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ABSTRACT

An inertial gyre with characteristics very similar to the recirculation observed in eddy-resolving general cir-
culation models is obtained with a simple, analytically tractable, two-layer model. The recirculating gyre is
contained in a box of simple geometry, which isolates it from the Sverdrup interior. The gyre is forced by
prescribing anomalous values of potential vorticity at the edge of the box. This mimics the effect of the western
boundary current carrying low values of potential vorticity northward in the subtropical gyre or can be thought
of as a rough parameterization of diabatic forcing. In both cases the forcing is confined to the water above the
thermocline, which is represented by the upper layer. Therefore the boundary forcing is confined to the upper
layer and is transmitted to the abyssal ocean through interfacial friction,

The condition for the abyssal water to be set in motion, is derived and for oceanic values the recirculation
goes all the way to the bottom. When this occurs the center of the gyre is dominated by a barotropic flow, while
the baroclinic flow is confined to the edges of the gyre. The width and strength of the gyre can be easily calculated
in the limit of long, narrow gyres. The meridional scale of the gyre is directly proportional to the vorticity
anomaly injected at the northern boundary, and the barotropic part of the transport is proportional to the cube
of the abyssal gyre width, in close analogy with the results found by Cessi, Ierley and Young in a one layer
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model.

1. Introduction

One of the striking features of the recirculating gyre
which is responsible for the enhanced transport of the
separated Gulf Stream is its vertical coherence. Schmitz
(1980) analyzed an array of current meters deployed
in the western North Atlantic along 55°W. He found
“weakly depth dependent” time averaged currents
(mostly zonal) flowing eastward just south of the jet
axis and returning westward further south with am-
plitudes that ranged from 6 to 10 cm s~! throughout
the water column. Both eastward and westward cur-
rents had a horizontal scale of roughly 200 km, and
the westward flow was surface and bottom intensified.
Richardson (1985) used current meters and surface
drifters measurements to produce a vertical section of
the mean zonal currents flanking the Gulf Stream. He
found that the total eastward transport was about 93
Sv (1 Sv = 10° m? s™') at 55°W that is about three
times larger than that observed in the Gulf Stream at
the Florida Strait. The excess 63 Sv are recirculated
north and south of the jet axis. In particular about 29
Sv are transported westward in a southern counter-
current about 200 km wide. The vertical coherence of
this westward flow is remarkable (see especially his Fig.
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6b): the zonal velocities (with the wind drift removed)
vary from 4 cm s™! at the surface to 6 cm s™! at the
bottom.

The same vertical coherence is found in the recir-
culating gyre in wind driven ERGCMs such as that of
Schmitz and Holland (1986). In their experiments,
performed with a quasi-geostrophic, eddy resolving,
eight level model, the mean zonal velocity along a sec-
tion cutting the recirculation shows a quasibarotropic
westward flow extending all the way to the floor located
at 5000 m. No bottom intensification is observed in
their calculations, presumably because in their model
there is no bottom topography and no Deep Western
Boundary Undercurrent. The mean westward velocity
is about 10 cm s™! and the width of the westward re-
circulation is about 200 km. .

Cessi, lerley and Young (1987, hereafter referred as
CIY) have exploited the observed vertical coherence
to formulate a simple barotropic model of the recir-
culation. In that work the recirculation appears as an
inertial gyre with constant potential vorticity, driven
by anomalous low values of potential vorticity applied
at the edge of the flow. This boundary forcing mimics
the effect of the boundary currents, or perhaps diabatic
forcing, producing low values of potential vorticity at
the northern edge of the subtropical gyre. With this
prescription CIY were able to calculate the homoge-
nized value of potential vorticity as well as the merid-
ionat extent of the gyre. Although the results obtained
were consistent with findings from baroclinic ERGCM,
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the barotropic model is unable to answer the question
of why the recirculation has a weak depth dependent
structure. Another question that needs to be addressed
is whether relative vorticity or vortex stretching is the
dominant vorticity term in the region of westward flow.
Marshall and Nurser (1986, hereafter referred as MN)
neglected the former, while CIY excluded the latter. If
potential vorticity is homogeneous within the recir-
culating gyre (as it is in both CIY and MN) then, in
the absence of vortex stretching, relative vorticity has
to be of the same order as planetary vorticity every-
where in the gyre, including the westward flow. Indeed
this is the case in Schmitz and Holland’s (1986)
ERGCM results. Although they do not present explicit
diagnostics for the balance of terms in the mean vor-
ticity field, a simple estimate can be inferred from their
mean zonal velocities. With # ~ 10 cm s™! and a width
of the westward flow of ~200 km relative vorticity can
be estimated with %, ~ (10 cm s7!)/(100 km) = 107°
s™!. This has to be compared with 8y ~ 2 X 1076 s,
and the ratio of relative to planetary vorticity is 0.5.

A dynamical balance of this type has to emerge as
a consequence of a baroclinic model rather than being
set forth as an a priori assumption. With this in view
the ideas developed in CIY will be extended to the
simplest possible baroclinic model.

2. Formulation of the baroclinic model and general re-
sults

All the assumptions made in CIY will be retained
in the present formulation except that the vertical res-
olution is increased. The assumptions will be briefly
repeated here.

1) The recirculating gyre extends to the bottom,
which is taken as level. Baroclinic effects are taken into
account in the simplest possible way, i.e., a two layer
model. The interface represents the thermocline.

2) There are no body forces applied to the fluid.
Local wind or buoyancy forces are neglected in both
layers. This approximation may not be as accurate for
the surface layer as it was for the barotropic model of
CIY. Nevertheless if the upper layer is not very shallow
it may still be acceptable. In order to neglect the wind
we must have

T, a0 > 22 or ﬁv>%’-

In both the observations and the ERGCM results, the
meridional velocity v at the center of the recirculation
is much smaller than the zonal velocity u. Therefore v
can be estimated as v ~ L,u/L, where L, is the me-
ridional scale of the recirculation and L, is its zonal
scale. With this estimate the wind can be neglected if

BLyu/Ly > Jowe (¥ = Ly)/ H,. 2.1)
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In Schmitz and Holland’s (1986) ERGCM the recir-
culation occurs near the zero of the wind stress curl,
and its zonal scale is of the order of the meridional
scale of the Sverdrup gyre. Therefore w, (y = L,)
= Wsin(xL,/L,) ~ WrL,/L,. With § = 2 X 107!
m's! H=1000m, W=10"%cms'and u = 10
cm s™!, we get that the ratio of the left hand side to the
right hand side in (2.1) is 20/7 which is a reasonably
large number and the wind forcing can be neglected.
Local buoyancy forcing is more difficult to estimate
since its amplitude is not known from oceanic mea-
surements. I will assume that it is not bigger than the
wind. As in CIY the forcing for the inertial gyre will
be provided by prescribing anomalous values of po-
tential vorticity at the edge of the recirculation. This
is a crude parameterization of the effect of the Gulf
Stream carrying vorticity of southern origin northward
and eastward in the subtropical gyre. The reader is re-
ferred to CIY for an extensive discussion of the idea
of specifying potential vorticity at the gyre boundary.

3) The recirculation is steady and the eddy field is
parameterized as weak lateral diffusion of potential
vorticity. It is this diffusive process which transmits the
boundary anomaly in the interior, forcing the circu-
lation in regions away from the boundary. Therefore
the flow is locally driven by the eddy field.

4) Since my attention is focused on the dynamics
of the recirculation only, the inertial gyre is considered
isolated from the Sverdrup interior, which, consistent
with the neglect of the wind, is set to zero.

