834

JOURNAL OF PHYSICAL OCEANOGRAPHY

Analytical Theory of the Steady State Coastal Ocean and Equatorial Ocean

WOLFGANG FENNEL
Academy of Sciences of GDR, Institute of Marine Research, Rostock-Warnemiinde, GDR
{Manuscript received 11 February 1987, in final form 27 November 1987)

ABSTRACT

Two linear stratified models—a coastal ocean on the fplane and an unbounded equatorial S-plane—with
Rayleigh friction and Newtonian cooling are examined. The problems are analytically tractable and a general
formal solution can be formulated by means of a Green's function technique.

In particular the stationary response of a coastal ocean and an equatorial ocean to a longshore and a zonal
wind patch, respectively, are calculated. Generally, the solutions are found as expansions of vertical modes.

The main purpose of this paper is to show that in certain cases the mode sums can be expressed by elementary
functions. Thus closed analytical solutions are given for the coastal jet and the coastal undercurrent, as well as,
the Yoshida jet and the equatorial undercurrent. Such expressions require various idealizations, in particular,
a simple friction mechanism, constant or weakly varying Brunt-Viisili frequency, a simple forcing structure,
alongshore geostrophy in the coastal case, and the long-wave approximation in the equatorial case. In spite of
these simplifications the solutions reproduce many of the observed features of the coastal and equatorial current
systems.

The presented theory demonstrates the close relationships between some of the dynamical features of a coastal
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and an equatorial occan mentioned earlier by Yoshida and Gill.

1. Introduction

As pointed out by Yoshida (1959) and later by Gill
(1972) close relationships exist between some of the
dynamical features of a coastal ocean and an equatorial
ocean.

The response of a coastal ocean to a longshore wind
patch consists of a downwind coastal jet confined to
the upper mixed layer. Moreover, due to the propa-
gation of coastal Kelvin waves excited at the edges of
the wind patch an alongshore pressure gradient estab-
lishes which drives a coastal undercurrent. After a suf-
ficiently long time the S-dispersion comes into play
and then the jets decay into Rossby waves. This sce-
nario has been described, e.g., by Philander and Yoon
(1982). ]

Similarly, the response of an equatorial ocean to a
zonal wind patch consists of a downwind jet, usually
called Yoshida jet. Due to the excitation of eastward
propagating Kelvin waves and westward propagating
long Rossby waves at the edges of the wind band a
zonal pressure gradient establishes which drives the
equatorial undercurrent. This has been summarized
by, e.g., McCreary (1981a), (1985). A further analytical
study was presented by McPhaden (1981).

The resulting pattern is somewhat modified if the
effects of meridional boundaries are taken into account,
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see McCreary (1981a). In particular, the surface jet will
be reduced and the undercurrent will be somewhat en-
hanced.

The present paper is concerned with a further ana-
lytical study. Its main results consist in the derivation
of closed analytical expressions for the coastal jet and
the coastal undercurrent as well as for the Yoshida jet
and the equatorial undercurrent.

The paper investigates the response to wind forcing
of two linear stratified ocean models—a coastal ocean
on a f-plane and an unbounded equatorial ocean. Dis-
sipation is accounted for by Rayleigh friction and
Newtonian cooling, the wind stress enters the ocean as
a body force evenly distributed in the upper mixed
layer. The underlying concept was outlined by, e.g.,
Gill (1982).

The model allows analytical solutions, which are
given in terms of infinite sums over all vertical modes.
In many cases the summations must be carried out
numerically. Below we will discuss some examples
where infinite series can be expressed by elementary
functions.

The presented theory is close to McCreary (1981a,b).
The main difference consists in the adopted friction
mechanism. McCreary assumes the ocean to be dif-
fusive where the vertical diffusivities of momentum
and buoyancy are inversely proportional to N2, where
N is the Brunt-Viisdlid frequency. This approach,
which was firstly proposed by Fjeldstad (1963), is nec-
essary to ensure separable solutions. This assumption
has an important consequence; in the equations of
motion of the individual vertical modes the resulting
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drag appears to be proportional to the square of the
vertical eigenvalues. This implies that the higher ver-
tical modes are much more affected by friction than
the lower ones.

Contrary, Rayleigh friction and Newtonian cooling
seems to affect all modes equally. It turns out, however,
that due to the involved wave processes in the final
solutions effective damping rates occur which are pro-
portional to the vertical eigenvalues. Hence even in the
frame of such a simple friction mechanism the higher
vertical modes are stronger damped than the lower
ones.

This paper is organized as follows: section 2 sum-
marizes the governing equations and in section 3 the
derivation of the formal solution is outlined. In section
4 the response of a stratified coastal ocean to a long-
shore wind band is studied and closed analytical
expressions for the coastal jet and undercurrent are
obtained. In section 5 we consider the response of an
unbounded equatorial ocean to a stationary zonal wind
patch. After some approximations of the involved in-
finite series of Hermite functions we find closed form
solutions for the zonal velocity describing the Yoshida
jet and the equatorial undercurrent. Finally, section 6
gives a summary and a discussion of the results.

2. Governing equations

We consider the linear Boussinesq equations with
Rayleigh friction and Newtonian cooling, with the
same relaxation constant r, in the form

wtru—fo+p.=X
v,+rt+fu+p, =Y
Nw+p,+rp,=0
Uy +v,+w,=0. (1)
The subscripts denote differentiation. The wind stress
is assumed to enter the ocean as a body-force evenly
distributed in the upper layer of thickness Hpix
6(z + Humix)
Hmlx

where the friction velocities u, and v, are related to
the wind stress components 7 through

X, Y) ~ (i, v3) ()]

(uz*a Drzk) = P— (T(X)’ T(y))
0

and 68(z + Hy,;,) is the step function. Otherwise the
notation is standard.

