the layer. Then (2.1e)
can be integrated vertically from the bottom of the
layer at depth 4 to the free surface to obtain

dp dp ar
Loy TP 7P 9T
a et T et hch

2.2)
where Q is the heat flux through the top of the ring.
From (2.2) and the assumption that the density is ini-
tially uniform throughout the layer, it can be seen that
a spatially homogeneous density can be maintained if
the heat flux Q is proportional to the layer depth, 4.
Under these assumptions it can be shown (Chapman,
1987) that the potential vorticity of the fluid layer [(dV,/
or + Va/r — (1/1dV, /36 + f)/h] is conserved.

The key assumption here is that the heat flux applied
to the ring is tapered in such a way as to maintain a
uniform density throughout the ring (Fig. 3, top panel).
If this assumption is not made, then the potential vor-
ticity will no longer be conserved and a different form
of analysis would be required. Although it is doubtful
that this exact type of cooling event would occur in
nature, it is believed that the results of the model retain
many of the dynamic characteristics of more realistic
cooling events (e.g., see the discussion by Nof, 1983).
Dewar (1987), on the other hand, has investigated the
flows resulting from the uniform surface cooling of a
warm-core ring. Dewar’s study suggests that the uni-
form cooling of a ring causes an inward surface flow
and outward deep flow within the ring.

Under the Boussinesq approximation the physical
forcing associated with cooling enters into the mo-
mentum equations through the hydrostatic equation.
Combining the results of integrating (2.1c) over depth
and (2.2) over time yields:

p= —(1 o Qt)pog(H+ -2 Q)
PoCp

where 7 is the free surface displacement and H is the
upper layer undisturbed depth. Substituting (2.4) into
the horizontal momentum equations (2.1a) and (2.1b),

av, v,  VedV, Vi
6t+V'6r+r66 r IVo
ar an
={1- = @
( TS Qt) 5, (259
6V0 an Vo 6 Vg VrVg
— +V,—t+——+——+fV,
at * ar r a9 S
(1= 0\ O (25b)
hp()Cp a9 )

show how the horizontal momentum equations are
forced by surface cooling.
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b. Boundary conditions

The model consists of the previously derived mo-
mentum and conservation equations applied to the
multi-layer geometry of an axisymmetric sinking ring
together with an appropriate set of boundary condi-
tions. The boundary conditions related to the form of
the heat flux at the surface of the ring and the as-
sumption of no heat flux through the ring walls have
already been described. The additional necessary
boundary conditions are discussed below.

The first two additional boundary conditions are

Ver)=0; r=20 (2.6a)
Vi(r) = 0; (2.6b)

which state that all azimuthal velocities within the
model are zero at the ring center and at infinity. The
restriction at ring center (V, = 0 as r = 0) eliminates
singular solutions for the velocity, whereas the restric-
tion at infinity is due to the assumption that any effects
of localized forcing will stay localized.

Two additional constraints placed on the system are
the continuity of pressure and velocity within each
layer. At the edge of the ring (at radius rg), these con-
ditions take on the form:

p(2) = p*(z); (2.7a)
Vi (2) = V' (2); (2.7b)

where the minus superscript indicates the value eval-
uated just inside the ring edge, the plus superscript de-
notes evaluation outside of the ring edge. The conti-
nuity of velocity arises from the conservation of angular
momentum (rV, + fr?/2). The basic argument states
that since the fluid is hydrostatic, ali fluid parcels within
a layer move as columns. Furthermore, the axisym-
metry of the system forces parcel motion to be restricted
to concentric cylinders of fluid. Two thin, concentric
cylinders which are initially adjacent will remain ad-
jacent throughout the process of adjustment forced by
the cooling. Prior to the initial ring injection, the an-
gular momentum is a continuous function of radius
(=/r*/2) and during the adjustment process the parcels
retain their angular momentum. Therefore, the angular
momentum remains continuous during the adjustment
process and so the velocity must also be continuous.
Both of these constraints appear later as boundary
conditions in the matching of separate solutions ob-
tained for the regions adjacent to the ring and outside
of the ring.

The final boundary condition is the geometrical
constraint that the height of the ring, s, goes to zero
at some distance from ring center, ry. This constraint,
expressed by,

r—>

r =rgp,

r = rg,

he(nn=0;, r=rny (2.8)

is required by (2.5a) and (2.5b) as shown by Flierl
(1979). Here the subscript R indicates that the variable
is associated with the ring.
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3. Surfaced ring model
a. Governing equations

The model is based on the momentum and potential
vorticity equations for the axisymmetric flow of a sur-
faced ring in an otherwise two-layer ocean. In our cy-
lindrical coordinate system r is the radial coordinate,
7 the free surface displacement, £z, the displacement
of the lower surface of the ring (as measured from the
level of the undisturbed mixed-layer interface), p the
mixed layer density, p + Apg the ring density (here
Apr < 0), p + App the lower layer density, Vpu, is the
azimuthal velocity in the mixed layer, and Vi is the
azimuthal velocity within the ring. The subscripts R,
M, D, | and u are used to indicate the ring, mixed layer,
deep lower layer, lower interfaces and upper interfaces,
respectively. The lower layer is infinitely deep and es-
sentially passive. The edge of the ring is denoted by r,
and the possible intersection of the ring-mixed layer
interface with the mixed layer-lower layer interface is
denoted by r,. Due to the geometry, the system is nat-
urally divided into three regions,

Region I r<r,
RegionII: ri<r<r,
Region III: 7> ry,

as displayed in the top view in Fig. 4.
The equations that govern this system in the three
different regions are

Region I ,
v, 0
R} (Vp=g2 (3.1a)
r ar
P Apg
= + H @3.1b
A vy P P )
v,
0="Yor Ryf (3.1¢)
r or
Eri = Em (3.1d)
Region II:
5 _
” +fVir=¢8 o (3.2a)
0% — 3_71 Apr R
p + [ Vou = 3 , £, (3.2b)
A A
ne SR H A f) = =P k=0 (320)
So oy Vo Ve
o = ) = =M+ oS (320)
o=K@+a”R+f (3.2¢)
r or
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FIG. 4. Schematic diagram of the surfaced ring model. Throughout
the model, 7 is the free surface displacement, { the internal surface
displacements [measured from the undisturbed mixed layer depth
(H)), and V, is azimuthal velocity. The subscripts M, R and D indicate
the mixed layer, ring and deep layer, respectively. The additional
subscripts / and u are used to indicate the lower and upper ring in-
terfaces. The model is naturally divided into three regions: Region I
is the two-layer region where r < r;, Region II is the three-layer
region outside Region I but inside the ring edge (r, < r < 1), and
Region III is the region outside of the ring edge (r > rp).