The equations defining the model are then the qua-
sigeostrophic equation on a 3-plane:

a

S+ I, @) = kY,

d

§ + J(ba, @) = KV, (2.2)

where
a1 = V1 + Fi(y2 — ) + By
@ = Vi + By, — ¥2) + By

;P27 P

g =—"""""8¢&
Pi
2
Fl =_‘{6_
g'H,
2_—f02
gH,’

The boundary conditions are applied at the solid walls
of a box which contains the recirculation and are: ¥,
=¥2=0,q1 = q1S), @2 = qu(s) on y = £L, x = £ L/
€, where ¢ is the aspect ratio of the box and s is the
arclength along the boundary.
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The anomalous value of potential vorticity pre-
scribed at the rim of the gyre (g,, and g,;) is supposed
to mimic the effect of the western boundary current
carrying low values of planetary vorticity northward
in the wind driven ERGCMs, or can be thought of as
a crude parameterization of the mode water formation
occurring within the thermocline. In both cases the
direct forcing is exerted at the boundary of the upper
layer and transmitted laterally to the interior and ver-
tically to the abyssal ocean through mesoscale processes
which, in my model, are parameterized as diffusion of
potential vorticity. Therefore in all cases presented I
have forced the upper layer but not the lower layer
(g25 = By). This choice is consistent with results from
wind-driven ERGCMs, such as that of Holland et al.’s
(1984), and with analysis of North Atlantic data, such
as that of Bower et al. (1985). In the Holland et al.
(1984) model, strong potential vorticity gradients across
the separated Gulf Stream (y = L in the present model)
are observed in the layer directly forced by the wind.
Similarly, Bower et al. (1985) show that, in the surface
water (gy < 27.0), potential vorticity, fogether with
other tracers, exhibits huge gradients across the sepa-
rated Gulf Stream. According to the present model’s
interpretation, this jump in properties is due to the

confluence of low values of potential vorticity generated

in the south and advected northward and eastward by
the Gulf Stream in the wind-driven subtropical gyre,
with high values of potential vorticity generated in the
north and advected southward and eastward by the
Gulf Stream in the wind forced subpolar gyre. On the
other hand, in layers shielded from the wind forcing,
potential vorticity is constant across the separated Gulf
Stream as in the ERGCM of Holland et al. (1984).
This result is supported by the observations of Bower
et al. (1985), where potential vorticity, below the 27.00,
surface, is rather homogeneous across the separated
Gulf Stream. According to my interpretation, the lower
layer of my model lies below the thermocline, where
no direct forcing is applied and therefore there is no
anomalous potential vorticity generation.

Notice that the only explicit “forcing” on the right
hand side of (2.2) is provided by lateral diffusion of
potential vorticity, which is a parameterization of the
divergent flux of eddy potential vorticity. This param-
eterization represents a convenient choice to state my
point of view: the recirculating gyre is not locally wind
. or thermally forced, but it is driven by the eddy field
present in the Gulf Stream extension region. More spe-
cifically the eddies provide, on average, the vehicle for
transmitting energy and momentum to the gyre. The
eddy field will transfer momentum laterally (through
kV*V%y,) from the energetic boundary current system
(the boundary of the upper layer gyre where the po-
tential vorticity anomaly is specified) to the interior of
the gyre which is otherwise unforced. With this param-
eterization of eddy vorticity flux, in order for lateral
transfer of momentum to occur, inertia must become
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important in the mean flow. The results presented in
sections 4 and 5 will show that indeed this is the case.

Similarly to Rhines and Young (1982), the eddy field
will also transfer momentum vertically [the term
kV2F,(¥, —¥,) in (2.2b)] from the upper layer down-
ward, driving the circulation in the lower layer which
is not forced at the boundary.

Some general results were obtained in the barotropic
model of CIY and they apply equally well for each
layer separately.

(i) Integrating each equation (2.2) over the area en-
closed by any closed streamline we obtain, in the steady
state

K Vg, mdl =0

¥
kK9 Vgnmdl =0 2.3)
¥
where ’
7
n=-——m i=12
\Y'Z1

with the integrals performed on any closed streamline
in that layer. This shows that the total diffusive flux is
zero across a streamline. In the limit of weak diffusion
this implies that potential vorticity is homogenized
(Rhines and Young, 1982).

(i) The potential vorticity field is bounded by its
boundary values. Let us begin by assuming that the
contrary is true and that there is an extremum in the
interior, surrounded by a nested set of closed potential
vorticity contours. Integrating (2.2) over the area en-
closed by any such closed potential vorticity contour
we get, in the steady state:

Kf |Valdl =0
q1

| Kf |Vgz1dl = 0, (2.4)
Va2

but because the integrand is always positive definite,
this is a contradiction. To avoid this contradiction we
conclude that, in the steady state, there are no closed
potential vorticity contours, and therefore no maxima
or minima of potential vorticity in the interior. Thus
potential vorticity in each layer is bounded by its
boundary values and there are no shear layers. Then,
even in the limit of weak diffusion, velocity has to be
continuous everywhere in the fluid. If this was not the
case then relative vorticity would become very large
and potential vorticity would exceed the boundary val-
ues contradicting the extremum principle. Although
velocity has to be continuous, potential vorticity may
not be and indeed in the limit of weak diffusion, po-
tential vorticity becomes discontinuous at internal
boundary layers.
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(iii) Multiplying (2.2a) by H ¥, (2.2b) by Hyy, and
integrating over the area of the basin, the energy equa-
tion is obtained by summing the integrals obtained for
each layer.

% f EdA + « f QALH (V) + HoAV)

+ H\Fi(u; — wp)’] = H,S) + HyS, (2.5)

where
Si =« § (@15 — By, -dl
S =« § (42 — BY)uz-dl
E = S [Huw? + Huo® + HF @ — o).
To obtain the form (2.5) I have used the relation
»fdAtthqx = “f quuy - dl + f dABYVHY,
| + [ a7 + Fvin -

and similarly for the lower layer. Equation (2.5) shows
that in the steady state the amount of relative vorticity,
and of vertical shear, in the fluid is proportional to the
vorticity anomaly, g, — 8, injected at the boundaries.
This emphasizes the role of g, and ¢, as forcing. If
both g, = gy = By then the fluid is at rest in both
layers. Notice that if diffusion is completely absent there
is neither dissipation nor forcing, and the fluid will
preserve its initial state. If diffusion is present, in the
steady state, one also finds

f dA[(Vz‘pl)z + F1u12]
= § @ = Byt + [ daFwu,
f dA[(Vztpz)z + F2u22]

= f (g2 — By)uz - dl + f dAFu; - ;.

Therefore if only one layer is forced at the boundaries,
there may still be motion in the unforced layer due to
the “drag” (the second term on the right hand side)
exerted at the interface. The drag arises from the lateral
mixing of vortex stretching which acts as a vertical mo-
mentum transfer (see Rhines and Holland, 1979). It’s
worth observing that, in this case, u; = u, = 0 is not a
solution of (2.2) unless g, = g2, = By.

Although these general results are very instructive,
and many properties of the flow can be deduced just
from the analysis of integral properties, explicit solu-
tions of the problem expressed by (2.2) for arbitrary
values of diffusion can only be obtained numerically.
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I will restrict my analysis to the limit of weak diffusion,
which is probably the most relevant for the oceanic
recirculation.

As in CIY only gyres that fill the whole basin in the
zonal direction will be analyzed. This is because for
simplicity my attention is restricted to boundary forcing
which is independent of longitude. The simplest choice
for the potential vorticity forcing is

(@ = Q) — L)
2L *

Qn

qiw =

g = By (2.6)

where Q, and Q; are the constant values of g, on the
northern and southern boundaries respectively. Be-
cause the recirculating gyre is supposed to rejoin the
Sverdrup interior at its southern boundary, Q, has been
chosen as —8L in all cases presented. With this choice
g1, = By at y = —L, and the potential vorticity at the
southern boundary is just given by the planetary vor-
ticity. Since the anomalous value of potential vorticity
is supposed to mimic the effect of the western boundary
current carrying low values of planetary vorticity
northward, the boundary value of potential vorticity
on the northern boundary at y = L, (,, should be
lower than the local planetary vorticity 8L and so in
all cases presented I have chosen Q, < SL. Numerical
solutions of (2.2) obtained with the numerical model
developed by Dr. lerley are shown in Figs. 1, 2 and 3
for different values of the forcing Q, and of the depth
ratio. In all cases presented the gyre in the lower layer
is contained within the region of motion of the upper
layer and potential vorticity is homogeneous in both
gyres. Homogenization should be expected from the
result (2.3) in the limit of weak diffusion. As shown in
CIY, in the same limit of weak diffusion, the homog-
enized value of potential vorticity in each gyre is given

by
f qiu,; - dl

q =
fﬂl’dl

f Qo1+ dl

&=
fllz'dl

where the integrals are performed along the boundaries
of the gyres.