Assuming a flat bottom the solutions to (1) can be
represented as expansions of vertical modes, F,(z),
governed by the vertical eigenvalue problem

d 1 d
(v Mt -
F(0) = Fi(-H) = (3
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Here the sea surface has assumed to be a rigid lid. This
implies for the barotropic mode, n =0, Fy = 1/ VH and
Ao = 0. The solutions to (1) are then given by

U, 0,0, X, Y) = 2 (tn, Un, Dn, X, Y)Fu(2)

C))

where the expansion coefficients are functions only of
x, yand ¢. For a constant Brunt-Viisild frequency the
normalized baroclinic eigenfunctions are

2\!72 nw
F(2)= (ﬁ) cos(ﬁ z) (5
with the corresponding eigenvalues
nw
A = ]T/I—'—I = n\;. (6)

The projections of X and Y onto the F, amounts to
the expansion of the step function

0(z + Hnix 1
Az L i) _ 3 4 Fed) ™)
with
nw
: : L 12 Sln(HHmix) .
w7 () - ®

nw
'I_I H mix

Inserting the expansions (4) in (1) and Fourier trans-
forming of the resulting equations with respect to x
and ¢ yields the following equations of the individual
vertical modes

— fon + tkpp = X,
“i(:’vn +fu,, + pny = Yn

—iwuy

ikity + Vpy — i@N2Dy = 0

(€))

where w = w + ir. For the coastal ocean model with a
straight boundary at y = O the boundary conditions
on the cross shore velocity v are

— iwp, =0

v=0 at y=0 andfor y— . (10)

In the case of an unbounded equatorial 8-plane ocean
the meridional velocity is subject to

v—=>0 for y— *oo.

(1)

If solutions to (9) and (10), or (11), are found, they
must be inserted into (4) and then the final solutions
follow after summation over all vertical modes.
Below we will see that for constant Brunt-Viisild
frequency certain mode sums can be performed ex-
plicitly. This, however, requires F,, A, and A, to de-
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pend on the mode number 7 as in (5), (6) and (8),
respectively.

Although we confine ourselves to the N = const case
throughout this paper it seems worthy to note that those
summations are possible also for weakly varying N(z),
where the WKB-treatment can be used. Assuming a
constant NV within the upper layer, N = N, for 0 = z
= —Hpix, the WKB-treatment yields

1/2
F,(z) = (21]:;5? ) cos()\,, fo N(z')dz’)

f N2)dz, N\, = N_

H
sin n&@
1 (22 "R H
h (HNI) nrHmx
H

These quantities depend indeed on n as in the N
= const case. Consequently all explicit summations of
vertical mode series discussed below can also be per-
formed with the aid of these WKB-expressions.

3. The formal solutions

In this section we summarize how the formal solu-
tions to (9) with the boundary conditions (10) or (11)
can be obtained. This can be accomplished by three
steps. First, we derive an equation for v, alone; second,
we introduce the corresponding Green’s functions, and
then we express the solutions in terms of the Green’s
funciions and the external forces, see Fennel (1986)
and Fennel et al. (1987). The equation for v, is

Do+ 20, = £ @A — KDY, + ( o+ d}v,,.
(12)
In the case of a f~plane ocean «,, is given by
an, = A& = f3) ~ k)

Next we introduce the corresponding Green’s function
G(y, y') which is subject to

d
(d 2+an) Gy, V) =8y — ")

G.0,y)=0 and Guy,y)<co for y—> co.
The solution is
G, anly=y'l — i) (13)

In the case of the equatonal B-plane the «,? occurring
in (12) is defined as

= &) kz—ﬁ——szz f=8y
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and the corresponding Green’s function is governed
by

[2‘1';—2 + (m N nzﬁzyz)]Gn(y, )
=dy—¥)
GAy,y)=0 for y-> too.
The solution is
G, ¥) :
_WES “‘mg),f'"(my') 14

m=0 ‘;2>‘n2 _

kK ——=—-02m+ D\.8
w

where the ,,’s are the normalized Hermite functions

e-"Z/ZH m(1)

42" m!

with H,,(n) being the Hermite polynomial of mth order.
If the Green’s functions are known it is easy to ex-

press v, by means of a source representation, and then

the remaining observables can be expressed in terms
of v,. Thus we obtain

vuw, k, y)

Ymlm) =

_ k
= (wz}\nz — kz)G,,* Y, + )\nan*an + 5 G,,*X,,y,

€}~

k i
U, k, Y) = —~fN2Gu* Y, + = Gur Y, + Ik
X [x,}X,, + NG *fX, + kN2

2

k
X (fGn*Xny’ - Gny*an) - E Gny*Xny’]

Jk i
P, k,y) = = Gu Yo &+ G Yo & o505
X [k(Xn + Anszn*an) - ‘:’>‘n2Gny*an

2
— kGt Xy + ka X, ] . (16)

The convolutions occurrmg in (16), e.g., G,fX,, are
defined as

GurfXo = f fo " Gy WXy (172)

in the f-plane case, and

Gn*fX, = f_ . GAy, V) XA(y")By'dy’  (17b)

in the case of the equatorial 8-plane. The other con-
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volutions in (16) are defined by (17a, b) in an obvious
manner.

From a theoretical standpoint the existence of such
a general formal solution, which relates the dynamical
fields to the external forcing, is very pleasing. The gen-
eral structure of the solution is the same in both ocean
models. Differences occur in the Green’s functions and
in the form of the convolutions. The only unknowns
are the external forces which have to be modelled ap-
propriately.

At this stage the formal solution applies to arbitrary
N(z) with the corresponding F, and \,. Moreover, the
damping mechanism used by McCreary (1981a,b) can
be introduced simply by replacing r by \,24, where 4
is related to some vertical diffusivities.

Generally, (16) describes the complete scenario of
an oceanic response to any external wind. The analyt-
ical properties of the solution in the complex w-plane
correspond to the dynamical behavior of the responses.
Thus in the case of the coastal ocean the Green’s func-
tion (13) has branch points at @ = (f? + k¥/\2)'72, i.e.,
at those frequencies which define the dispersion relation
of inertial waves.

In the case of the equatorial ocean the Green’s func-
tion (14) has poles at frequencies determining the dis-
persion relation of equatorially trapped waves, e.g., sec
Moore and Philander (1977).

Moreover, in the equations of u, and p, in (16) we
observe poles at w = k/\,, which correspond to Kelvin
waves, and some extraneous poles which, in particular,
are associated with the “anti-Kelvin waves” @ = —k/
A,. For an unbounded equatorial ocean these extra-
neous poles do not contribute to the final solutions as
was shown by Fennel et al. (1987) in a general manner,
where only the properties of the formal solution and
of the Green’s function have been used.

In the following sections we confine ourselves to the
discussion of the steady state response to a wind patch
given by

Hmix

Expansion of X into vertical modes and Fourier trans-
forms with respect to x and ¢ yields

X, z) = 0(z + Hmi)0(a — |x|), Y =0. (18a)

ul 2 sinka
h 27o(w) Pt

In the case of a coastal ocean this describes an along-
shore wind band, while for an equatorial ocean (18)
models a zonal wind patch.

