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Abstract. The fundamental problem of calculus of variations is consid-
ered when solutions are differentiable curves on locally convex spaces.
Such problems admit an extension of the Euler-Lagrange equations (Orlov,
2002) for continuously normally differentiable Lagrangians. Here, we for-
mulate a Legendre condition and an extension of the classical theorem of
Emmy Noether, thus obtaining first integrals for problems of the calculus
of variations on locally convex spaces.
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1 Introduction

The fundamental problem of the calculus of variations (CV) is studied in the setting
of infinite dimensional differential geometry [10], i.e. where solutions are differen-
tiable curves on locally convex spaces. The usual problem of CV concerns to find,
among all functions with prescribed boundary conditions, those which minimize a
given functional, i.e.

∫

Ω

f(x, u(x),∇u(x)) dx −→ min

s.t. u ∈ X and u|δΩ = u0,

where Ω ⊂ Rn is a bounded open set, u : Ω ⊂ Rn → Rm, ∇u ∈ Rnm, f : Ω × Rm ×
Rnm → R is a continuous function, u0 is a given function, and X is a Banach space.
It is well known that problems of CV have very wide applications in several fields of
mathematics, and in many areas of physics, economics, and biology. In recent years,
part of the renewal of interest in variational methods finds its origins in nonlinear
elasticity [4].

The present work deals with an extension of the setting of the previous problem
by replacing Rm by a locally convex space E. Although, for technical reasons, we will
only deal with the case n = 1. The problem of the CV on a locally convex space E is
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then

(1.1) J [x] =
∫ b

a

L (t, x(t), ẋ(t)) dt −→ min ,

where L : [a, b] × E × E → R, x : [a, b] → E. But it is not completely defined
without introducing the precise notions of differentiability and mapping regularity.
It is well known that such functionals (1.1) are not, in general, Fréchet differentiable
(see e.g. [3, 18]). Comparing with the classical CV, the main difficulties arise from
the substitution of Rm by a locally convex space E; moving from a finite-dimension
vector space with an inner product to an infinite-dimension vector space with only
a family of semi-norms. The motivation for such problem is the first author interest
[17] on studying calculus of variations and control theory on the infinite dimensional
differential geometry setting (differential calculus of smooth mappings between sub-
sets of sequentially complete locally convex spaces) developed by Frölicher, Kriegl and
Michor [10]; so called convenient spaces.

A central result of CV is the first order necessary optimality condition, asserting
that optimal solutions satisfy the Euler-Lagrange equation. Solutions of the Euler-
Lagrange equations are called extremals. Extremals include optimal solutions but, in
general, may also include non-optimal solutions. A function C(t, x, v) which is pre-
served along all the extremals (i.e. C(t, x(t), ẋ(t)) is constant ∀t ∈ [a, b] and for any
extremal x) is called a first integral. The equation C(t, x(t), ẋ(t)) = constant is the
corresponding conservation law. Conservation laws are a useful tool to simplify the
problem of finding minimizers [2, 11]. Emmy Noether was the first to establish a gen-
eral theory of conservation laws in the calculus of variations [12]. Noether’s theorem
comprises a universal principle, connecting the existence of a group of transformations
under which the functional to be minimized is invariant (the existence of variational
symmetries) with the existence of conservation laws. Noetherian conservation laws
play an important role on a vast number of disciplines, ranging from classical me-
chanics, where they find important interpretations such as conservation of energy,
conservation of momentum, or conservation of angular momentum, to engineering,
economics, control theory and their applications [7].

A very general approach to first order optimality conditions has been initiated
in the sixties of the XX century by H. Halkin [8] and R.V. Gamkrelidze and G.L.
Kharatishvili [5, 6]. In this work we use the notion of compactly normally differential
functionals (introduced in [16]) and inductive scales of locally convex spaces: (1) to
formulate a Legendre condition; (2) to extend the classical Noether’s theorem to the
calculus of variations on locally convex spaces.

The use of inductive scales of locally convex spaces is not a merely generalization,
it is a need. First, as shown in [13], Banach manifolds are not suitable for many
questions of global analysis. Second, we require the evaluation map E∗ × E → R to
be jointly continuous in order to be able to use integration by parts on some working
space. However, if E is a locally convex space, and E∗ is its dual equipped with any
locally convex topology, then the jointly continuity of the evaluation map imply that,
in fact, E is a normable space. Since, then, there are neighborhoods U ⊂ E and
V ⊂ E∗ of zero such that the image of V × U by the evaluation map is contained on
[−1, 1]. But then U is contained in the polar of V , so it is bounded in E. Therefore,
E admits a bounded neighborhood.
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2 Inductive scales of locally convex spaces

In what follows, F, E are locally convex spaces (LCSs) with the corresponding deter-
mining systems of semi-norms {‖ · ‖p}p∈SF

, {‖ · ‖q}q∈SE
, that are inductively ordered

according to the increase of semi-norms. The set of linear continuous maps from F to
E will be denoted by L(F, E). For a gentle introduction to locally convex topological
vector spaces we refer the reader to [3, 9].