Region III: -
Vs dn
p +f V=g ar (3.3a)
v = Aom (3.3b)
S _ Your | Vou
S0+ = M4 S (330)

These equations represent the momentum balance in
the ring and mixed layer [(3.1a), (3.2a), (3.2b), and
(3.3a)], the condition of no flow in the lower layer
[(3.1b), (3.2¢), and (3.3b)], and the conservation of po-
tential vorticity in the ring and mixed layers [(3.1c),
(3.2d), (3.2e), and (3.3¢)]. Equation (3.1d) is the geo-
metric condition for the intersection of the ring-mixed
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layer interface and the mixed layer-lower layer interface
for Region L.

Before proceeding, the method of development of
these equations and their solution is outlined. First,
some simplifications will be made to these equations
by solving for the velocity within the ring and then
substituting this velocity into the remaining equations.
A set of scalings are introduced to nondimensionalize
the remaining equations. The equations can then be
combined to form a single velocity field equation for
each of the three regions. It is shown in Appendix A
that Region I cannot exist, so the problem is further
simplified by only considering Regions II and III. The
solution for the velocity in the mixed layer under the
ring (Region II) will be in terms of a power series. A
perturbation expansion in small Rossby number will
be used to solve the field equation outside the ring (Re-
gion III). The two solutions will then be combined using
appropriate matching conditions.

We begin by solving the potential vorticity equation
for the ring, which immediately yields Vyr = —f7/2.
Then, the rigid-lid approximation is applied (to elim-
inate # from the potential vorticity equation in Region
III) and the following scalings are introduced:

r= R4, where Rjf = 51—;1 Bep
i
A
n= H_“’Bﬁ
0
&= Hgi
Vai =fRd[7m‘ (3.4),

where R, is the internal radius of deformation outside
the ring and the carats indicate the nondimensional
parameters. Finally, the nondimensional ratio of the
density defects can be defined as d = Apgr/App. Drop-
ping the carats, the nondimensionalized governing
equations then become

Region I
o _ _r
o ) (3.5a)
1
S = Tt 1) (3.5b)
Eri= bum (3.5¢)
Region II:
an _ _r
P (3.6a)
V8M2 _ dn O
p + Vopr = 3 +d o (3.6b)
n+tdl +E)— =0 (3.60)
|Z av,
gM—gR,=—:ﬂ+—f‘+1 (3.6d)
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Region III:
VBM2 an
Vorsr = — i
"t Vo = (3.72)
Em=n (3.7b)
Vo | 0Vour
= + 7
fa =+ (3.70)

From (3.6a)—(3.6d) the velocity field equation for the
flow in the mixed layer below the ring (Region II) can
be derived, ‘

Varr | WVom
Pt Vo
1—-d r
+ p Vs + Vo) + - 0. (3.8)

In addition, within Region II, 5, &, and &g can be
expressed in terms of the velocity and its derivative,

r2

Y (3.92)
S PR L0100
Ew=(»1-4d) ‘[c 2 d(r + = )] (3.9b)
2 (Vo | OV,
ER1=(1—d)_l[c-{-d—l—%—(%f"_}_%)}
(3.9¢)

where c¢ is a constant of integration. For convenience,
one additional level of simplification of (3.8) and (3.9)
can be obtained by transforming from r and Vy, to o
and ¥, according to

_ d Foxx
Vor = l—d) ™ 2

where, as before, r; is the radius of the ring. Substitution
of (3.10) into (3.8) and (3.9) yields

and r=rpa (3.10)

8% 89 (1 — dyr*a®
29 VM VM _ _ 2.3 4N
da? ta Ao O — i 4d
(3.11a)
2 2
p=c—2Z G.11b)
8
2.2
£y = (1 — d)“[c +d- —’“8“
&2 (9 OOy
(MM .
(1 —d)(a da )] (3.11e)
2. 2
Eri = (1 —-d)_'[c+ d_roga
d S 30
+ = +=—=}|. G
ro3(1 —d)(a + da )] (.11d)
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Equations (3.1 1a)~(3.11d), with appropriate boundary
conditions, completely describe the flow in the 3-layer
region of the system, Region II.

As previously mentioned, it can be shown that in
fact there can be no Region I (appendix A) and, hence,
no intersection between the ring-mixed layer interface
and the mixed layer-lower layer interface. The system
of equations is thus further simplified by only consid-
ering the solutions within Region II and Region III.

b. Solution in Region I

Equation (3.11a) can be solved analytically using a
regular power series. Substitution of the form

Y= > aed (3.12)
i=1
yields the recursion relations:
ay = 0
(1 — drg
= 2 + ——
B=a 4d
) 0, m even
A =~ | (m=1)2 (3.13)
(m*—1) > Gip-ioy, M odd.

=1

This solution needs to be matched to a solution of
the simpler two-layer system that occurs just outside
the edges of the ring.