Xn(w, k, »=-

(18b)

4. Response of a coastal ocean

In this section we consider the stationary response
of a coastal ocean on a fplane to a longshore wind
patch as given by (18a,b). To this end we insert (18b)
into the formal solution (16) and we use the Green’s
function (13) to estimate the involved convolutions
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according to (17a). The properties of the delta function
imply F(w)é(w) = F(0)d(w). Assuming, moreover, r
< f we have a,%(0, k) = —(1/R,2)(1 + k*R,?) and it fol-
lows

2 .
_ Uk 2 sinka A
Un(w, k, y) = h, 2wo(w) K2+ "2>\n2
n k
X [r)\,,(l + %) + JIT Gy 1] (192)
—ul 2 sinka G,* 1
vw, k, y) = h % 27é(w) 2 R (19b)
2 .
_ Uy 2 sinka 1
Drlw, k, y) h, 27d(w) k K2+ r2)\n2
) n A’l
X [ik(l + GR’;‘) + ’R— Gy 1] (19¢)
where
R? —CWRWVITRRE
Gux om0 = T3 € T = 1) (200)
Gry# e = — e o ORITFRRE (20

V1 + k2R,2

and R, is the Rossby radius, R, = (f\,)™.

The inverse Fourier transforms with respect to k
amount to certain convolutions involving the modified
Bessel function K, e.g., Oberhettinger (1957). How-
ever, far enough from the corner points y = 0 and x
= +q,i.e., fory/R;> 1 and (x + a)/R, > 1 the response
is well approximated by the leading terms for small k.
Then (20a, b) reduce to

G.x1 =R e’ - 1)

Gnyx1 = —R,e ™",

(21a)
(21b)

Obviously, the assumptions r <€ fand (x + a)/R, > 1
amount to assuming longshore geostrophy.

In the following two subsections we discuss the so-
lution set (19), (21) in some detail starting with the
case of an infinite longshore wind band, i.e., a = oo.

a. Coastal jet

For a = oo we have (2 sinka)/k — 27(k) and the
solution is readily obtained

2

Un(y) = — hﬁf; ¢ V/Rn (22a)
us
vy) = — h—f(e‘y”‘" - 1) (22b)
ui
ply) = — Y e V/Rn (22¢)
wi(¥) = —rpu(p). (22d)



838

This describes the well-known coastal jet with the as-
sociated upwelling. The longshore current is geo-
strophically balanced by the cross-shore pressure gra-
dient Dny. In particular close to the coast the longshore
flow is balanced by the wind, ru,(0) = —u2/h,.

The final solution follows after summation over all
vertical modes, according to (4). Introducing the sums

Si(x, ¥, 2) = Huix E "(z) e~™/Rimmarx(23a)
hy .
i, 2 = Tt 3 (I emmenes sty
from (4) and (22), we obtain
, , ,
u
uma=—ﬂ;¢&@nn+Hmw] (242)

X
v(y, 2) = — 7 —fH [S1(0, y, 2) + Huix/H] (24b)

2

NHmlx

The sums S; and S, can be reduced to closed form
expressions. With (5) and (8) we rewrite (23a, b) as

—n(y/Ry+r i x)

(24¢)

w(y, z) = $2(0, ¥, 2).

1 e
- 2 (sinng, + sinngp_)

n 1

Sl(x; Vs Z) n

e—n( Y/R1+rA1x)

12 .
Sxx, y, 2) = = O, (cosng, — cosne_)
n=1

3

n
where

¢=§wm_n

Obviously S; and S, correspond to the imaginary
and real part, respectively, of a sum of the type

ulem-s-1 ~-
10
400 T~

FI1G. 1. Vertical section of the longshore current u showing the
coastal jet. The contour interval is 20 cm s~'. Isopleths higher than
160 cm s~ are omitted. The maximum speed in the upper left corner
is 242 cm s\,
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FI1G. 2. Vertical section of the cross velocity v associated

with the coastal jet. The contour interval is 0.1 cm s™%.

oo e—n(i¢+‘y)

= ——ln(l —_ e_(i¢+7))

n=1
= —In(|1 — e”®*|) — jarg(l — e”t¢*7),

This implies

1 sing.
Sl(x, 3 ) Z) = ; I:arCtan(e.V/RIH:Mx —_ COS<P+)

sing._
+ arctan(eym‘ e cosso_)] (25a)

cosh(y/R; + r\ix) — cos¢>_]
cosh(y/R, + r\;x) — cosg, |

(25b)
Putting in (25) x = 0, we have the mode sums occurring
in (24) expressed by elementary functions.

We note that the pressure is proportional to a sum
of the type

SZ(xa Vs Z) 271' [

—n(t<p+7)

E (26)
For 4 = 0 this sum can only be expressed in terms of
elementary functions. For nonzero v (26) is related to
the Dilogarithm which is a nonelementary transcen-
dental function, e.g., Abramovitz and Stegun (1984).

In Figs. 1, 2 and 3 sketches of u, v and w are dis-
played where the involved parameters are chosen as

= 1000 m, Hpix = 50 m, u3 =0.5cm?s ™%, f=17.5
10‘5 s7!, r~! = 30 days, and R, = 40 km. In particular,
Fig. 1 shows the coastal jet which is surface trapped
and whose maximum speed at the coast, y = 0, is set
by u2/rHyx. Due to the highly idealized geometry of
the model the vertical velocity has a logarithmic sin-
gularity at the point y = 0, z = —Hp,x, compare (24c)
and (25b). Such a singularity does not occur in the
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FIG. 3. Vertical section of the vertical velocity w associated with
the coastal jet. The contour interval is 10~* cm s~*. The vertical ve-
locity is multiplied by 10% At the point y = 0 and z = —Hy;, there
occurs a weak logarithmic singularity.

coastal jet solution of McCreary (198 1b). This indicates
that using heat diffusion rather than Newtonian cooling
removes the singularity. However, the horizontal speed
is too high in McCreary’s model.