This remarkable result has a simple physical expla-
nation. As the fluid is advected along the streamlines,
potential vorticity is diffused across the streamlines.
Diffusion is more efficient where the streamlines are
closer, that is where velocities are larger (Roberts, 1977).
This is why, in (2.7), the boundary values of potential
vorticity are weighted by the velocity. A detailed der-
ivation of this result can be found in CIY.

2.7
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FIG. 1. Nondimensional streamfunction and potential vorticity fields for the steady state numerical solution. The bound-
ary forcing is given by (2.6) with Q, — 8L = —8Vg'H,a,/fy. In all the experiments the baroclinic deformation radius is
Vg'H\/fo = 45 km and the aspect ratio of the box is ¢ = 0.3. For this experiment o, = 18.86 and H; = 3H,. The diffusion is
x = 101.2 m? s™. a) Upper layer streamfunction. Labels are multiplied by 10°. b) Upper layer potential vorticity. ¢) Lower
layer streamfunction. Labels are multiplied by 10°. d) Lower layer potential vorticity. See section 3 for nondimensionalization.

From the extremum principle [see the discussion
following (2.4)] velocity has to be continuous every-
where, even in the presence of infinitesimal diffusion,
and the tangential velocities on the gyres boundaries,
appearing in (2.7), can be calculated from the interior

dynamics where potential vorticity is constant. A dif-
ficulty arises because the boundaries of the gyres are
unknown. For the simple choice (2.6), where the forc-
ing in the upper layer is maximum at the northern
boundary, unless the driving is very strong, the gyre
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FIiG. 2. As in Fig. 1 except for a, =

13.33 and « = 71.6 m? s™. The forcing has been decreased but the depth ratio is the

same. (a) Upper layer streamfunction. Labels are multiplied by 10°. (b) Upper layer potential vorticity. (c) Lower layer
streamfunction. Labels are multiplied by 10°. (d) Lower layer potential vorticity. Notice that the lower layer gyre is weaker

compared to that in Fig. 1 although its size is the same.

will be pressed against the northern wall and will not
fill the whole basin in the meridional direction. There-
fore the southern boundaries of the gyres will be free
streamlines. The situation is depicted schematically in

Fig. 4. South of the free boundary for the upper layer
gyre (y = L — L((x) in Fig. 4a) both layers will be at
rest, except for a weak diffusively driven flow which 1
will neglect. Therefore on that streamline the upper
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FiG. 3. As in Fig. 1 except for Hy = H, o0 = 13.33 and « = 286.2 m? s, The forcing has not been changed from Fig. 2
and the upper layer is deeper. () Upper fayer streamfunction. Labels are multiplied by 10°. (b) Upper fayer potential vorticity.
(c) Lower layer streamfunction. Labels are multiplied by 10°. (d) Lower layer potential vorticity. The size of the lower layer
gyre is larger than that in Fig, 2, and its strength has increased.

layer velocity has to be zero. South of the free boundary This is why in (2.7) the values of ¢, and ¢, at the
for the lower layer (y = L — Ly(x) in Fig. 4b) no deep rims of the gyres are the same as the potential vorticity
flow occurs, the velocities have to be continuous in  boundary conditions (2.6). In fact, the northern, castern
line with u, being and western boundaries of the gyres are the solid walls

both layers across the free stream
zeroony =L — L. of the basin where potential vorticity js prescribed. The
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FIG. 4. Schematic picture of the flow regimes in the inviscid limit.
(a) Upper layer: south of the free streamline y = L — L,(x) both
layers are at rest. North of y = L — L,(x) the surface flow circulates
with uniform potential vorticity. At y = L — L,(x) both ¢, and V¥,
= 0. (b) Lower layer: south of the free streamline y = L — L,(x) the
lower layer is at rest. North of y = L — L,(x) the abyssal flow circulates
with uniform potential vorticity. At y = L — Ly(x){; and Vy, are
continuous and ¢, = Vy, = 0.

southern free boundary, where potential vorticity has
an unknown value, does not contribute to the velocity
weighted average (2.7).

The velocity appearing in (2.7) can be obtained solv-
ing the interior problem

Vi + Figa— ) + By = ¢

Vo + F$ — )+ By =G, (2.8)

with boundary conditions ¢y, =y, =0ony=L, x
= i‘L/é, \bl = V'gbl =0 fory sL-— L](X) and ¢/2 = sz
= 0 for y < L — L,(x). Notice that there is an extra
pair of boundary conditions, but the widths of the gyres
L, and L, are unknown and they are determined as
part of the solution. It is this additional freedom which
allows (2.8) to satisfy the extra boundary conditions.
Although the additional boundary conditions ensure
that the velocity is continuous, there will be a jump in
potential vorticity across the free streamlines.

The problem becomes analytically tractable in the
limit of small aspect ratio, ¢, because, away from the
eastern and western walls (2.8) is then “one dimen-
sional”. This approximation seems relevant to both
the wind driven ERGCMs, where the recirculation
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appears as a long narrow gyre with aspect ratio e ~ 0.1,
and the oceanic observations, which show meridional
velocities much smaller than zonal ones. Before pre-
senting the results of the one dimensional approxi-
mation some general comments on (2.8) can be made.
Forming the barotropic mode we obtain

VAH 1 + Hylo) + By(H, + Hy)

=H\q + Hyg,. (2.9)
In the barotropic equation the vortex stretching term
has disappeared and the only term left to balance the
planetary gradient is relative vorticity. This is essentially
the problem solved by CIY. As noted in the introduc-
tion, the barotropic component of the flow represents
a substantial contribution to the recirculation. There-
fore, whenever the recirculation hits the bottom, a
barotropic flow is established in which relative vorticity
is not negligible. The equation for the barotropic mode,
(2.9), is valid only in the region where the lower layer
is moving, i.e. y > L — L, in Fig. 4. In the region y
< L — L,, > = 0 and the upper layer satisfies

&2 - Fy + By = 4.

In this simple two-layer model the barotropic flow,
governed by (2.9), occurs in all the region of motion
of the lower layer, so we expect relative vorticity to be
important both for the eastward and the westward deep
flow. This is very different from the situation depicted
by MN who analyzed an “N and one-half”’ layer model.
In their work the recirculation appears as a set of baro-
clinic Fofonoff’s (1954) gyres stacked on top of each
other. The relative vorticity is confined to narrow
boundary layers close to the northern, eastern and
western walls and is negligible in the westward flow.
This is because MN avoid the onset of a barotropic
flow by always placing a resting layer below the recir-
culation, consequently (2.10) is valid everywhere and
relative vorticity may be neglected in the interior of
their gyre, since the planetary gradient can be balanced
by the vortex stretching term —F ;.

In the presence of a deep resting layer most of the
energy of the recirculating gyre is in the form of avail-
able potential energy, because the lower interface is
free to deform. But the amount of possible deformation
is limited. If, when the forcing is increased, the interface
displacement closes potential vorticity contours in the
deepest layer, then the flow will go all the way to the
bottom. Once the deep layer starts moving, the growth
of the interface displacement is reduced, together with
the available potential energy. This is a strongly driven
limit of the homogenization process envisaged by
Rhines and Young (1982). Since the forcing has in-
creased, but the increase in potential energy is limited,
kinetic energy must grow, together with relative vor-
ticity.