Let A ∈ L(F, E). For any q ∈ SE , the normal index of A is the increasing multi-
valued mapping nA : SE → 2SF defined by

nA(q) =

{
p ∈ SF : sup

‖y‖p≤1

‖Ay‖q < +∞
}

,

and NL(F,E) = {nA : A ∈ L(F,E)} is the set of all normal indices. We will consider
the following inductive scale of LCSs [21]

−−−−→
(F, E) = {(Xn, τn)}n∈NL(F,E) with Xn = {A ∈ L(F, E) : nA ≤ n},

i.e. a system of LCSs inductively ordered according to the continuous embedding
m ≤ n ⇒ Xm ⊆ Xn; where each space Xn has the projective topology τn with
respect to the determining system of semi-norms

‖A‖q
p =

{
sup

‖y‖p≤1

‖Ay‖q : p ∈ n(q), q ∈ SE

}
.

This inductive scale of LCSs generalize classical interpolation scales [20]. Properties
of a scale are related with properties of the spaces of the scale and vice-versa [14].
Convergence in the scale

−−−−→
(F, E) is the convergence in any space Xn of the scale. For Z

a LCS, an operator A ∈ L(Z,
−−−−→
(F, E)) if A ∈ L(Z,Xn) for some Xn and n ∈ NL(F,E).

Definition 2.1. A mapping φ : F → −−−−→
(F, E) is

1. continuous at a point y0 ∈ F if y → y0 ⇒ φ(y) → φ(y0) for some Xn.

2. uniformly continuous on a set D ⊂ F if, for some Xn, the map φ̄ : D → Xn is
uniformly continuous.

Let F1, F2 be LCSs. The canonical isomorphism [15] correspondence B(y1, y2) =
(Ay1)y2 between linear operators A : F1 → L(F2, E) and bilinear operators B :
F1 × F2 → E justifies the following isometrically identification

(2.1)
−−−−−−−−→
(F1,

−−−−→
(F2, E)) ∼= −−−−−−−−→

(F1 × F2, E).

If E ≡ R, the conjugate space has a normal decomposition into the following inductive
scale of Banach spaces

−−−→
(F,R) ≡ −→

F ∗ = {f ∈ L(F,R) : ‖f‖p ≡ sup
‖x‖p≤1

|f(x)| < +∞ and p ∈ SF }.

In this case, we have the following canonical isometrical isomorphism of linear and
bilinear operators in LCSs

−−−−−−→
(F1,

−→
F2
∗) ∼=

−−−−−−−→
(F1 × F2)

∗
.
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3 Compactly normal differentiability

Let F, E be LCSs, y ∈ F , and C a convex compact subset of F having y as limiting
point.

Definition 3.1. A map g : F → E is

1. normally differentiable at the point y if ∆g(y, h) = g′(y)h+φy(h) where g′(y) ∈
L(F, E) and

∀q ∈ SE ∃p ∈ SF :
‖φy(h)‖q

‖h‖p

h→0−−−−→ 0.

2. continuously normally differentiable at y if g is normally differentiable in a neigh-
borhood of y and the derived mapping g′ : F → −−−−→

(F,E) is continuous at y. This
last condition means that g̃′ : [α, β] ⊂ F → Xn is continuous for some Xn,
and that the compactness of [α, β] implies ng̃′(y) ≤ n for n ∈ NL(F,E) and all
y ∈ [α, β].

3. twice continuously normally differentiable at y if g is continuously normally
differentiable in a neighborhood of y and g′ : F → Xn is normally differentiable
at a vicinity of y for some Xn. In this case, g′′(y) will denote (g′)′(y) and, by
the identification (2.1), f ′′ : F → −−−−−−−→

(F × F,E).

4. K-differentiable (compactly normally differentiable) at a point y if for each C the
restriction f = g|C is normally differentiable at the point y. The value (f |C)′(y)
does not depend on the choice of subset C, and it is denoted by g′K(y).