The dynamical balances of the coastal jet regime are

ru—fo=2X, with ru= X at the coast,

and —fo=X for y— o
Su+p,=0,
v, + w, =0. 27N

The flow is two-dimensional and the offshore Ekman
current is balanced by the coastal upwelling.

b. Coastal undercurrent

Next we wish to analyze the response to a wind patch
(compare Fig. 4) according to (19) and (21). The so-
lutions are

—_2
u,.(x, y) = rZ* e—y/R,,[e(a — IxI) —_ 0(x + a)e—(x+a)x,,r

n

+ 8(x — a)e” > (28a)
2
VulxX, y) = T, * 0(a — |x|)(1 — e ¥Ry (28b)
- i ~Y/Ry
= —— — —_ —(x+a)\,r
DX, ¥) o [0(a — |x]|) — 6(x + a)e

+ 0(x — a)e™ "M} (28¢)

WX, ¥) = —rpu(x, y). (28d)

Because of the rigid-lid condition, implying Ay = 0
and Ry — oo, the barotropic mode is in a state of no
motion where the wind is balanced by the longshore
pressure gradient, po, = —(u3/h,)0(a — |x|).
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The first terms in (28a, ¢) describe a coastal jet within
the wind patch. The remaining terms are due to coastal
Kelvin waves which have radiated from the wind edges
with the coast to the right. In the stationary case these
waves are pure damped ones. The associated damping
rates, A7, depend on the vertical mode number, i.e.,
the higher modes are stronger affected. In particular
the very high modes are close to a coastal jet regime
while the lower ones are substantially influenced by
the Kelvin waves.

In order to illustrate the effects of the Kelvin waves
we consider the case r — 0, where the set (28) reduces
to

Un(x, ¥)
ui -¥y/Ry
= —J;h— R [6(a — | x|)(x + a) + 0(x — a)2a]
(29a)
Vulx, ) = fh 0(a = |x[)(1 —e™>®)  (29b)
DX, Y)

2
- _ l;_li e R0(a — |x|)x + a) + 0(x — a)2a] (29¢)

n

Walx, y) = (294d)
From this set it can be seen that the Kelvin waves arrest
the coastal jet and stop the upwelling. Close to the coast,
y = 0, the wind is balanced by the alongshore pressure
gradient py,.
A further important effect is the generation of an
undercurrent which becomes visible after performing
the vertical mode summation. Introducing the sum

(Z)e —V/Rp
S3(y,2) = Hpix 0, ————
3(y ) mi nz:l h,,R,,
2 S N Hmix RTZN —nyr
~ R ? ( q ) cos( 7 )e
_ sing, sing_
R;7 |cosh(y/R;) — cos¢,.  cosh(y/R,) — coseg-
(30)
I wind Iy I I
1< | |
| | I I
I l2) la) liwy
I I I I
| | I |
| | | | xMm
-a -400 0 400 a 1200

coast

FIG. 4. A schematic diagram showing the position of the ocean
boundary, the structure of the wind field, and the location of sections
(1) to (4). The wind stress is negative and yields a friction velocity,
u3%, of 0.5 cm? s~2. The value of a is 800 km.
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| y/lkm 20
J

200+

u/cm.s-1

400

FIG. 5. Vertical section of the longshore current along section (2)

of Fig. 4 in the inviscid case showing the arrested coastal jet in the .

surface layer and an undercurrent below. Close to the point y = 0,

z = —Hy,, a singularity occurs. The contour interval is 40 cm s™'.

and using (25a), we obtain

uk

ﬂImix'
X [(x + a)b(a — |x]) + 2ab(a — x)]S5(y, z) (31a)

2
v(x, y, 2) = _§+ﬂ3*-

wx, y, z)=—

S0, y, 2) (31b)

Ui

H, mix

px, y,2)=—

X [(x + a)f(a — |x|) + 2a8(a — 1S:(0, », 2). (1)

The longshore current consists of an arrested surface
jet and an undercurrent below, both are coastally
trapped, as displayed in Fig. ‘5. For y=0 and z
= — Hixt becomes singular, i.e., the inviscid solution
fails in the vicinity of that point.

The dynamical balance is governed by

e within the patch, —a < x < a:

_ﬁ)+px=X
fut+p,=0
U+ v,=0 (32)

e outside the patch, x > a:
SJu+p,=0.

There is no upwelling in the inviscid solution and
the offshore Ekman flow supplies the coastal under-
current.
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In the viscid case the lower modes are in a balance
close to (32) while the higher modes approach the bal-
ance (27). Thus, due to the strong damping of the Kel-
vin waves associated with higher vertical modes the
upwelling is small but not zero. In other words, adding
mixing allows upwelling to occur.

With (25a, b) we find the final solution as

2

ux, 3, 2) = ~ === [0(@ ~ |x1)Si(0, », 2
—0(x+ a)Si(x+ a,y z)+ 0(x — a)Si(x — a,y, 2)]
(33a)

. .X 2
vy )= =7 ﬂ’;m $i0,5,2)  (33b)
2

w(x, y, 2) = NZ’;“ [6(a — 1x])Sx0, y, z)
—O0(x + a)Sx(x + a, y, 2) + 8(x —~ a)S2(x — a, y, 2)].
(33c)

We choose ¢ = 800 km and the other parameters as
in the foregoing subsection. In Figs. 6 to 9 the longshore
velocity (33a) is displayed along the sections (1) to (4),
respectively, which are indicated in Fig. 4. The flow
compares well with that of McCreary’s model, and has
features that compare favorably with those observed,
see McCreary (1981) and references therein.

Both the thickness and the depth of the undercurrent
increase with increasing distance from the wind edge
x = —a. Due to the radiation of the Kelvin waves the
coastal currents extend well outside the wind band, x
> a, where they are remotely driven by the winds
blowing within the forcing area.

Figure 10 shows the vertical velocity (33c) along sec-
tion (2) as indicated in Fig. 4, and demonstrates the

200

u/cm-s-!

400~
FIG. 6. Vertical section of the longshore current in the viscid case

showing the arrested coastal jet and the undercurrent along section
(1) of Fig. 4. The contour interval is 20 cm 57",
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2004

ul/cm-s-1

400-
F1G. 7. As in Fig. 6, but along section (2) of Fig. 4.

reduction of the upwelling compared with that of the
coastal jet case shown in Fig. 3. The cross velocity is
not affected by the Kelvin waves and has within the
wind band the same structure as depicted in Fig. 2.

The dependence of the longshore current profile
close to the coast on the parameter r and on the mixed
layer depth Hp, is illustrated in Figs. 11 and 12. The
profile appears to be relative sensitive to changes in r
and Hpx. The sensitive dependence on r close to the
coast corresponds to the singularity of u at y = 0 and
z = —H;x which occurs in the inviscid case, r = 0.
Further offshore the properties of the flow are only
weakly affected by changes in r.