(2.10)



670

In the presence of substantial relative vorticity in the
westward flow, the unknown gyre widths, L, and L,
are determined by imposing continuity of velocity at
the free streamlines, as explained in the discussion fol-
lowing (2.8). By contrast, in MN the meridional extent
of the gyres is determined by requiring continuity of
¢ only which, when relative vorticity is neglected, im-
plies continuity of the potential vorticity fields, while
the velocities are discontinuous. The appropriate
matching condition is clearly determined by what type
of dissipative process is considered to act at higher or-
der. In CIY, and here, it has been shown that, in the
Limit of infinitesimal potential vorticity diffusion, the
velocities, but not potential vorticities, are continuous.
The results presented in section 4 will also indicate
that, in oceanic applications where the recirculation
scale is much bigger than the baroclinic deformation
radius, and the recirculation strikes the bottom, the
two choices give quantitatively different results. How-
ever in the absence of a barotropic flow, i.e. when the
recirculation does not strike the bottom, and relative
vorticity is negligible in the westward flow, both
matching conditions give rise to approximately the
same result.

The dynamical regimes are thus very different de-
pending on whether or not the recirculation strikes the
bottom of the ocean. Oceanographic observations seem
to show that it does. Before proceeding with the two
layer calculations I will analyze the conditions under
which the recirculation hits the bottom.

3. One and one-half layer model

When the lower layer is very deep, since it is not
directly forced at the boundaries, it will be at rest. As
the depth H, is reduced, the interface displacement
due to the upper layer motion is eventually large
enough to produce closed g, contours, and the abyssal
waters are then set in motion. In this section I will
analyze the conditions for this to occur. The critical
value of H, at which closed ¢, contours occur will be
calculated, assuming that initially the lower layer is at
rest.

Hereafter, all the analytical calculations will be done
for gyres with infinitesimal aspect ratio (¢ < 1). In this
approximation the potential vorticity equation is one
dimensional away from the meridional walls:

‘l/lyy'_ Fy,+8y=q;

with boundary conditions ; = 0 on y = L and y,
=y, =0o0ny= L — L,. From the velocity weighted
average (2.7) the homogenized value of potential vor-
ticity g, is simply given by the value of potential vor-
ticity on the northern boundary, Q,, specified by (2.6),
since the southern boundary condition does not con-
tribute because the tangential velocity is zero there.
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The contributions from the side walls are order e and
can be neglected.

The solution can be found more easily if the varlables
are put in nondimensional form, with the choice

=(L-BQW +L
= (L - B7'Qxe
Yn = BL — 670’9,
an = (BL — Qg + BL.

The scaling is chosen according to the results of the
barotropic model of CIY, which showed that the me-
ridional length scale is proportional to (BL — Q,,), the
potential vorticity anomaly prescribed at the northern
boundary. Dropping the primes we get

by — ar’py +y=—1 3.1

with boundary conditions ¢; = 0 on y = 0, —/; and
the additional constraint ¢, = 0 on y = —/;. Here /,
= L,/(L — B7'Q,) is the unknown nondimensional
width of the upper gyre; a; = VF(L - 87'0,) is the
ratio of the recirculation scale to the Rossby defor-
mation radius, and is a measure of the forcing applied
at the northern wall; and «; is the only external pa-
rameter in this one and one-half layer model. As men-
tioned in the previous section, for the subtropical gyre
recrrculatlon, the appropriate choice is O, < 8L, and
therefore « is positive,

The solution of (3.1) which satisfies the no normal
flow conditions is

a|2¢1 =y+ 1+ (ll - l) coshal(y + ll)
—A sinhoz](y + ll)

with 4 = (sinha, /)" ![1 + (/; — 1) cosha/].
In order to satisfy the extra condition on the con-

tinuity of tangential velocity at the free streamline y

= —/,, one has
_AcoshA — A
A coshA — sinhA

where A = VELI = a,l is the ratio of the meridional
width of the recirculation to the Rossby deformation
radius. This is the equation which must be solved to
determine /; as a function of «;.

This solution has been obtained under the assump-
tion that the lower layer is at rest. Because the lower
layer is not forced at the boundaries it will be at rest
as long as there are no closed g, contours. In the absence
of abyssal flow, ¢, is simply given by a,%¢,/r + y, where
r= HZ/H L is the depth ratio. If the upper layer solution
above gives a maximum of ¢, in the interior, i.e., closed
¢> contours, then the extremum principle [see the dis-
cussion following (2.4)] would be contradicted and this
would not be a possible steady state. The condition
which excludes closed g, contours is ¢,, = 0 at the

(3.2)
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northern wall y = 0. In fact an interior maximum in
¢» would require ¢, < 0 at the northern wall, since ¢,
= 0 at y = 0. Hence there are no closed ¢, contours
and the lower layer is motionless provided that

coshA + 1 _
sinh\

Notice that this relation depends implicitly on the
forcing Q,, only through A\ = a;/y, i.e., the ratio of the
recirculation scale L, to the deformation radius. The
dimensional scale L, is proportional to the potential
vorticity anomaly 8L — Q, injected at the northern
wall. Numerical values for /; and the critical depth ratio
rcare presented in Table 1 as a function of the forcing
ay. Note the first row gives the same result as CIY,
because for a; < 1 baroclinic effects are negligible and
in this limit the barotropic, rigid interface model is
recovered. ‘
Unfortunately I am unable to estimate directly the
value of the forcing Q, from observations. On the other
hand there are good estimates for L; and from these
one can obtain A = VF,L, = al; and so infer Q,.
Typical oceanic values are H; = 1000 m, g’ = 0.02 m
s~2, L; = 400 km, which give A ~ 9. In this case when
A is large the solution to (3.1) is simply given by L,
~ (L — 87'0,)(1 + 1/)). As in CIY the width of the
gyre is directly proportional to the forcing so Q, is easily
estimated. When A > 1, (3.3) gives 7. ~ A — 2 and the
critical depth ratio is very large. For this simple two
layer model, the recirculation will not hit the bottom
as long as the ratio of the lower layer to the upper layer
depth is of the order of the ratio of the recirculation
scale to the baroclinic radius of deformation. For the
values quoted above the lower layer will be at rest only
if H, exceeds 7000 m. If the abyssal layer is shallower

Hz/H1 Zr, = A 2 (33)

TABLE 1. Nondimensional gyre width /; and critical depth ratio r,
as a function of the nondimensional forcing «, = VF(L - 87'Q.).
The lower layer is in motion if the depth ratio r is greater than r,.

a = VFR(L-57Q)

A=yl Lh=L/L-8"Qy r= (Hy/H)).

o €1 A =3a,y/2 L=302 re = 3ay%/8
0.0666 0.1 1.4997 0017
0.1668 0.25 . 1.4984 0104
0.3347 0.50 1.4938 0415
0.6674 1.0 1.4762 1639
1.4011 20 1.4274 6261
2.2260 30 1.3477 1.314
3.1148 4.0 1.2842 2.149
4.0548 5.0 1.2331 3.068
5.0251 6.0 1.1940 4.030
6.0112 7.0 1.1645 5.013
7.0046 8.0 1.1421 6.005
8.0021 9.0 1.1247 7.002
9.0009 10.0 1.1110 8.001
a1 A=ay+ 1 Lh=1+a™! re=a;~1
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than 7000 m then the recirculation will strike the
bottom.

The width of the recirculating gyre derived by MN
in the one and one-halflayer model, neglecting relative
vorticity in the westward flow, is /; = 1. For A » 1, this
is approximately the same as the value found here.
However, for A > 1, the assumption made that no ¢,
contours are closed and thus the lower layer is at rest,
is not going to be met. This can be intuitively under-
stood by remembering that X is the ratio of the recir-
culation scale to the baroclinic deformation radius.
Since the recirculation scale is proportional to the forc-
ing applied at the northern boundary, A is a measure
of how stratification “resists” the interface deformation
due to the forced upper layer motion. For large A such
resistance is small, the interface deformation is large
and the motion penetrates to the lower layer,

Typical choices for the depth of the thermocline are
H, = 1000 m, and the abyssal layer is then H, ~ 3000
m so that the inequality (3.3) is not satisfied and the
assumption of a resting deep layer, made in the pre-
vious calculation and in MN, is invalid.