¢. Solution outside the ring (Region 111)

The momentum and potential vorticity equations
for Region III, (3.7a)—(3.7c), can be combined to obtain
the velocity field equation,

3V aVv
2 oM oM
4 ar? ’ ar

where r € [ry, o] and Vy(00) = 0. Again, the field
equation can be simplified through the choice of a suit-
able transformation. Here, let 9 = Vy,,/ro to obtain
o o

r? v + P 1+ —rm?=0. (3.15)
Now assuming ¥(ry) = € (implying that the velocities
in the mixed-layer are small compared to the orbital
speed within the ring), (3.15) can be linearized by ex-
panding in e,

Y= + %+ %+ - - - (3.16)

This expansion is equivalent to expanding for small
Rossby number, since € = f Vg (roX fro)~". Hence, in
contrast to the interior which is highly nonlinear, the
exterior is quasi-geostrophic. We shall see that this ap-

ha (1 + rZ)V(,M— rI/,gm{2 =0 (314)
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proach is valid as long as the density defect ratio (d) is
not too close to zero.
To lowest order, (3.15) becomes
N aY
I’z—a—’?'l'r—'é;l‘—(l +r2)01 =0
with the boundary conditions #,(rp) = 1 and #;(c0) = 0
[see (2.5a) and (2.5b)]. The solution of (3.17) is

(3.17)

9 = aKy(r) = aoe”’(r“/2 + % r‘3/2) + .-

—1
+ O(e'r>? where ap = e’"(ro‘”2 + % r0-3/2)

(3.18)

and K, is the modified Bessel function of the first kind.
The two-term asymptotic expansion for K| is used in
the model since the second-order equation below in-
volves terms of ;2. The error in this asymptotic rep-
resentation is less than 3% for all > 2. Since we only
consider rings with radii larger than five, this restric-
tion on the ring size does not present a problem.
The second-order problem is
, 0%, 0,

r -(‘972—+r—a7*(l+7‘2)02=r0ﬂ912

_ aozroe—zr(l + % r—l) + e +0EFrYH (3.19)

with the boundary conditions (1) = 0 and ¥»(o0)
= (). The total asymptotic solution is

3 - 1 5
= p=2r0| o —172 3 . 312 ~arfl 2 O 3
h=e (ro + g To ) [roe (3 r 5 )

8"0 - 10 3 _
__ =12 ,~ro—rf Y —1/2 + = 372
o ¢ (24r0 n 9)(’ 8 )]

+ .- + 0 (3.20)

In this solution, the error resulting from the termination
of the asymptotic expansion to two-terms is estimated
to be less than 6% for r > 4.

Combining these solutions yields an analytic
expression for the velocity field in the mixed layer out-
side the ring,

‘ -1
Virg = V‘)M(ro)ero—r(ro~l/2 + % ro—s/z) <r—1/2 + % r—3/2)
+ Vool re 2 + 3 o302 - 2021 1,—2_3 3
oM (Fol{ o g0 3 o
8ry — 10 _ 3
32800 7 MY ro—rf 12 D 32
ro 24r0+9e (r +8r )]
+ oo+ O@EE) + O(e™r ). (3.21)
Thus, the solution in Region III consists of a small

Rossby number perturbation expansion where each of
the individual terms in the expansion is itself an
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asymptotic expansion. As indicated, the use of a small
Rossby number expansion restricts the model to values
of the density defect ratio, @, which are different than
zero. This can be most easily seen by considering the
case where d = 0, that is, when the mixed layer density
equals the ring density. In this case, the ring-mixed
layer interface must be vertical and all of the fluid in
the mixed layer has been pushed outside of the ring.
This forces the mixed layer parcels adjacent to the ring
wall to spin up to a nondimensional velocity of —rg/
2. Thus when d = 0, the Rossby number just outside
the ring wall, ¢, is not small but of order one. (We have
been unable to derive an analytic expression for the
flow for the case where d is near or equal to zero.)

d. Matching the solutions

Despite the complexity of the two solutions obtained
so far, the solutions under and outside the ring can be
matched at the ring edge. As mentioned before, the
matching requires that the velocity and the pressure in
the mixed layer be continuous at the ring edge, r,. The
former results from angular momentum arguments
whereas the latter is a property of all fluids. It is clear
that the continuity of the hydrostatic pressure implies
that the free surface displacement, 5, and the interface
displacement, £, are both continuous. The above
conditions, together with potential vorticity conser-
vation [(3.6d) and (3.7c)] and the boundary condition
£ri(ro) = —1 [derived from (2.7)], imply that the deriv-
ative of the velocity is also continuous at ry. In view
of this, it is concluded that the continuity of the velocity
and its first derivative, given by

Vih(ro) = Vi(ro) (3.22)
Ve _OVE
2 (ro) = 5 (ro) (3.23)

(where the superscripts denote the region), assures the
continuity of pressure.

The problem is now to match the solution in Region
I, (3.12) and (3.13), to the solution in Region III,
(3.21). At this point it is convenient to introduce the
parameter g,

_ 1= drt
a ad

which, together with the velocity shear at the center,
a, [from (3.12)], is sufficient to specify the power series
solution for the mixed-layer velocity in Region II
[(3.12) and (3.13)]. The parameters g and a,, together
with the velocity at the ring’s edge V,(ro), the radius
of the ring 7y, and the density defect ratio d, provide a
set of five variables.

Taking g and a, to be given, there are three remain-
ing unknowns VI (ro), 7o, and d. These unknowns can
be solved for by applying the three algebraic conditions
given in (3.22)~(3.24). To do so, Vii,(ro) is eliminated

(3.24)
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from the condition associated with the continuity of
velocity (3.22) and the resulting equation is incorpo-
rated into the condition associated with the continuity
of shear (3.23). This yields an eighth-order polynomial
in ro which is solved numerically; only one physically
relevant root (i.e., real and nonnegative) is found. With
the solution for ry, the density defect ratio, d, can be
computed from (3.24).

The above procedure gives a set of solutions for var-
ious d and ring volumes. The desired solutions for a
given volume are then selected from this set. The results
of this analysis are shown in section 5.