Just for completeness we note also the solutions far
offshore. For y/R, > 1 from (20) we obtain

_Rn2 .
Guyx1 =0.

G l=——-—
n* 1+ k*R2’ ,

2004—

u/cm-s-!

400-

HG. 8. As in Fig. 6, but along section (3) of Fig. 4.
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400-
FIG. 9. As in Fig. 6, but along section (4) of Fig. 4.

Inserting this into (19) we find after inverse Fourier
transforms

U, =0
ui —l|x—al/R,
V(x) —% [ﬂ(a — |x]) + sgn(x — a) >
e—|x+aI/Rn
— sgn(x + a) ]
2
2 —{x—al|/Rn —=|x+al|/R,
__ us [e _e
pﬂ(x) h,,)\n [ 2 2 ]

w, =0

where orders of r/f have been neglected. For v the mode
sum can be carried out, i.e.,

0 10 ylkm 20
0 1 1 1 J
z/m __\,3 2)
2004
w-103lcm-s‘1
400 -

FIG. 10. Vertical section of the vertical velocity along section (2) of Fig.
4. Contour interval is 107 cm s™'. Velocity is multiplied by 10°.
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FIG. 11. Profiles of the longshore current close to the coast at section
(2) of Fig. 4, contrasting the response for three different values of the
dissipation constant. The value of r is (30 days)™".

f 2melx
—sgn(x + a)Sy(|x + al, 0, 2)]. (34)

Thus, far offshore the response consists of the Ekman
flow (first term) and a rectification at the edges of the
wind band (second term). This rectification is geo-
strophically balanced by the pressure gradient p,.

v(x, z) = [sgn(x — @)Si(|x — al, 0, 2)

-100
L

300 H

zlm

w00

FIG. 12. Profiles of the longshore current close to the coast at section
(2) of Fig. 4, contrasting the response for three different values of
mixed layer depth. The value of Hp,y is 50 m.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 18
b
wind
<<l
(1) :IZJ :(3) (4)
| ) xlkm

F1G. 13. A schematic diagram showing the structure of the zonal
wind band and the locations of sections (1) to (5). The wind blows
in negative zonal direction. The friction velocity, 432, is 0.25 cm? s™2

and the value of ¢ is 1000 km.
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5. Response of an unbounded equatorial ocean

In this section we consider the stationary response
of an unbounded equatorial ocean to a zonal wind
patch of the width 2a as given by (20a, b), compare
Fig. 13. The algebra is much more complicated than
in the coastal case discussed in the previous section

- and closed form expressions of the final solution can

be obtained only in very few cases.
Inserting (18) into the formal solution (16) and using
(17b) we obtain the corresponding response as

2 smka 1

un h 2 6( ) r2xn2+k2
X [PAn 2(1 + N2B2YGo*y') + ikBN2G oy x Y]
2 k
v, = —,,—2 wb(w) 222K ) 26wy
u 2 smka —i
, = — 2% 2

P 7, 27O r\E + K

X [k(1 + anﬂzyGn*y') = ir\"BGnyy'].  (35)

Due to the delta function all w occurring in the solution
vanish. In the following we omit the vertical mode in-
dex n and only retain it when discussing the vertical
mode sums. Next we calculate the convolution G, *y'".
Introducing a new variable n = VA8y we have

1

dn
Guy = [ G yway = [ o, w2

B
__ % Ym(n)
VA8 o —(r*N + k*) + % k — BN2m + 1)

x [ dnynony 36)

where (A\8)~! = R defines the equatorial Rossby radius.
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The integral in (36) yields only for odd m nonzero {1 = Izm\/_— Yams1(n)
contributions, i.e., Gy = — V——)\:ﬁ mfzjo = i)k + iky)
f+w an'n¥amn(n') = L V4m + 2 from (35) we obtain

with - _ _ux2sinka N

TV R A

i = LV
Note that I,,, is the coefficient of the expansion [ — A8 Z — iky)(k + ikz)
@ , .
Eo fomfantn) = 1. 7 X (71‘{/2»&1(77) + ik tﬁzmn(n))]
We may write the denominator of (36) as oo Ui 29 s1nka V< 2 IM\/—— 2Wamri(n)
hn 2y (k= k) + iks)

rI?+ k- g I—C + A82m + 1) = (k — ik)(k + iky)
r ul 2sinka ik

where . P70 Tk PN+
B [( 2 A )1/2 ] ®  LpVdm+ 2
kio=—|(1+4r =-Cm+1)] =1]. m -
b2 r /3( X1+ M8 % & = ik + k) (17‘[/2 +1(1)
For small r it follows k; =~ B/r and k; =~ rACm + 1), in
which correspond to damped eastward propagating + == Yhm +1(7)))] . (38)
short Rossby waves and westward propagating long

Rossby waves, respectively. Thus, with The inverse Fourier transforms with respect to k can

be performed exactly.

Introducing
dk 2 sinka ™ 1 -rAlx-al o-xtal
Ao(x) = ke = 2 [0(a — |x|) + sgn(x — a) > — sgn(x + a) > ]
and
dk 2 sinka e 6(a — |1x!) 1
Ax) = =

k(K2 + Nk — ik)k + ik kidar™ T ka(k + k)N — ki)

X [0(x — a)e™ "D — f(x + a)e M+ +

: —_ —kola=x) _ p(— 4 — ka(a+x)
katky + Ko)X(r*N = ky?) [b(a = x)e (-a—xe ]

- 1 — —r\(x—a) _ —r\(x-+a) 1
2NN — k)h + Ry O* D¢ bx + @™ SN+ koh + )

_ 0(_x _ a)er)\(x+a)],

all Fourier integrals occurring in (38) can be expressed by Ag and A, . For simplicity we use the approximations
=~ B/r and k; =~ rA(2m + 1). Moreover we ignore the short Rossby wave contributions which appear to be

closely trapped at the edges of the wind patch. These assumptions amount to the usual long-wavelength ap-
proximation. Then we obtain

[6(a — x)e~™—

Yoshida Kelvin

A

2 & 4m + 2
u(x,n)=-%[0(a—|x|) (1— > 12m4 3

Al

—

ﬂ¢2m+1(ﬂ)) + {29 YoM[O(x — a)e ™™D — f(x + a)e ™*+9]