4. Analytical solutions of the two layer model

The numerical solutions of (2.2) shown in Figs. 1,
2 and 3, for small values of viscosity, are very time
consuming (each run took about two hours of CRAY-
I cpu time). For this reason, and also to get more phys-
ical insight, analytical solutions were sought in the limit
of long, narrow gyres. As remarked in the previous
section, in this limit the homogenized value of potential
vorticity, as given by the velocity weighted average
(2.7), is independent of the velocity structure of the
gyre, since the eastern and western walls give a small
contribution of the order of the aspect ratio ¢, and the
southern rims of the gyres have zero tangential velocity.
The homogenized values of ¢ are given by the boundary
value prescribed on the northern wall [see (2.6)]

q_l = Qn
g = BL 4.1)

Equations (2.8) are more easily solved when put in
nondimensional form, with the choice made in section
3. Dropping the primes and neglecting the zonal vari-
ations we get

Gy + by — ¢) +y=—1

b2y + (@1 — ¢)/r+y=0 4.2)

with boundary conditions ¢, = ¢, = 0 on y = 0 and
$r1=¢;,=0ony<—/ and ¢, =¢,,=0ony< —b.
h=L/AL—-87'Qy)and ,, = Ly/(L — B7'Q,) are the
unknown nondimensional widths of the upper and
lower layer gyres respectively. a; = VIT,(L - 87109, is
the ratio of the recirculation scale to the Rossby de-
formation radius, r = H,/H, is the depth ratio, and the
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solutions depend_on these two external parameters
only.

The solution which satisfies (4.2) and the boundary
conditionson y = 0, —/; is

sinha(y + [})

ay

¢|=[l+y_

+ (ll - 1) Coshal(y + ll)}/al

$2=0 (4.3)
in the region —/, < y < —/,, and
1 L+ '
¢+ rgp = 2)“(2—})‘2_9
2 L
— 2= ————|1 — cosh
2 2 a1 +7 coshay
sinhay _ smhay
Sinhad (1 coshalz)] ¢ 4.4)

in the region —/; <

d)E[l—Iz—

y <0, where o = o, V1 + r-t,
sinha1(11 - 12)

23]

+ (/; — 1) cosha,(l;, — lz)]/al

is the value of the upper layer streamfunction at the
southern boundary of the lower layer gyre y = —/,.

As remarked in the previous section, for oceano-
graphic applications, «; > 1, therefore the barotropic
mode (4.4a) is of order 1, while the baroclinic mode
(4.4b) is O(e; ) and thus much smaller.

The conditions that ensure that all the boundary
conditions are satisfied on y = —/, are

aX = —sinhal, — cothaly(l — coshal, — o?)
X =—h/2+ (1 + NL/3 + ¢/l 4.5)
where
X = [cosha,(/; — b) ~ 1
= a(ly — 1) sinha,(; — b)]/ey?

is the zonal upper layer velocity, —¢y,, at y = —b.

The transcendental equations (4.5a, b) determine
the width of the gyres /; and /, as a function of r and
«1. They can easily be solved numerically, and the re-
sults are shown in Fig. 5 for a wide range of values of
a; and depth ratios r.

For oceanographic applications typical values for «,
are rather large and some simplification is possible in
this limit. Although the potential vorticity anomaly
(BL — Q,) is not known, the recirculation scale is going
to be proportional to it, so we can assume that L

f

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 18

— 87'Q, is of the order of L, and check a posteriori
that this is the case. For H; = 1000 m, g’ = 2 cm s
and L, = 400 km a typical value for o, = VF\(L
— B7!Q,) is 8. In this range, as long as H, > H, and
(H, + Hy)/H, <€ a,, an approximate solution to (4.5)
is very simple and it is given by

11 =1+ al_' + O(e_”l)
lz =32+ 2)‘)-1 - al‘l[l +r+ V;(l_-i»r)]"
+ O(a,™?). (4.6)

When the lower layer gets very deep the above ap-
proximation is not valid. The first order uniform ap-
proximation is given in appendix A, where it is also
shown that, in order for the lower layer gyre to have a
nonzero width, the critical depth ratio is the same as
that obtained in the one and a half layer model in (3.3).
To a first approximation the widths of the gyres are
independent of g’ and depend only on the ratio of the
depth of the forced layer to that of the unforced one.

In the inviscid limit, the potential vorticity fields are
going to be discontinuous at the southern edges of the
gyres. Potential vorticity will be given by

-L<y<0

for y< -l

—1 for

g\ =
{y
for -L<y<O0

0
45 = { , @7
y+ a*¢/r for y<-—bh.
When «; > 1, from (4.6), the upper layer potential
vorticity field will have a weak, O(«, '), discontinuity
at the southern rim of the surface gyre, while the lower
layer potential vorticity will have a discontinuity of
order 1 at the southern edge of the abyssal gyre, since
relative vorticity V2¢, is discontinuous and of the order
of /,. Notice that also in CIY potential vorticity is dis-
continuous at the southern edge of the gyre.

For layers of equal depths, the width of the lower
layer gyre is given by L, ~ 3L,/4, which is to be com-
pared to the result obtained by MN in the two and a
half layer model, L, = L,/2. Notice that the relation
(4.6a) for the width of the upper layer gyre is, to first
order, the same as the one found by MN. For the
oceanic range of «,, the barotropic transport (4.4a) is
of order 1 while the baroclinic transport (4.4b) is order
a;~2 and thus much smaller. This could have been ex-
pected also from the general results presented in section
2. The steady state form of the energy equation (2.5)
in nondimensional form is

[ @162 + rw62 + et —

= f (16 — yui-dl
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FiG. 5. Nondimensional gyres widths /, -and /, calculated from
(4.5) as a function of the nondimensional forcing a; = VI'T,(L -67'Qn
and the layers depths ratio r = H,/H|. (a) Upper layer gyre width /;.
(b) Lower layer gyre width /,.

where
gy = 9~ BL
YT gL-0,

From the “extremum principle” (2.4) nondimensional
relative vorticity has to be of order 1. Thus the square
of the vertical shear a;%(w} — u5)? is at most of order 1
and if «, is big the vertical shear will be small, no larger
than order «; .

A remarkable property of the barotropic part of the
flow (4.4a) is that in the limit of large «; it is indepen-
dent of «;. In this limit the maximum barotropic
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transport occurs (to first order) at y = —/,/3. In the
barotropic model of CIY, the latitude of maximum
transport was y = —I/3 where [ was the width of the
gyre. In CIY the total nondimensional transport was
given by ¢max = 2/°/81. In the present model it is

2
H™\(H ¢ + Hy$2)max = 31 L+ O(ey™). (4.8)

To a first approximation the transport carried by the
barotropic flow in the present baroclinic model is the
same as that obtained by CIY with a homogeneous
model, if the width of the deep gyre, L, is considered
as representative of the width of the whole recirculation,
and the transport is independent of the vertical distri-
bution of the flow.

This is why the inertial gyre has a weak depth de-
pendent structure: the barotropic “core” is responsible
for the bulk of the transport. Outside the barotropic
core there is a weak “baroclinic fringe” with small ve-
locities of O(cr;™!). Essentially, it is this part of the flow
that MN analyzed in their two and a half layer model.
Observations, on the other hand, suggest that, in the
North Atlantic, most of the transport resides in the
barotropic core, and this is certainly the case in
ERGCMs (e.g., Schmitz and Holland, 1986).

In Fig. 6 the streamfunction and zonal velocity fields
are plotted for «; = 18.86 and H, = 3H,. This corre-
sponds to the numerical solution shown in Fig. 1. For
these values the nondimensional widths of the gyres
are /, = 1.05 and /, = 0.35. Notice that the maxima of
the streamfunctions occur at the same latitude in both
layers and the transport is almost equally distributed
between the two layers. Likewise, the maximum west-
ward velocity is equal in both layers and is located at
the same latitudes. The maximum eastward velocity is
located at the northern edge of the gyres, but, unlike
the westward flow, the surface value is about 4.5 times
larger than the deep one.