4. Submerged ring model

Submerged rings are modeled in an analogous man-
ner to the surfaced rings, so only the major points and
differences are discussed here.

a. Model coordinate system and equations

The coordinate system for the submerged ring case
is shown in Fig. 5. It differs from that of the surface
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F1G. 5. Schematic diagram of the submerged ring model. The
notation is the same as described in the caption of Fig. 4.
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ring in the definitions of the interface displacements
£z, and £, within the ring. In this case, &g, is the dis-
placement of the mixed layer-ring interface above the
undisturbed mixed layer interface and £z, is the dis-
placement of the lower layer-ring interface below the
undisturbed mixed layer interface. Note that since the
ring is denser than the mixed layer for the submerged
case, d > 0. Again, the system is naturally divided into
three regions, and, as before, it can be shown that Re-
gion I cannot exist and, hence, there can be no inter-
section of the ring with the free surface (Appendix B).

Applying the same scalings as in (3.4), the nondi-

mensionalized equations governing this system in Re- -

gions II and III can be derived to be

Region II: ,
a
Vor |y, =2 (4.3a)
ar
377 aERu r _
> +d o + 2 0 (4.3b)
b= — o+~ ¢ (4.30)
R T d77 | — d R .
Vose | Won
= ——— + —— .
§Ru ; or (4.3d)
Region III:
Vord i}
M L Yo = — (4.42)
r or
Em=n1 (4.4v)
av,
L a:M =0. (4.4¢)

From (4.3) the velocity field equation for Region Il can
be derived to be

PV

2 oM
_.__..+

4 or? ’ or

3

I r
— =Vl + r’Vas) — —
d(" oM r*Vou) 2

d=0.

(4.5)

Again, this field equation can be further simplified by
applying the following transformations:

d
Vor =<9y~ 2% and r=ra, (4.6)
“To 2
resulting in
8% )
2 aagf a a—: —Oy—adt=0 (4.7)

which is the homogeneous form of (3.11a).

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 18

b. Solution in Region IT

Equation (4.7) is solved by a power series in the same
manner as before, yielding the recursion relation:

a = 0
as = a,z
2 0, m even
m = —5 0 | m=12 (4.8)
(m” = 1) > Gi@m-i-1, modd.

i=]

c¢. Solution in Region I1I and the matching of solutions

The equations for Region III are identical for the
submerged and surfaced cases, so the solution for this
region is given by (3.21). The solutions over the ring
and outside the ring need to be matched again using
the continuity of velocity and its derivative [(3.22) and
(3.23)]. In contrast to the surfaced case, the power series
solution for the mixed-layer velocity on Region II is
determined by a single parameter, @,. Thus, the sub-
merged model has only four variables at this point: the
velocity shear at the center a,, the velocity at the ring’s
edge Vii(ro), the radius of the ring 7y, and d.

Here, take a, and ry to be given so that there are two
unknowns, Viy(ro) and d. As before, V(7o) is elim-
inated through the application of the continuity of ve-
locity (3.22). Substitution of the result into (3.23) re-
duces the equation expressing the continuity of the ve-
locity gradient to a quadratic in d. Again, only one root
is physically relevant (i.e., real and positive). The results
for a given volume are again selected from the complete
set of results.

d. Computational techniques

A set of programs, written in the language C to run
on a Macintosh Plus computer, have been developed
to evaluate the above analytic solutions. The programs
allow for the computation and display of interface and
velocity profiles for a wide variety of rings. As a check
on the computations, the solution within Region II is
computed in two different ways. In addition to a
straightforward evaluation of the analytic solution de-
rived above, an additional calculation is made using a
fourth-order Runge-Kutta method to integrate the ve-
locity field equations directly. To the accuracy of com-
putations, both methods agree.

5. Results

a. Typical interface and velocity profiles

Following typical measurements of warm-core ring
82B (Schmitt and Olson, 1985) the initial conditions
for the system, prior to cooling, were chosen to be
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TABLE 1. Initial conditions.
Temperature Salinity Density
(°C) (%)  kgm™
Initial condition of ring 18 36.5 1026.43
Mixed layer 13 355 1026.78
Lower layer S 35.0 1027.68
Undisturbed mixed-layer depth 50 m
Ring volume 2.13 X 10? m?

These parameters are meant to be representative of a
newly formed warm-core ring and will serve to illustrate
the processes involved. Calculations for other initial
conditions show only quantitative differences in the
process. With these parameters, the initial value of the
density defect ratio, d, is —0.41, the outer radius of
deformation, Ry, is ~6.5 km, and the initial ring radius
is 56 km.

The mixed-layer is meant to represent a single thin
layer of the surrounding fluids and not necessarily the
classic oceanographic mixed layer which arises at the
surface. In general, the fluids surrounding a ring will
be stratified and the overflooding mechanism is ex-
pected to apply to each individual “layer” in the strat-
ified fluid. Thus, we are interested in looking at the
overwashing of individual thin layers.

A ring volume of 2.13 X 10'2 m?* was chosen because
it corresponds to a nondimensional ring volume of
1000. The heat flux is taken to be illustrative of what
can occur in the ocean. Schmitt and Olson (1985) re-
port heat fluxes on the order of 2000 W m~? during
winter storms. If this level of cooling were applied for
several days, followed by a similar period of no cooling
(to allow adjustment time for any transients), the net
cooling would be equivalent to a continuous cooling
at 1000 W m™2, the value used in this paper to provide
some form of a time reference. While the actual heat
flux may vary dramatically over the time scales of days,
this heat flux will serve as basis for examining the effects
of cooling. ,

An entire series of profiles were generated from these
initial conditions showing the ring in cross section as
it sank. Four of these profiles, plotted on nondimen-
sional scales, are shown in Fig. 6. In these plots, a unit
distance corresponds to 50 m in the vertical and ~6.5
km in the horizontal. The profile of the ring under its
initial conditions is shown in Fig. 6a. The ring at this
point is about 112 km in diameter. The initial injection
of the ring has compressed the mixed layer, forcing
some mixed-layer fluid to flow outward, thus anticy-
clonically spinning up the mixed layer.