Rossby

A
r

~

[ — mi2 — DmWam)(O(a — —r@m+3)a-x) _ g(—q — r)\(4m+3)(a+x)} 39
+”§O 2(4m +3) (Lam+2¥2m+2 — Lmp2mi(0(a — x)e (—a — x)e Yt (392)
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uj(M\"2 2 LnVam + 2
v(x, n)=——*(—) > E—

h\gB dm+ 3

m=0

- 9( a— x) e-—r)\(4m+3)(a—x) + 0(_ a— x)er)\(4m+3)(x+a)]

pix, n)———[a(a_ |x!) 2 ' (4m +3)

I
- 50 Vo(mIB(x — a)e ™" — f(x + a)e >+ —
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Yamer(m)Ba = |x])

(390)

2m + Dhmam)

i 1
'EO 2@m +3) (Lmr¥2me2 + Lomam)

X (0(0 — x)e—r)\(4m+3)(a—x) _ 0(_(1 — x)erx(4m+3)(x+a))} (39C)

where standard identities of the Hermite functions were
used. The first terms in (39a, ¢) describe the Yoshida
jet within the forcing area, see, e.g., Moore and Phi-
lander (1977), while the second and third terms are
due to eastward propagating Kelvin waves and west-
ward propagating long Rossby waves, respectively,
which are excited at the edges of the wind patch.
Clearly, in the steady state considered here these waves
are purely damped ones. The damping rate of the Kel-
vin is 7, that of the Rossby waves, however, -appears
to be proportional to both the vertical eigenvalue and
to the meridional mode number as rA(4m + 3).

In the remainder of this section we discuss the so-
lution (39), particularly the zonal current in some de-
tail.

a. Yoshida jet

We start with the case of an unlimited wind field,
i.e., a = co. Then in the set (39) all exponentials due
to Kelvin and Rossby waves vanish and only the Yo-
shida terms remain. The resulting balances are quite
similar to those of the coastal jet regime, compare (27)

ru—Byw=2X

with ru = Xfory = 0, —8yv = X for y = 0.
Byu+p,=0
v,+w,=0 (40)

where rv <€ Byu was assumed.

We try to find a closed form expression of the zonal
current, i.e., the Yoshida jet. This requires an analyt-
ically tractable approximation to the involved infinite
series of Hermite function. To this end we note that
the expansion (37) can be rearranged as

[IZmHZm(O)
2"Y(2m)!

I2m(H2m(n) - HZM(O))] =1
27Y(2m)! '

m=0

E Lomam(m) = o) 2

With
Hanl) = (-1 e

it can readily be seen that the sum
1 & LmHom(0)

m m=0 Zm‘/m
is the Taylor series of [2/(1 + x)]'/? for x = 1, which
converges in the interval —1 < x < 1. Thus, we have
Lom(Hom(n) — H2p(0)) _

2"V2m)!

The sum over m,,+1(n) occurring in the Yoshida term

in (39a) can be rearranged analogously. Using the re-
currence relations of Hermite functions we obtain

-"’/2+¢(>2

m=0

% L, Vam + 2 Jameri(n)
= ___4m +3 NVom+1\N
- IZm(H2m(n) H2m(0))
,,,=0 2"V(2m)!
2m+ 1 + 2m
\4m+3 4m-1)°
Hence the Yoshida term in (39a) can be rewritten as
. _ui - IZm(HZm(n) HZm(O))
u= ¥
P
2
. 41
X am + 3)@m — 1)] @1

It appears that for < 2 the sum is neghglble For ¢
> 2 both terms are of the same order but the resulting
signal is rather weak, say less than 10 percent compared
with the values close to the equator. Consequently, the
exponential yields the leading contribution to the
Yoshida jet. A comparison of the complete contribu-
tion of the bracket of (41) with its approximation by
the first term is depicted in Fig. 14.
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FIG. 14. Comparison of the infinite series of Hermite functions in
the bracket of (41) (solid curve) with the approximate expression,
exp(—n?/2), (dashed curve).

Retaining the vertical mode index n, we have

2

u* —_ 2
un(y) ~ I e ™",
n

Note that 5, = my = VZy/Rl , where R, is the baro-
clinic equatorial Rossby radius. Hence, with the aid of
(25a) the vertical mode summation can easily be per-
formed

2

Uy G Hmix
erix [SI(O’ Vs Z) + H ] . (42)

uy, z) = —

The tilde indicates that in the equatorial case the y/R,
occurring in S; has to be replaced by y?/2R?, i.e.,

~ 1 1
S$1(0, y, z) = — | arctan| —Z——Slzmp“L—
T e’ R — cosp,

+ arctan(—zs—lm——-——)] . (43)
e R — cosp_

The Yoshida jet as given by (42) is shown in Fig. 15,
where the involved parameters have been chosen as H
= 4000 m, Apix = 75 m, A; = 0.36 s m, R; = 360 km,
u2 =Yscm?s7?% and r~! = 90 days. The jet is confined
to the surface layer and has a maximum amplitude
of 250 cm s7!; its magnitude is proportional to r™!
and Hz.

Similarly to the coastal jet case the associated vertical
velocity has a logarithmic singularity at y = 0 and z
= —H,ix. This follows from (39c) and (4). In the two-
dimensional case only the first sum in the braces of
(39c¢) contributes to p,. For y = 0 this sum is of order
unity and the vertical mode summation according to
(4) is proportional to S0, 0, z), compare (25b).

Such a singularity does not occur in the Yoshida jet
solution of McCreary (1981a), i.e., using heat diffusion
rather Newtonian cooling removes the singularity.
However, McCreary’s two-dimensional solution yields
speeds that are too high.
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b. Equatorial undercurrent

Next we consider the response to the finite wind
band as given by (39). First we note that because of
the rigid-lid condition, implying Ay —= 0, the barotropic
mode is in Sverdrup balance, which in the present case
is a state of rest where the pressure gradient balances
the wind.

The baroclinic Kelvin and Rossby waves are ex-
pected to have two effects, namely, to arrest the Yoshida
jet and to introduce an undercurrent. Again this can
be seen easiest in the inviscid case, r = 0, where the
set (39) reduces to

i

a
Uy 7 Ioo(nr) BRZ

2
Pn=— f‘h— lalobo(n,) — (@ — X)(a — |x])

- 2a0(—x — a)l

v, =w,=0. (44)

The dynamical balance is simply

2
pm=—%ﬂa—wh

BYun + Pny = 0. (45)
Thus, similarly to the coastal ocean response, the sur-
face jet is arrested by the eastward propagating Kelvin
waves and, moreover, by the westward propagating
long Rossby waves. The upwelling has stopped com-
pletely. Contrary to the inviscid coastal ocean, the zonal
current is independent of x and the meridional current
vanishes. Within the wind band the zonal pressure gra-
dient balances the wind, and the zonal current is geo-
strophically adjusted to the meridional pressure gra-
dient.