Lemma 3.1. A mapping g : F → E is continuously normally differentiable at a
convex compact set C ⊂ F if and only if

‖g(x + h)− g(x)− g′(x)h‖s

‖h‖m
→ 0 as h → 0, x ∈ C,

for some normal index nA ∈ NL(F,E) and any s ∈ SE and m ∈ nA(s).

Remark 3.1. If F is a Banach space then φy(h) = o(‖h‖) and g′ is the Fréchet
derivative of g. In such case, we denote the derivative by a dot, ġ.

We denote by C1([a, b]; E) the space of continuous differentiable mappings x :
[a, b] → E with a determining system of semi-norms {‖x‖p

1}p∈P where

‖x‖p
1 = sup

a≤t≤b
‖x(t)‖p + sup

a≤t≤b
‖ẋ(t)‖p.

4 Euler-Lagrange and Legendre conditions

Let F ≡ [a, b] × E × E. The following theorem proves that optimal solutions of
the problem of the Calculus of Variations, for K-differential functionals, verify an
Euler-Lagrange equation.
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Theorem 4.1 ([16]). Let a function L(t, x, v) be continuously normally differ-
entiable on [a, b] × E × E. If the functional J[·] (1.1) has an extremum at a point
x ∈ C1([a, b];E), then J[·] is K-differentiable at x and we have

(4.1) J ′K [x]h =
∫ b

a

[
∂L

∂x
(t, x(t), ẋ(t))h(t) +

∂L

∂v
(t, x(t), ẋ(t))ḣ(t)

]
dt = 0.

Observe that ẋ is the Fréchet derivative of x, where [a, b] → −−−−−−→
([a, b], E) is identified

with [a, b] → E. For a given x, let µx : [a, b] → F be defined by µx(t) = (t, x(t), ẋ(t)).
For any (t̄, x̄, v̄) ∈ F define Lt

(x̄,v̄) : R→ R as Lt
(x̄,v̄)(t) = L(t, x̄, v̄), Lx

(t̄,v̄) : E → R as
Lx

(t̄,v̄)(x) = L(t̄, x, v̄), and Lv
(t̄,x̄) : E → R as Lv

(t̄,x̄)(v) = L(t̄, x̄, v). Partial derivatives
are defined as usual
(4.2)

∂L

∂t
(t̄, x̄, v̄) = (Lt

(x̄,v̄))
′(t̄) ,

∂L

∂x
(t̄, x̄, v̄) = (Lx

(t̄,v̄))
′(x̄) ,

∂L

∂v
(t̄, x̄, v̄) = (Lv

(t̄,x̄))
′(v̄) ,

hence, for a given extremal x̂, we have ∂L
∂x ◦µx̂ : [a, b] → −→

E∗ and ∂L
∂v ◦µx̂ : [a, b] → −→

E∗.
Now, by virtue of the jointly continuous of the evaluation map on

−→
E∗ ×E, the space

C ≡ {A ⊗ B ∈ L([a, b],
−→
E∗) × L([a, b], E) : A and B are differentiable mappings} is a

derivation algebra, i.e. it admits the Leibniz product rule and the usual integration
by parts.

The Euler-Lagrange equation is obtained as a corollary of Theorem 4.1 in the
usual way, considering the integration by parts of the second addend of (4.1)

∫ b

a

(
∂L

∂v
◦ µx̂(t)

)
ḣ(t) dt =

(
∂L

∂v
◦ µx̂(t)

)
h(t)

∣∣∣∣
b

a

−
∫ b

a

d

dt

[
∂L

∂v
◦ µx̂(t)

]
h(t) dt ,

and using an extension of the fundamental lemma of the calculus of variations.

Corollary 4.2 ([16]). Let a function L(t, x, v) be twice continuously normally
differentiable on [a, b] × E × E. If functional J[·] (1.1) has an extremum at a point
x̂ ∈ C1([a, b];E), then x̂ satisfies the Euler-Lagrange equation (in

−→
E∗)

(4.3)
∂L

∂x
◦ µx̂(t)− d

dt

∂L

∂v
◦ µx̂(t) = 0.

Following the classical terminology [2, 11], we call extremals to the solutions of
(4.3); first integrals to functions which are kept constant along all the extremals.

Other necessary conditions exist apart from the Euler-Lagrange equation. In what
follows we obtain, from the second variation, the so called Legendre condition. Let
us observe that the Euler-Lagrange equation is just a consequence of the Fermat
lemma (if a function f : E → R has a local extremum at a point x and is normally
differentiable at this point, then we have f ′(x) = 0), and the Legendre condition is a
consequence of the necessary condition of second order (if a function f : E → R has
a local minimum at x and is twice normally differentiable at this point, then not only
f ′(x) = 0 but also f ′′(x) ≥ 0). Such conditions are proved by the standard methods
on [1].