Figure 6b is the profile for the same ring cooled to
16.6°C. At this point the density defect ratio has been
reduced to —0.04. As a point of reference, this drop in
ring temperature would be equivalent to a continuous
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cooling of 1000 W m™2 for a period of just over 15
days. The denser ring has sunk in the middle, further
compressing the mixed layer below the ring. The in-
terface between the ring and the mixed layer is steep-
ening.

Cooling the ring an additional 0.1°C would result
in the ring having the same density as the mixed layer.
As pointed out previously, this point cannot be com-
puted by the model (because ¢ —> '2), but the form of
the interface at this point can be described. When d
=0, the mixed layer below the ring will have zero
thickness so all of the mixed-layer fluid will have been
displaced to outside of the ring. The mixed-layer fluid
adjacent to the ring will be accelerated to the velocity
of the ring. The interface between the ring and the
mixed layer will be vertical as there will be no density
or velocity difference across the interface. Noting that
the system will in general spend very little time in this
state, it is doubtful that the system would exhibit any
singular behavior at this point.

Figure 6¢ shows the profiles of the ring soon after
sinking (d = 0.0031). The ring has been completely
overwashed by the mixed-layer fluids, but note that the
overwashing layer is extremely shallow (on the order
of 5 cm) in the central portions of the ring. After this
overwashing occurs, the source of differential cooling
disappears. Still, there are at least two reasons why it
is instructive to consider what would happen if the ring
would continue to cool past this point. First, it can be
shown that the effects of continued ring cooling are
the same as those resulting from a warming of the sur-
rounding fluids (section 5c¢), a situation which occurs
in the late-spring and summer. Second, even in the
case of continued surface cooling, we can speculate
that the thin overwashing layer will be quickly mixed
into the ring allowing the ring to continue its cooling.
It should be noted though that the model does not
strictly apply to the latter situation due to the intro-
duction of new fluid into the ring.

In this spirit, Fig. 6d shows the ring as if it had been
cooled to 15.4°C. This again corresponds to a contin-
uous cooling at a mean rate of 1000 W m~2 for a period
of about 16 days. The ring has continued to deepen
during this period and its diameter has been reduced
to 94 km. The mixed layer over the ring has also deep-
ened to a depth of several meters in the center of the
ring.

Figure 7 shows the nondimensional mixed-layer
azimuthal velocity profiles for the same four cases as
shown in the interface profiles. Note that the velocity
in the mixed layer increases as the ring approaches the
density of the mixed layer and then subsides as the ring
density increases beyond that of the mixed layer. In
the limits where d approaches zero, the mixed-layer
velocity approaches the velocity of the ring, —r/2. When
d = 0 (not shown) the mixed-layer is pushed outside
of the ring and the velocity discontinuity between the
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FIG. 6. Interface profiles for a sinking warm-core ring: (a) the initial state of the ring with temperature 18.0°C
(other initial conditions are given in Table 1), (b) after cooling the ring to 16.6°C (equivalent 1000 W m~2 continuous
cooling for a period of just over 15 days), the ring is nearly ready to sink below the mixed layer. The sinking ring
has displaced most of the mixed layer spinning up the mixed-layer fluid as it is forced outside of the ring. Cooling
the ring to 16.5°C causes the ring to submerge (c). During the submergence, the mixed-layer fluid overfloods the
ring completely, although the overflooding layer is very shallow in the center of the ring. Finally in (d) the ring has
continued to cool to 15.4°C. The mixed layer continues to flood over the ring as the ring continues to sink into

the passive lower layer.

ring and the mixed layer disappears. In this case the
mixed layer reaches a maximum dimensional velocity
of just over | ms™".

b. Parcel trajectories

In addition to interface and velocity profiles, the tra-
jectories of individual fluid parcels can be tracked.
(Here, itis assumed that one can average over a number
of weak cooling events to obtain a continuous descrip-
tion.) The azimuthal motion of individual fluid parcels
is given by an integration of the azimuthal velocity,
and their radial motion can be tracked through the
application of angular momentum conservation. Prior
to the initial injection of the ring, each parcel of fluid
in the mixed-layer has an angular momentum which

uniquely depends upon the parcel’s radial position.
Since the angular momentum of each parcel is invari-
ant, the initial angular momentum can be used as a
tag for each parcel. It is important to realize that, in
our model, the level of the free surface at the center (r
= () remains fixed at all times. The ring sinks relative
to the fluid in which it is embedded.

The general motion of the mixed layer as a surfaced
ring sinks is an anticyclonic, outward and generally
upward spiral pattern. When the ring submerges and
continues to sink, the mixed layer trajectories form
anticyclonic, inward spiral patterns. The overall paths
of the mixed-layer parcels resembles a vertical helical
spring that is narrow at the ends and thick in the mid-
dle. An example of this parcel motion is shown in
Fig. 8.
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FiG. 7. Azimuthal velocity profiles for the mixed layer (solid line) and ring (dashed line) for the same four
conditions shown previously (Fig. 6). The ring, being modeled as having zero-potential vorticity, is always in solid
body rotation with nondimensional velocity —r/2. The mixed layer is spun up as the ring approaches the point of
submergence (a-b) and then spun back down as the ring submerges and the mixed layer overfloods the ring (c-d).

Figures 9a and 9b show the trajectory of a single
parcel (as seen from above) corresponding to the ring
shown in Figure 6). Figure 9a shows the outward spiral
form of the parcel that starts below the ring. Figure 9b
shows the inward spiral form of the same parcel as the
ring sinks. Note that other particles behave in a very
similar fashion. The grey areas show the initial area of
the ring (which shrinks somewhat as the ring sinks).
The plotted parcel was initially (i.e., prior to the injec-
tion of the ring) two deformation radii from the center.
These spirals do not appear to progress to the outside
of the ring due to the model’s breakdown near the point
of equal ring and mixed layer densities. In fact, all of
the fluid parcels in the mixed layer are forced outside
of the ring when d = 0.