. y/km 290

-+ 250

FIG. 15. Vertical section of the Yoshida jet. The contour interval
is 20 cm s~!. The maximum speed at the equator is about 250

cms™,
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The generation of an undercurrent can be demon-
strated after summing up the vertical modes. With the
aid of (25a), (30) and (7) we obtain

2

U
wy,z) = — e S s Z 46
(¥, 2) . ﬁRl '3(y ) (46)
where
1 sing,
$ir.2) = 7R, [cosh( ¥Y2R?) — cose,
sing_ @n

+
cosh(¥?/2R,%) — cose_
2
u
p(y,2)=— 7"

mix

{agl(o’ Vs Z) - [(a - X)B(a - le)

+ 2a6(—x — a)}0(z + Hnix)}. (48)

The zonal current is shown in Fig. 16. Beneath the
westward surface jet flows an undercurrent. Close to
the point y = 0 and z = —Hy,;, this solution becomes
singular. This follows from the behavior of the vertical
mode sum at y = 0, i.e.,

E} sin 71 Homin cos| 22
n=1 H H '

Note that this sum is singular only if the summation
goes really over all infinite #. If the sum would be trun-
cated at some finite # the result remains finite.

For nonzero damping rate there will establish a
combination of both regimes (40) and (45), in partic-
ular, the very high modes are close to the Yoshida
regime (40) while the lower modes approach the bal-
ance (45).

In order to find a closed form expression of the zonal
current for nonzero r we have to seek also a mathe-
matically convenient approximation of the Hermite
series occurring in the Rossby wave contribution in

u:i a2

u(0, z) =H ~3Rm

y/km 290

u/em-s-!

4250

FIG. 16. Vertical section of the zonal current in the inviscid case
showing an eastward undercurrent below a westward surface flow
(arrested Yoshida jet). Similarly to the coastal ocean response in Fig.
5 the neglect of friction causes a singularity at y = 0 and z = —Hp, -
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(39a) To this end we note that the Yoshida jet term
in (39a) which according to (41) can be approximated
by €™, can be rewritten as

4m + 2

1= 2 s

W i) = 20

/2 .

P2 1
+3 ’EO 3 (Lms¥ame2 — o) =~ €

This implies
1 <]
2 2 4

3 (me¥amsz — Lmom)

v_(\/_ — e 2 (49)

This result follows also if the ¥,,,(n) are replaced by
H Zm(o)

‘pO( ) 2mvz—)'

Thus, similar as in the Yoshida case, we can approx-
imate the Rossby terms by taking only the » = 0 values
of the Hermite polynomials into account.

Let £ = ¢ ™“ and consider the series
Yo < gom3 Di2
2 mzo 4m + 3 2m+lv(2m i 2)' 2m+2(0)A
o Lm0 )]
2m]r"—-(2 )' 2m
—e—nz/Z -] (54)m+1(2m)!(_1)m+l
V2t e 227 (m + 1Dim!
-2 1
=4 S -V1+E (50)

V2 ¢

For £ = 1 this yields again (49). Thus with (50) the
sum over m in the approximate Rossby term can be
written as

Yo(n) % 1 ( Doms2Homi2(0) IZmHZm(O))
2 o Sd4m+302mYom+ 2 2mYem)y

X [0(a _ x)e—r)\,,(4m+3)(a—x) _ 0(_0 — x)er)s,,(4m+3)(a+x)]
e "2 ‘
= V§ {0(a — x)er)\n(a—x)[l — (1 + e-4r>\,,(a—x))l/2]

R 0(—(1 — x)e—rx,,(a+x)[l — (1 + e4r)\,,(a+x))l/2}‘ (51)

Unfortunately, with (51) the vertical mode sum cannot
be performed without further simplification. However,
it turns out that (50), and hence (51), can be well ap-
proximated by the first two terms of its Taylor expan-

sion, i.e.,
3 7
T .

__(1
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F1G. 17. Comparison of the exact Rossby term at the equator, y
= (0, (solid line), and the approximate expression (52), which consists
of the first two meridional modes (dashed line) versus the vertical
mode number. The involved parameters are chosen as A\, = 0.36 s
m, 1/r = 90 days, @ = 1000 km and x = 0.

This approximation is accurate for vertical modes n
= 4. For the first few modes the error is also small, say,
of the order of few percent. Thus we can replace (51)
by

—n2/2 —3ra(a—x)

e e e—7r>\,,(a—x)
o O e

2 - 8

3rip(a+x) Trada+x)
— f(—a — x)(e _¢ )} . (52)

Figure 17 compares the approximate formula (52) with
the complete expression (51). We observe that the
expressions drop rather rapidly with increasing mode
number 7. This is due to the enhanced damping rate
of the long Rossby waves, i.e., the occurrence of the
factor (4m + 3) in the corresponding exponentials.
Clearly, the Kelvin as well as the Yoshida terms con-
verge significantly slower.

With (52) and the approximation of the Yoshida
term discussed in the previous subsection we have (39a)
simplified to

ui 2/2 e—""2/2
(X, = —_—— 0 j— “Nn +
Un(x, ¥) rh,,{ (@ — |x))e 7
X (0(x — a)e™™""D — f(x 4 g)e M)
e~ M2 e~ IMa—x)  p=Trna=x)
L e
e3r)\,,(a+x) e7r)\,,(a+x)
o)

Now the corresponding vertical mode sums can be ex-
pressed by S| and we find the final solution as
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FIG. 18. Vertical section of the zonal current in the viscid case
along section (1) of Fig. 13. The contour interval is 20 cm s™'.

2 ~
ux, y, z) = — rH*‘ [G(a = 1x])$1(0, y, 2)
+ \/ii 0(x — a)Si(x -y, z) - % 0(x + a)

X S,(x +a,y2)+0a-— x)[ V— S1[3(a X), y, Z]

8‘/— Si[7(a — x), y, ZJ] —0(—a—x)

Si[~3(a + x), y, z]

[2\/_
-5 V' Si[~7(a + x), y, z]]] (53)

In Figs. 18 to 22 the zonal current is shown along the
sections (1) to (5) as indicated in Fig. 13. The vertical

-200 -100 0 100 y/km 200
i - 1 1 | 1 L )

ulcm.s-!