The dynamical balance obtained when the recircu-
lation strikes the bottom and establishes a barotropic
“core” is opposite to that envisaged by MN. In their
model, baroclinicity is dominant in the center of the
recirculation and relative vorticity was confined to the
northern wall. Here baroclinic velocities are confined
to the edge of the gyres, in boundary layers of the order
of the Rossby deformation radius, while the center is
dominated by a depth independent flow in which rel-
ative vorticity is important. The reason why depth de-
pendence is confined to the outer edges of the gyre is
clear. The forcing, which varies with depth, is applied
at the northern boundaries of the gyres. The baroclinic
signature impressed at the boundaries can only pene-
trate inwards a distance of the order of the baroclinic
radius of deformation. On the other hand, once a baro-
tropic flow is established the only length scale which
enters into the dynamics of the vertically integrated
flow is the recirculation scale, (L — 87'Q,), and this is
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FIG. 6. Nondimensional streamfunction and zonal velocity as a
function of latitude calculated from (4.2), for o, = 189 and r = 3.
For this choice of the parameters the nondimensional gyre widths
are /| = 1.05, ,; = 0.35. (a) Streamfunctions. Notice that ¢, =~ ¢,H,/
H,. (b) Zonal velocity (, is easily recognized by its larger values
compared to 1,).

observed to be larger than the baroclinic deformation
radius by a factor of at least five.

Dimensional quantities are obtained choosing the
total depth of the model ocean to be H; + H, = 4000
m and the baroclinic radius of deformation to be F,~'/?
= 45 km. These dimensional values will be kept con-
stant for all cases presented. For the case shown in Fig.
6, where H, = 3H,, the abovementioned choice for
the total ocean depth and for the baroclinic deforma-
tion radius is equivalent to the values H, = 1000 m,
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H, = 3000 m and g’ = 0.02 m s 2 Then, the dimen-
sional scales of the gyres, as given by the analytical
solution, are L, = 295 km and L, = 885 km. The total
transport is 72 Sv, 70% of which can be calculated from
(4.8), which is a depth independent approximation.
The dimensional maximum westward velocity is 9.2
cm s~!, both at the surface and at depth, while the
maximum eastward velocity is 76.5 cm s~ at the sur-
face and 17.0 cm s™! at depth. These values compare
quite well with the mean zonal velocities found in the
recirculation region in Schmitz and Holland’s (1986)
model.

If the forcing applied at the northern wall, 3L — Q,,
is reduced keeping the depth and density ratio fixed,
the flow becomes more baroclinic. In Fig. 7 the
streamfunction and velocity fields are plotted as a
function of latitude for «; = 13.3 and H, = 3H,. This
corresponds to the numerical solytion shown in Fig.
2. Although the ratio of the gyre widths is practically
unchanged relative to that in Fig. 6, the flow is less
vertically coherent. The streamfunction maximum is
larger in the upper layer and smaller in the lower layer
with respect to the case shown in Fig. 6. Notice, how-
ever, that the maximum westward velocity is still al-
most equal in the two layers, while the maximum east-
ward velocity in the upper layer is about 7.5 times that
in the lower layer. The total transport is 28.6 Sv of
which 9.5 Sv are carried by the lower layer and 16.5
are depth independent. In the abyssal layer the maxi-
mum westward velocity is 3.6 cm s~!, and the maxi-
mum eastward velocity is 7.2 cm 5™, The width of the
deep recirculating gyre; L,, is 203 km of which 125
km are in the region of westward flow. Notice that in
this weakly forced case the barotropic core has a width
of only 0.3 and the depth independent transport com-
puted from (4.8) is comparable to the transport carried
by the “baroclinic fringe” which is O(a;2).

If the forcing applied at the northern wall, 8L — Q,,,
is kept fixed while the depth and density ratio are de-
creased, the flow becomes increasingly depth indepen-
dent. In Fig. 8 the streamfunction and velocity fields
are presented as a function of latitude, for a; = 13.33
and H, = H,. The gyre in the lower layer has consid-
erably expanded relative to that in Fig. 7, and the flow
is more vertically coherent. For a depth ratio H,/H,
= |, dimensional values are obtained using H, = H,
= 2000 m and g’ = 0.01 m s™2. Notice that the density
jump is different from the cases shown in Figs. 6 and
7 because the Rossby deformation radius is fixed in all -
cases at 45 km. Now the total transport is 184 Sv half
of which are carried by the abyssal layer. Of this flow,
about 85% can be accounted for by (4.8). The maxi-
mum of the westward jet occurs at the same latitude,
is equal in both layers and has an amplitude of 28.4
cm s~. On the other hand the maximum eastward
velocity is surface intensified being 66 cm s™! at depth
and 114 cm s™! in the upper layer. The abyssal recir-
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FIG. 7. As in Fig. 6 except for &, = 13.33. For this choice of the
parameters the nondimensional gyre widths are /; = 1.08, , = 0.34.
(a) Streamfunctions. (b) Zonal velocity (1, is easily recognized by its
larger values compared to u,). The forcing has been decreased with
respect to Fig. 6 while the depth ratio is unchanged. The gyres widths
are practically unchanged, but the transport is decreased in the lower
layer and increased in the upper layer, so the flow is less vertically
coherent.

culating gyre is 429 km wide, while the surface gyre is
644 km wide. The figures for the dimensional velocities
and transport are large because, in effect, the forcing
is very strong (remember that the upper, forced layer
is 2000 m deep, while in the cases shown in Figs. 6
and 7 it was only 1000 m deep). This is why, although
the forcing 8L — Q,, or equivalently «,, is the same
as for the case shown in Fig. 7, the flow shown in Fig.
8 is more vertically coherent. With a thicker upper
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forced layer, the “barotropic core” occupies most of
the recirculating gyre, with baroclinic effects confined
to deformation scale boundary layers which are much
thinner than the gyre scale.

5. Numerical results

Steady solutions of (2.2), with potential vorticity
boundary conditions (2.6), were found by time inte-
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FIG. 8. As in Fig. 6 except for a; = 13.33 and r = 1. For this choice
of the parameters the nondimensional gyre widths are /; = 1.08, /,
= 0.72. (a) Streamfunctions. (b) Zonal velocity: solid line corresponds
to the upper layer, the dashed line to the lower layer. The forcing «;
is the same as in Fig. 3, but the depth ratio is smaller. The abyssal
gyre has expanded and the transport has increased compared to Fig.
7. This is because the depth of the forced layer is larger.
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gration from rest, with the use of a quasigeostrophic
two layer numerical model developed by Dr. Ierley.
Solutions were considered to have reached the steady
-state when [see (2.3)]

Vg, -ndl < 1072
basin
with the integral performed along the boundaries of
the box.
The motivations for seeking numerical solutions af-
ter having found simple analytical approximations were
several.

1) Verify that the analytical solutions described in
section 4 are indeed the inviscid limit of the full viscous
problem.

2) Explore the effects that make the problem ex-
pressed by (2.2) analytically intractable, such as finite,
although small potential vorticity diffusivity x and as-
pect ratio e.

To address the first point I will present the most
inviscid experiment obtained with the given resolution,
for each set of the parameters discussed in section 4.
A measure of how close the numerical experiment is
to the inviscid limit, is the Reynolds number of the
lower layer, Yomax/%,-and this quantity is a more useful
measure than the actual diffusion coefficient used.
Nevertheless, for completeness, I have summarized in
Table 2 the values of all the parameters used in each
experiment, including the corresponding dimensional
diffusion coefficient, obtained using H, + H, = 4000
m and F,”"? = 45 km. Notice, for example, that al-
though the diffusion coefficient and the forcing are the
same in the third and fourth row, the Reynolds number
is very different because the depth ratio has been
changed. As remarked in the previous section, when
the upper forced layer is deeper, the effective forcing
is stronger and the circulation is more vigorous.

a. Velocity field

In Fig. 9a the zonal velocity fields at the longitude
of maximum transport {(x = —0.87) are plotted as a

TABLE 2. Summary of the parameters used in the numerical ex-

periments. o = VF,(L — 87!@.) is the ratio of the recirculation scale

to the baroclinic deformation radius and is a measure of the forcing
applied at the northern wall. «’ = k(L — 87'Q,)%/8 is the nondi-
mensional diffusion coefficient, scaled with the same quantity used
for the streamfunction in sections 3 and 4.