There are two major points to be made regarding
these trajectory results. First, the model predicts that
the initial fluid that overwashes a ring originates from

under the ring and not from outside of the ring. Once
the volume of the overwashing fluid equals the initial
volume of underlying fluid, any continued cooling will
begin to pump outside fluid into the ring. Second, the
overwashing fluid spirals in from all directions due to
the symmetry of the model.

This model is unable to explain the typically asym-
metric appearance of streamers. Conceptually, asym-
metries could be introduced into the overwashing fluids
in several ways. First, a portion of the underlying fluids
could be marked by an essentially passive tracer. This
tracer would then be visible as the fluids overwash the
ring. Second, the underlying fluids could be dynami-
cally asymmetric due to their being embedded in a
flow or the presence of a front under the ring. It is not
difficult to imagine how a horizontal temperature gra-
dient in the overwashing fluids could lead to a visible
spiral structure. A third alternative is that the asym-
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FIG. 8. A three-dimensional view of the trajectory of a selected
mixed-layer parcel during ring submergence. As the ring sinks, the
mixed layer parcels are displaced outward and upward, all the time
with a general anticyclonic motion. The ring then sinks and the mixed
layer parcels spin up and overfloods the ring. This particular path
represents a similar period of cooling as that discussed in Fig. 6. This
figure is taken from the model, but a period in the center of the
trajectory, when the ring has nearly the same density as the mixed
layer, had to be interpolated since the model breaks down in this
region (dashed line).

metry is due to some instability in the overwashing
fluids that tends to concentrate the overwashing event
into a single spiral band. It is impossible to say with
the current model which, if any, of these mechanisms
is important for the production of streamers.

¢. Vernal warming

The model has been described so far in terms of the
differential cooling of the ring relative to the surround-

a.
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FIG. 10. A sketch of the initial conditions for applying the model
to the process of differential atmospheric warming. In this beginning
state, the ring and mixed-layer densities are assumed to be equal.

ing fluids. Anyone still reading at this point may well
wonder about the obvious alternative mechanism, a
warming of the surrounding fluids relative to the ring.
It seems obvious that the differential warming of sur-
rounding fluids could also lead to overflooding of the
ring. Differential warming can be expected to occur
during late spring when the atmosphere begins to warm,
but the ring is still warmer at the surface than the sur-
rounding shelf water.

It can be shown that when the densities of the ring
and mixed layer are initially equal, then the effects of

b.

View

FI1G. 9. An overhead view of the parcel as it spirals outward from underneath the ring is shown
in (a). The concentric circles represent the initial ring edge (outer circle) and the edge of the ring
just prior to sinking (inner circle). A similar view of the parcel overflooding and spiralling into
the ring is given in (b). Each of the figures represents a drop in ring temperature of about 1.2°C.
The parcel shown in this figure is the same parcel as depicted in Fig. 8. Prior to the injection of
the ring this parcel was initially two deformation radii from the center.
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differential atmospheric warming of the mixed layer
can be modeled using the same analysis as for the cool-
ing of a ring. (A sketch of the required initial condition
is shown in Fig. 10.) Note that the initial condition of
equal ring and mixed-layer densities may be arrived at
through a period of active cooling just prior to the
warming episode, a situation which is similar to what
occurred in ring 82B. In this case, the only difference
between the analyses for warming and cooling is the
depth of the layer being subjected to the heat flux. In
general, the mixed layer will be warmed faster than the
ring is cooled for the same magnitude of surface heat
flux. An example parcel trajectory over a 5-day period
of 1000 W m~2 mixed layer warming is shown in Fig.
11. (Although one might expect the differential heat
fluxes to be lower than this value in the case of vernal
warming, this value was chosen to be consistent with
the previous analysis.) The spiral angle is steeper than
those obtained for the case of the ring cooling due to
the smaller heat capacity of the mixed layer.

d. Comparison with 82B data

Available meteorological data shows that ring 82B
had been subjected to substantial cooling from its in-
ception in February until sometime in late April or
early May. The effects of the cooling are evident in the
steepening of the 10°C isotherm that was observed to
occur from March to April. Figure 12 shows the radial
distribution of the 10°C isotherms as derived from
XBT surveys during March and April [reproduced
from Olson et al. (1985)]. The profiles produced by
this model show the same type of steepening of the
isotherms as displayed in Fig. 12.

Figure 13 shows the potential temperature cross sec-
tion of ring 82B in April (Schmitt and Olson, 1985).

FIG. 11. A view of a mixed-layer parcel overflooding and spiralling
into the ring for the case of mixed-layer warming. The spiral angle
is steeper here than in Fig. 9 since the thin mixed layer changes
density faster than the thicker ring for same magnitude of the surface
heat flux.
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FiG. 12. The radial distribution of 10°C isotherms from warm-
core ring 82B in March (a) and April (b), a period of substantial
cooling over the ring. The general steepening of the isotherms appears
to be forced by the sinking of the ring in the surrounding fluids, just
as in the model.

The profiles, with the characteristic steep ring edge in-
terface, appear similar to those for a ring that is about
to sink. In fact, there is a hint of overflooding occurring
in this profile in the form of surface cooling at the edge
of the ring. A satellite image from this same period
(Fig. 14, see p. 566) shows thin, wispy tendrils of cooler
shelf water apparently spiraling into the ring from all
directions around the center. As pointed out by an
anonymous reviewer, the asymmetries of this inflow
could also be caused by instabilities in the interface
between the ring and the mixed layer, but this is not
necessarily inconsistent with the mechanism we pro-
pose here.