4250

FIG. 19. Vertical section of the zonal current along section (2) of

Fig. 13 showing the arrested Yoshida jet in the surface layer and the

undercurrent below. The contour interval is 20 cm s™'.
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FI1G. 20. As in Fig. 19, but along section (3) of Fig. 13.

7

and meridional scales compare well with observations,
particularly within the wind band (see Fig. 19 to 21)
however, the surface velocity is somewhat too high.

For an unbounded ocean McCreary (1981a) found
in his model a similar ratio of surface velocity to the
maximum speed of the undercurrent, compare Fig, 8
of his paper. However, in his case studies he could
demonstrate that the effects of meridional boundaries
reduce the surface current by about 50 percent and
intensifies the undercurrent by a few percent. Thus the
relative high surface speed in the present model may
be attributed to the neglecting of the boundaries.

McPhaden (1981) obtained a similar figure of the
undercurrent but an unrealistically strong surface cur-
rent, which seems to be due to the lack of a mixed
layer in his model.

In Fig. 23 the dependence of the zonal current on
the mixed layer depth at x = 0, just at the equator is
depicted. This figure shows a quite strong variation of
the velocity profile as Hp, is changed. Thus a mixed
layer depth of, say, 75 m is necessary to obtain a rea-
sonable surface speed.

-200
[l

u/cm-s-1

FiG. 21. As in Fig. 19, but along section (4) of Fig. 13.

u/cms-1 \ {
Laso

FiG. 22. As in Fig. 19, but along section (5) of Fig. 13.

Figure 24 illustrates how the current profile depends
on the friction constant r. Particularly at the equator
the current profile appears to be rather sensitive to
variations of r, while the meridional and vertical scales
are only little affected. Obviously, the sensitivity close
to the equator is due to the singularity of u for r = 0,
compare Fig. 16.

Figures 23 and 24 reveal that the use of a nonscale
specific damping yields a greater shear across the base
of the mixed layer than in either McCreary’s ‘or
McPhaden’s models.

6. Summary and discussion

In the paper the wind-driven response of a coastal
f-plane ocean and of an unbounded equatorial 3-plane
ocean was investigated. In section 3 the general formal
solutions were derived for both models. The mathe-

~100 -50 0 50 u/cms-! 100
[ 1 [} 1
T
i
R — +. _________
i
L
/
/ 100
7/
/
Co L.
2Hemix
200 T-

400 4

FIG. 23. Profiles of the zonal current at the equator, y = 0 and x
= 0, contrasting the response for three different values of the mixed
layer depth. The value of Hpix is 75 m.
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FIG. 24. Profiles of the zonal current at the equator, y = 0 and x
= @, contrasting the response for three different values of the friction
parameter. The value of r is (90 days)™'.

matical concept is based on a Green’s function tech-
nique. The structure of the general solutions are very
similar. This indicates a close relationship between
the two models, which physically is due to the wave-
guide properties of a coastal boundary as well as of the
equator. .

In section 4 the coastal ocean is forced by a steady
longshore wind band. The coastal boundary is repre-
sented by a vertical wall. Assuming certain simplifi-
cations, such as a simple forcing pattern, constant (or
weakly varying) Brunt-Viisilid frequency, alongshore
geostrophy, and a simple dissipation, the steady state
solutions of the current components can be expressed
through closed analytical expressions, i.e., the corre-
sponding mode sums are performed explicitly.

Despite of these simplifications the solutions develop
a realistic current structure which consists of a down-
wind surface jet and an undercurrent below. For an
infinite wind band the usual coastal jet regime follows.
The coastal jet is trapped within the surface layer. For
a finite wind band Kelvin waves exiting at the edges
of the wind patch radiate alongshore with the coast to
the right and arrest the surface jet and introduce the
undercurrent.

The general current structure does not depend too
much on the model parameters, except close to the
corner point z = —H;, and y = 0, where in the inviscid
case the longshore current becomes singular.

In section 5 the equatorial ocean model is forced by
a steady zonal wind band. Due to the occurrence of
infinite series of Hermite functions the algebra is much
more complex than in the coastal ocean case, whence
we have confined ourselves to the derivation of closed
form expressions for the zonal current.
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Apart from the assumption of constant (or weakly
variable) Brunt-Viisild frequency as well as a simple
forcing and friction we have utilized the long wave
approximation and some approximations of infinite
series of Hermite functions associated with the Yoshida
jet and the long Rossby waves.

The approximate closed solutions exhibit a reason-
able current structure which consists of an arrested
surface jet, the Yoshida jet, and an equatorial under-
current. The surface current is somewhat too strong.
This is due to the neglecting of meridional boundaries,
as it was demonstrated by McCreary (1981a).

The gross structure of the currents depend not very
much on the model parameters, except in the vicinity
of the equator, where, in particular, the solution be-
comes singular at z = —Hp,;, for a vanishing damping
rate r.

For an unbounded zonal wind a pure Yoshida jet
remains which is confined to the surface layer and
which corresponds to the coastal jet. For a finite wind
band eastward propagating Kelvin and westward
propagating long Rossby waves, excited at the edges of
the wind band, have arrested the surface jet and gen-
erated the equatorial undercurrent.

An important difference between the two models
consist in the occurrence of the equatorial Rossby
waves. Thus, particularly in the inviscid case, due to
the Rossby waves the equatorial current becomes in-
dependent of the zonal coordinate x, while in the in-
viscid coastal ocean model the alongshore current de-
pends linearly on the longshore coordinate, x.

For nonzero r the Rossby wave contribution to the
solution is significantly smaller than those of the Yo-
shida and Kelvin terms. This is due to the much larger
effective damping rate of the long Rossby waves, which
is proportional to the meridional mode number like
dm+3,m=0,1,2, .-,

In summary, the close relationships between the re-
sponses of the coastal and the equatorial ocean is es-
tablished by the correspondence of coastal jet and
Yoshida jet, as well as, by the wave processes which
arrest the surface jets and introduce undercurrents.

This paper is close to the theory of McCreary
(1981a,b). Its main resuits consist in the derivation of
closed form analytical expressions of some of the dy-
namical variables.
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