Figure a r=Hy/H, oma/x «(m?s™) K’
9a,b 18.86 3 200 101 8.4 X 1078
10a,b 13.33 3 103 71 1.7 X 1073
10c,d 13.33 3 26 286 6.7 X 1073
11a,b 13.33 1 207 286 6.7 X 1075
1le,d 13.33 1 36 1,717 -39 X107
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FIG. 9. Meridional section of the zonal velocity and potential vor-
ticity fields at the longitude of maximum transports for the numerical
run shown in Fig. 1. a; = 18.9, r = 3. (a) Zonal velocity fields at x
= —(0.87 for ¥ = 8.4 X 107 m® s}, compared with the analytic
solution shown in Fig. 6b. Dashed—dotted line: numerical upper layer
velocity. Solid line: analytic upper layer velocity. Short dashed line:
numerical lower layer velocity. Long dashed line: analytic lower layer
velocity. (b) Potential vorticity fields at x = —0.87. The dashed line
is g2 = y + adg/r.

function of latitude. This corresponds to the case shown
in Fig. 1, with &, = VF\(L — 87'Q,) = 18.86, H, = 3H,.

-In all the experiments the aspect ratio e¢ of the box

containing the flow is 0.3. In this experiment the ef-
fective aspect ratio of the gyres is =0. 10, since the bulk
of the flow occupies only the northern third of the basin.
The Reynolds number, defined as Yymay/k is =200. In
Fig. 9a the velocity fields of the numerical and analyt-



APRIL 1988

ical solutions are shown. The solid and long-dashed
lines are the analytic solutions for the upper and lower
layer respectively. The dot-dashed and short-dashed
lines are the numerical solutions for the upper and
lower layer respectively. The agreement between the
numerical experiment and the analytic prediction is
remarkable, especially in the upper layer (solid and
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dot-dashed lines) where the flow is more vigorous. The
gyre is dominated by a depth independent core, and
baroclinic velocities are confined to the outer edge. In
the next two pairs of experiments, shown in Figs. 10
and 11, I will examine the effects of diffusion for two
cases which are typical of the range of behaviors en-
countered in this model. In the experiments presented

SRS SR SR (R SR P S |
-1.2 -1.0 ~.0 -.6
Y

-1.6
-1.6 -1.4

1 n
-2

L
-.4 0

FIG. 10. Meridional section of the zonal velocity and potential vorticity fields at the longitude of maximum transports for the numerical run shown
in Fig. 2. o = 13.33, r = 3. (a) Zonal velocity fields at x = —0.87 for ' = 1.7 X 107%, compared with the analytic solution shown in Fig. 7b. Dashed-
dotted line: numerical upper layer velocity. Solid line: analytic upper layer velocity. Short dashed line: numerical lower layer velocity. Long dashed
line: analytic lower layer velocity. (b) Potential vorticity fields at x = —0.87 for ' = 1.7 X 1075, The dashed line is ¢} = ¥ + dd¢y/r. (c) As in Fig. 10a

except for &' = 6.7 X 107>, (d) As in Fig. 10b except for ¢ = 6.7 X 1075
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in Fig. 10, the forcing is reduced while the depth ratio
is unchanged from the previous case (compare the first
and second rows of Table 2). In section 4 we saw that
in this case the “barotropic core” has a transport com-

parable to that in the “baroclinic fringe”

. For the ex-

periments shown in Fig. 11, the depth ratio is reduced,
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so that the “barotropic core” transport exceeds by far
that in the “baroclinic fringe”. The similarities and
distinctions of diffusive effects on the two representative
cases will be examined.

In Fig. 10a the velocity fields from the numerical
experiment shown in Fig. 2 at the longitude of maxi-

A
Z
o
T
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o~
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T r 1

21.6 L 1 L A PRI A 1 i
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FiG. 11. Meridional section of the zonal velocity and potential vorticily fields at the longitude of maximum transports for the numerical run shown

inFig. 3. a) =

13.33, r = 1. (a) Zonal velocity fields at x = 0 for «’

=6.7X107°

, compared with the analytic solution shown in Fig. 8b. Dashed-dotted

line: numerical upper layer velocity. Solid line: analytic upper layer velocity. Short dashed line: numerical lower layer velocity. Long dashed line:
analytxc lower layer velocity. (b) Potential vorticity fields at x = 0 for ¥ = 6.7 X 1075, The dashed line is g5 = y + ai¢y/r. (c) As in Fig. 11a except for

&' = 3.9 X 1073, The longitude of maximum transport is at x =

transport is at x = ~1.27.

—1.27. (d) Same as Fig. 11b except for « = 3.9 X 107%. The longitude of maximum
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mum transport are plotted as a function of latitude.
For this run «, = 13.33, H, = 3H, and the Reynolds
number is 103. Again the structure of the flow is the
same as that predicted by the theory, and, especially
in the barotropic core, the values are in good agreement
with the theory. The structure of the numerical solution
is identical to that of the analytic solution. The pair
resulting from the numerical experiment has a slight
shift in amplitude, position and scale relative to the
analytical pair. The same structural similarity persists
if diffusivity is increased. Figure 10c shows the velocity
fields for the same case with diffusivity increased by
a factor of 4 from the case shown in Fig. 10a. The ver-
tical shear of the maximum eastward velocity,
(4 — u3)|,=0, is exactly the same as in the analytical
calculations, regardless of the size of the diffusion, and
the same applies for the vertical shear at the maximum
westward velocity. The same property of preserving
the velocity structure with a shift in amplitude, position
and scale applies to the more vertically coherent ex-
periment shown in Fig. 11. For the case shown in Fig.
11c diffusivity has been increased by a factor of 6 com-
pared to the case shown in Fig. 11a; yet the structural
similarity of the viscous velocity field pair, with the
inviscid analytic pair is remarkable. Diffusivity affects
the “barotropic” and “baroclinic” experiments most
differently in the southern baroclinic fringe. For the
weakly depth dependent flow shown in Fig. 11 friction
further enhances the vertical coherence of the flow. In
the most viscous experiment (Fig. 11c) the confinement
of the baroclinic signature to the northern portion of
the flow is even more pronounced than in the analytical
calculation and in fact the baroclinic “fringe” south of
the barotropic core is completely erased by diffusion.

On the other hand, for the more baroclinic experi-
ment of Fig. 10, diffusivity is less efficient at erasing
the vertical shear in the westward portion of the baro-
clinic fringe than it was for layers of equal depths. The
reason for this is quite clear. The analytic solution
shows that, except for a small region close to the edge
of the upper layer gyre, in most of the southern fringe
the vertical shear is practically independent of latitude,
i.e., VA, — ¥») ~ 0. In the absence of horizontal gra-
dients interfacial friction is not very effective at locking
the two layers together, although it does increase the
lower layer velocity near the very edge of the abyssal
gyre, extending the region of vertical coherence.

b. Potential vorticity field

In Fig. 9b the potential vorticity field is plotted as a
function of latitude for the case «; = 18.86 and r = 3
(first row in Table 2). While the lower layer velocity
field (Fig. 9a) goes smoothly to zero at the southern
edge of the gyre (y =~ —0.5), the lower layer potential
vorticity field has a boundary layer structure at that
location. A diffusive boundary layer matches the dis-
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continuity between the homogenized plateau in the
north, to the motionless region in the south, where
g5 =y + a,2$,/r (dashed line). The difference in struc-
ture between the velocity and the potential vorticity
fields at the gyre boundary, supports the result that, in
the inviscid limit, velocities have to be continuous but
not potential vorticity. The upper layer vorticity field,
on the other hand, is very smooth at the boundary of
the surface gyre. This is not surprising, because the
analytic calculation predicts that the upper layer po-
tential vorticity has a weak O(a; ') discontinuity at the
southern edge of the surface gyre, while in the lower
layer the discontinuity is of O(1).