Streamers of cold shelf water were not observed to
spiral in towards the center of 82B until the vernal
warming began in May. Figure 1 shows the typical spi-
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FI1G. 13. Potential temperature cross-section of ring 82B in April. The ring iso-
therms are very steep indicating that the ring is of nearly the same density as the
surrounding fluids. A hint of active overflooding can be seen from the impingement
of the cooler surrounding waters overtop the ring’s edge.

ral pattern associated with the inflow of the surrounding
surface waters. In the case of 82B, we believe that these
streamers are due, at least in part, to the differential
warming of the surrounding fluids.

6. Discussion
a. Modeling assumptions

As in nearly all analytical models, simplifications
have been made to make the problem tractable. The
major question here is whether the model has been
oversimplified to the point where the results are not
applicable or are even misleading. The following sim-
plifications are thought to be critical.

As in Gill (1981), the ring formation process de-
scribed here involves the injection of the ring material
into a previously resting ocean. This formation process

was chosen as the only way to obtain a uniform po-
tential vorticity in the mixed layer while maintaining
finite velocities at infinity. In order to get a better idea
of the efficacy of this assumption, consider an alter-
native initial condition. Suppose that the initial con-
dition was a surfaced zero-potential vorticity ring which
was surrounded by a resting mixed layer (Fig. 15).
Clearly, this implies a nonuniform potential vorticity
throughout the mixed layer because the mixed layer
depth varies near the ring. It also implies a large shear
between the ring and the surrounding fluids. If the ring
is cooled and sinks, or the outer fluid is warmed, the
surrounding fluids will again overwash the ring. This
time though, as the fluid parcels move inward over the
ring they will be spun up cyclonically. To our knowl-
edge, cyclonic flows are not observed on top of rings.
(Although small cyclonic ringlets on the periphery of
warm-core rings have been described by Kennelly et
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FI1G. 15. An alternative initial condition consisting of a surfaced
zero-potential vorticity ring surrounded by a resting mixed layer.
Note that this implies a nonuniform potential vorticity throughout
the mixed layer because the mixed layer depth varies near the ring.

al. (1985), these are not of significance for this argu-
ment.) The actual flows surrounding warm-core rings
are probably somewhere between these two extremes
of no spin up and a “complete” spin up of the outer
fluid. Still, it is believed that the model presented does
capture the essence of what occurs during a sinking
event,

As in Nof (1983) and Adamec and Elsberry (1985),
a very special form of cooling (or warming) has been
used within the model in order to maintain the con-
servation of potential vorticity (Fig. 3). It is safe to say
that a heat flux of exactly this type will never be ob-
served. Still there is good reason to expect the heat flux
to be tapered. In general, the heat flux is predominantly
determined by the air-sea temperature difference. The
ring, having a higher surface temperature than the sur-
rounding fluids, can be expected to lose heat to a cold
atmosphere faster than the surrounding cold fluids.
Furthermore, differential cooling may occur within the
ring if the surface temperature of the ring decreases
horizontally away from ring center. Similar arguments
can be made for the situation of a positive heat flux
into the ocean from a warm atmosphere.

The model has the simplest possible characterization
of stratification. Conceptually, the fully stratified case
can be thought of as a succession of thin layers, each
behaving in much the same manner as the single thin
layer in this study. Gill (1981) examined the intrusion
of fluid into an infinite stratified ocean, though the
lack of a free-surface in Gill’s model precludes its ap-
plicability to warm-core rings.

The ring itself was modeled as having zero potential
vorticity. This can be viewed as a limiting case for rings
since this produces a ring with maximum steepness
and nonlinearity. Kunze (1986) measured a relative
vorticity [(1/r)d(rV5)/dr] of —f]2 in warm-core ring 821,
only a factor of two less than that required for zero
potential vorticity. Several effects occur if slower rings
are considered. Slower rings are more shallow, thus
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they displace less mixed-layer fluid than faster rings of
the same density and volume. This implies that the
overwashing fluids will tend to spin slower for a slow
ring than for a fast ring. At the same time the surface
area of slower rings is increased, increasing the rate of
cooling. Both of these effects combine to increase the
angle of the overwashing spiral. Thus, it is expected
that the spiral angles occurring in real warm-core rings,
which have lower potential vorticity than the ring
modeled here, may be steeper than the curves shown
here for the case of ring cooling.

b. Implications for biological productivity

The biology of warm-core rings has been the focus
of several studies. It was originally thought that warm-
core rings were biologically unproductive, since they
originate in relatively unproductive waters. It is now
known that significant growth of the biota in a warm-
core ring can occur, making the ring even more pro-
ductive than the surrounding waters. Studies by Tranter
et al. (1982, 1983) suggest that upwelling near the edges
of rings is the principal mechanism causing the en-
hanced biological production. Franks et al. (1986) sug-
gests that frictional decay causes the ring to flatten out
thus pumping nutrient-rich waters from the depths of
the ring into the euphotic zone.

The reports by Smith and Baker (1985), Davis and
Wiebe (1985), Wiebe et al. (1985), and Olson (1986)
suggest a much more complex picture, at least for ring
82B. Initially the ring was well mixed and nutrient rich,
but low in productivity due to the mixing of phyto-
plankton below the euphotic zone. Then in May, vernal
warming capped the ring, stopping the convective
overturn within the ring. This was followed by succes-
sive blooms of phytoplankton and zooplankton. Davis
and Wiebe (1985) report that the bloom in macrozoo-
plankton was dominated by shelf water species that
were probably introduced into the ring through the
lateral exchange associated with streamers.

Our model suggests that such a lateral exchanges
may be due to differential cooling or warming events
that are sufficiently strong to bring in fluids from out-
side of the ring. Furthermore, the model shows how
layers that originate below a ring can be brought to the
surface over the top of the ring. These layers, having
been trapped below the ring since its creation, may be
richer in nutrients than the surface waters in the ring,
thus causing an increase in biomass production.

¢. Additional comments

Observations of ring 82B appear to be consistent
with the results of this model. The model suggests a
possible mechanism for the formation of streamers.
The cooling model is incomplete because it assumes
that the mixed layer overwashes the ring without being
cooled itself. In reality, it is expected that the mixed
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layer would be cooled and then mixed into the ring as
it overwashes the ring. This is exactly what appears to
have happened in ring 82B. The satellite imagery of
82B during the period of cooling does not show visible
entrainment of fluid into the center of the ring, but
instead shows the spiral inflow of fluid at the ring edge
and well mixed ring center (Fig. 14).

Streamers were observed though in 82B after the
cooling stopped in May and the vernal warming began
(e.g. Fig. 1). In this situation, it seems possible that the
visible overwashing of fluid associated with a streamer
became possible only after the cooling was turned off.
The convective mixing associated with cooling would
tend to mix out any visible surface signature of the
inflow and this may be what happened in 82B. Thus,
we attribute the initial formation of streamers in 8§2B
to differential vernal warming of the surrounding fluids.

7. Summary

The simplest possible analytic model of the sinking
of warm-core rings has been presented. The model ex-
amines the dynamics of a zero-potential vorticity ring
being cooled in an otherwise two-layer ocean. Similar
behavior is expected when, instead of cooling the ring,
the environmental fluid is being warmed. The results
show that as the ring becomes denser, it displaces the
mixed layer under it (Figs. 6a and 6b), spinning up the
mixed layer anticyclonically in the process (Figs. 7a
and 7b). As the ring becomes denser than the sur-
rounding fluids, it sinks and is completely overwashed.
In the case of cooling, this overwashing layer is thin in
the central portions of the ring when the model breaks
down. In the case of warming, however, the model
never breaks down and the ring continues to sink
[shrinking in surface area as it increases in depth (Figs.
6¢ and 6d)] as long as the warming continues. The
overwashing fluid continues to spiral in over the ring,
spinning down as the ring continues to sink (Figs. 7¢
and 7d). Overall, mixed-layer parcels follow an upward
helical motion as pictured in Fig. 8. It is speculated
that the spiral form of mixed-layer fluid parcel trajec-
tories can lead to the formation of streamers, although
why streamers are manifested by a single spiral arm of
fluid is not known.

Comparisons with data from ring 82B suggest that
spiral inflow of surface waters did occur in 82B during
April 1982. This inflow was initially mixed into the
ring. thermostad through convective overturning and
so there was little apparent surface signature marking
the inflow. The first visible streamers appeared soon
after the cooling stopped and vernal warming began,
the cessation of overturning allowing the inflow to be-
come visible.

The model presented here has several implications
regarding the enhanced biological growth observed in
rings. The model provides a dynamic mechanism for
the observed introduction of shelf-water species into
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the ring interior. These opportunistic interlopers are
then ready to take advantage of the nutrient rich surface
waters of the ring when vernal warming finally caps
the ring and brings about the spring blooms. The model
also suggests a mechanism for the introduction of nu-
trients into the ring.
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APPENDIX A
Region I Cannot Exist in the Surfaced Ring Case

This appendix contains a proof that Region I (Fig.
4) cannot exist; that is, there can be no intersection
point between the ring-mixed layer interface and the
mixed layer-lower layer interface. We proceed by ab-
ductio ad absurdum. First assume that such an inter-
section exists, implying £,/(r)) = £xi(r;) for some r,
between 0 and ry. Applying the solutions for the in-
terface displacements in terms of the velocity [(3.11c)
and (3.11d)] provides the condition for intersection

Dar(ony) + 0y

o (a))=0 (AD)

oy
where, as before, oy = r(/rp.

Leaving this information aside for the moment, note
that the mixed-layer thickness goes to zero at the in-
tersection. This, combined with the conservation of
potential vorticity, implies that the velocity of the
mixed-layer fluid at the intercept point is V(1) =
—ry /2, which is equivalent to ¥,(c;) = 0. Thus (A1)
implies that (397/0c),-,, = 0. Finally apply both of
these conditions on ¥, to the velocity field equation
in region II (3.11a),

6219M (1 - d)ro4a|
da? 4d

since d < 0. Further note that 94,and its first and second
derivatives are continuous [because of (3.12)]. Here, a
Taylor series expansion shows that there exists a finite
o such that 9,,(a; + 8) < 0. This implies that
V,,M(rl + 57'0) < —(r, + 57'0)/2

but, as will be shortly shown, this is impossible.

<0 (A2)

(ay) =

(A3)
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Each and every mixed layer parcel must have orig-
inated at some point r; > 0 prior to the injection of the
ring. This together with the conservation of angular
momentum, implies that the minimum velocity ob-
tainable by any mixed layer parcel is —r/2, so that the
minimum velocity obtainable by a mixed layer parcel
at (ry + drg) is —(ry + 8rg)/2. Hence there is a contra-
diction between the velocity restriction derived from
the conservation of angular momentum and (A3). Thus
the assumption of an intersection point must be false.

APPENDIX B
Region I Cannot Exist in the Submerged Ring Case

As before, assume that there does exist a single point
r; where the ring intersects the surface (Fig. 5). By the
same angular momentum argument as before, the
nondimensional velocity of the mixed layer parcel at
this point must be —r, /2, which is equivalent to 9,(e;)
=0..

Again the condition for intersection is given by (A1)
which implies that (89/da),-., = 0. Note that the
field equation in ¥, (4.7), is second order and ho-
mogeneous, so if ¥, and its first derivative are zero at
a regular point and 9, is analytic at that point then
P is zero everywhere in Region II. This is a result of
the fact that the second derivative and all higher de-
rivatives are also zero so that a Taylor series expansion
will give zero velocity everywhere. Hence, in Region
II, the nondimensional velocity in the mixed layer is
—r/2 everywhere so that the surface and upper ring
interface are parallel and must intersect everywhere.
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