The tendency to form a discontinuity at the southern
edge of the deep gyre is more apparent when one com-
pares experiments with different diffusion coefficients.
In Figs. 10b,d the potential vorticity field is plotted for
two different values of «/, keeping all the other param-
eters fixed. For the more inviscid run (Fig. 10b) ¢, ap-
proaches the discontinuous profile given in the analytic
calculations [Eq. (4.7)] and a smooth boundary layer
begins to form at the edge of the deep gyre. The same
can be said for the pair of experiments shown in Figs.
11b, d. In the more viscous experiment, shown in Fig.
11d, there is no sign of discontinuity at the southern
edge of the abyssal gyre, but if Fig. 11d is compared
with Fig. 11b a tendency toward a discontinuity can
be seen. Although the homogenized value of g5 has
increased relative to the more viscous run, thus ap-
proaching the theoretical prediction, the value of g5
south of the gyre has decreased, approaching y
+ ay%¢y/r (dashed curve).

Finally, in Fig. 12a,b I have plotted the relative
vorticity, V?¢,, and the vortex stretching term,
a (¢, — ¢,)/r, of the lower layer for the run shown in
Figs. 1 and 9. In the barotropic core region (y > —0.4)
relative vorticity is as large as the vortex stretching,
and in fact its values in the center of the gyre are larger
than the values at the edges. Notice also that the vortex
stretching term is constant at the center, and there the
planetary vorticity gradient is balanced by the relative
vorticity. The numerical results confirm the structure
suggested by the analytic solution: baroclinicity is con-
fined to the edge of the recirculation while the center
is dominated by inertial effects.

6. Summary and conclusions

Some of the prominent features of the inertial gyre
observed in the wind driven ERGCMs and of the
North Atlantic recirculation, can be analyzed with a
simple, analytically tractable two layer model. As ex-
plained in more detail in CIY, the inertial gyre ap-
pearing in the subtropical region, south of the separated
Gulf Stream, can be forced by prescribing a potential
vorticity anomaly at the western, northern and eastern
boundaries of the oceanic basin. The boundary forcing
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F1G. 12. Lower layer relative vorticity and vortex stretching term for the numerical experiment shown in
Fig. 1. (a) Relative vorticity V2¢,. (b) Vortex stretching a3(¢; — ¢,)/r. The meridional scale has been expanded
by a factor of three. The southern boundary of the abyssal gyre is at y ~ —0.4. .

mimics the effect of the Gulf Stream carrying low po-
tential vorticity values, originated in southern latitudes,
northward and eastward. Because the bulk of separated
Gulf Stream is confined to the thermocline waters, the
boundary forcing decays with depth. Nevertheless form
drag parameterized by vortex stretching diffusion is able
to force the flow down to the ocean bottom.

The onset of motion in the abyssal layer is a strong,
highly inertial, barotropic core, about 300 km wide,
with vertically coherent westward velocities of the order
of 10 cm s™.

The meridional scale of the recirculation is directly
proportional to the potential vorticity anomaly and
the depth independent part of the transport is propor-
tional to the cube of the abyssal inertial gyre width [see
(4.8)], in strong analogy with the results found by CIY
using a homogeneous model. The barotropic core is
surrounded by a baroclinic fringe, with strong surface
intensified, eastward flows in a region of the order of
a deformation radius pressed against the northern
boundary of the subtropical gyre. The southern width
of the baroclinic fringe is proportional to (2H, — H)L,/
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2(H, + H,) and therefore of the order of the recircu-
lation scale, but the flow (westward) is weak. In the
westward flowing portion of the baroclinic fringe, the
neglected effects of dissipation and of the directly wind
driven Sverdrup interior (which is typically eastward
in this region) may become important.

In a series of numerical experiments [ have analyzed
the effects of small but finite lateral diffusion of poten-
tial vorticity on these boundary driven inertial flows.
The global structure of the solution is in excellent
agreement with the theoretical prediction, although the
actual amplitudes are slightly different. Clearly the
agreement is better in the barotropic core, where the
velocities are larger, because there the local Reynolds
number is higher. The overall impression is that dis-
sipation increases the flow in the barotropic core and
decreases it in the baroclinic fringe, with the net result
of making the flow even more vertically coherent. This
result may depend strongly on the particular type of
parameterization for small scale processes, but results
from ERGCMs tend to support the choice made here.

Although the vertical resolution of the model is ex-
tremely coarse, the results for the barotropic core are
independent of the stratification and agree with CIY’s
barotropic model. Equation (4.8) shows that the depth
independent transport depends only on the width of
the abyssal gyre. In turn, the width of the abyssal re-
circulation depends, to first order, only on the ratio of
the forced layer depth to the total depth of the ocean.
It is easy to show that the same result holds for a con-
tinuously stratified ocean.

The robustness of the results for the barotropic core
depends crucially on the smallness of the baroclinic
deformation radius compared to the scale of the recir-
culation, which in turn is proportional to the prescribed
strength of the boundary forcing. In this respect the
present theory is incomplete since it is unable to relate
the boundary forcing (or the recirculation scale) to the
external forces and dissipations, such as the wind, the
diabatic effects and the boundary currents dynamics.
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APPENDIX A
Approximate Solutions for the Gyres
Widths /; and [,
In this Appendix approximate solutions of (4.5) will
be given for the limits: a; > 1, r arbitrary; o, arbitrary,
r> 1.
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Let’s first analyze what are the conditions for [, — /,
= Q(1), in the limit of @; > 1. Call /; — I, = § and
suppose that 6 < O(a; ™).

From (4.4) and (4.5)
a2¢~ [(1 — L)1 — cosha,8) — ;! sinha;8] = O(1)

a|2X ~ cosha;6 — 1 — al(ll - 1) Sinha16 = O(al).

(A1)
From (4.5b) we have
L~bL~324+2r"+0(7). (A2)
From (4.5a)

aX sinhal, =~ 1 — (1 — a*¢) coshat,
and as long as /, is O(1), this can be approximated with
a®X ~ ac®¢ — a2/a + O(e™).
Substituting from (A1) and (A2) we get
[1— (1 +n7"'3/2](1 — cosha;6 — a '@, sinha;d)
= a,%a”? + O, ™Y).

By definition o 2,2 = r/(1 + r) and after some ma-
nipulation one obtains

Vr/(1 + r) sinha;6 + cosha; 6 — 1
= =2r2r— 1)"L. (A3)

Equation (A3) does not have a solution as long as r
= 15, therefore when this condition is met the hypoth-
esis made on the relative sizes of the gyres widths is
invalid and /; — /, = O(1). In this case the order of
magnitude in (A1) is wrong and

l| =1+ 011‘l
L=3/Q2+2r)+ Oa;™")

If the lower layer is much thinner than the upper
layer, r < 1, the previous solution would give /, >
which is physically unacceptable. In this case the order
of magnitude in (A1) is correct, (A2) is valid and 6 = [,
— b, is the solution of (A3). To first order (A3) is given
by

Vrousd + (ay8)%/2 = 2r

6= a, " Vr(Vs — 1.

Let’s now analyze the case r > 1 with «, arbitrary.
In this limit we should recover the results of the one
and a half layer model, and we expect /, = O(1), L,
< O(1).

We can expand X and ¢ in powers of /,:

a’¢ = fo + LA+ Lf/2 + Lf/6
a’X = go + hg + L2g/2 + L3gy/6.

From the definitions of ¢ and X we get the following
relations:
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)f(n:zo g|=(ﬂ)—l)a,2
T g = Dt
=g

Substituting the expansion in (4.5b) we get
LHg1/2 + hg/3 + 1,%g3/6)

= (L b(1 +1/3 = 172] + fo. (A4)
To first order f, must be zero and
1 - al_l sinhall, + (l] - l) COShalll =0 (AS)

which determines /; independently of /,. This is the
same relationship found in the one and one-half layer
model, Eq. (3.2).
In view of this result, the next order of the expansion
(A4) gives
&~ a1 + 1) = hLa*2

which determines /,. Notice that in order for solutions
to be possible (/;, > 0) it must be g > a%(1 + 7), i.e.,

r<r.= cosha;ly — 1 — ay(l; — 1) sinha;l; (A6)

Substituting (AS5) it can easily be shown that (A6) is
the same relationship found in section 3, Eq. (3.3).
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Thus the results from the one and a half layer model
are recovered as r is increased past the critical value 7,
given by (A6).
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