Consider the natural extensions of the partial derivatives defined on (4.2) to higher
orders.
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Theorem 4.3. Let a function L(t, x, v) be twice continuously normally differ-
entiable on [a, b] × E × E. If functional J[·] (1.1) has an extremum at a point
x ∈ C1([a, b];E), then x satisfies the Legendre condition

(4.4)
∂2L

∂v∂v
◦ µx(t) ≥ 0 ∀t ∈ [a, b].

Proof. As shortcut define X ≡ C1([a, b]; E), which is a locally convex space. Recall
that J : X → R, J ′K [·] : X → −→

X∗ and J ′′K [·] : X → −−−−−→
X ×X∗. Theorem 4.1 ensures

that J ′K [x] is a K-differentiable mapping at x, so it is (locally) normally differentiable
at x. We will show that J ′′K [x] is also a K-differentiable mapping at x.
Consider an arbitrary convex compact set C ⊂ X where x is a limiting point. The
sets A = {y ∈ E : y ∈ x([a, b]), x ∈ C} and B = {z ∈ E : z ∈ ẋ([a, b]), ẋ ∈ C} are
convex compacts in E. By the definition of normal differentiability, we have

J ′K [x + h2]h1 − J ′K [x]h1 =
∫ b

a

[
∂L

∂x
(t, x + h2, ẋ + h2)h1

+
∂L

∂v
(t, x + h2, ẋ + h2)ḣ1

]
−

[
∂L

∂x
(t, x, ẋ)h1 +

∂L

∂v
(t, x, ẋ)ḣ1

]
dt

=
∫ b

a

[(
∂2L

∂v∂v
◦ µx

)
ḣ1ḣ2 +

(
∂2L

∂v∂x
◦ µx

)
ḣ2h1

+
(

∂2L

∂x∂v
◦ µx

)
ḣ1h2 +

(
∂2L

∂x∂x
◦ µx

)
h1h2

]
dt +

∫ b

a

rt(h2, ḣ2) dt,

where rt is the residual term of the increments at the point (t, x(t), ẋ(t)). Since L
is twice continuously normally differentiable on C ≡ [a, b] × A × B, we can apply
lemma 3.1 to rt

|rt(h2(t), ḣ2(t))|
‖h2(t)‖m + ‖ḣ2(t)‖m

→ 0 as (h2(t), ḣ2(t)) → 0.

Let Rx(h2) =
∫ b

a
rt(h2(t), ḣ2(t)) dt. The uniform convergence and the above condition

imply Rx(h2)
‖h2‖m

1
→ 0 as h2 → 0, which implies the K-differentiability of J ′′K [x] at x.

Hence, the second variation for J [x] reads as follows, for all x, h ∈ C1([a, b];E),

J′′K [x] (h, h) =
∫ b

a

[(
∂2L

∂v∂v
◦ µx(t)

)
ḣ(t)2 + 2

(
∂2L

∂v∂x
◦ µx(t)

)
ḣ(t)h(t)

]
dt

+
∫ b

a

(
∂2L

∂x∂x
◦ µx(t)

)
h(t)2 dt,

with the corresponding Jacobi eigenvalue equation

− d

dt

(
R(t)ḣ(t)

)
+ P (t)h(t) = λh(t), h ∈ C1([a, b];E),

where we have defined

R(t) =
∂2L

∂v∂v
◦ µx(t) and P (t) =

∂2L

∂x∂x
◦ µx(t)− d

dt

∂2L

∂v∂x
◦ µx(t).
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Now, if we observe that d
dth(t)2 = 2ḣ(t)h(t), then integration by parts of the second

variation yields

(4.5) J′′K [x]h =
∫ b

a

R(t)ḣ(t)2 + P (t)h(t)2 dt ∀x, h ∈ C1([a, b];E).

The necessary condition of second order implies that J′′K [x] (h, h) ≥ 0 for all h ∈
C1([a, b]; E). Therefore, (4.4) follows from (4.5). Namely, if R(t0) < 0 for a t0 ∈ [a, b],
then one can always choose an h ∈ C1([a, b];E) having very large ḣ(t0) and small
h(t0), so that J′′K [x] (h, h) < 0 holds; however, this is not possible.

5 Invariance and conservation laws

To obtain a Noether theorem on locally convex spaces, we will need further regularity
of the solution curves x on the LCS E. Similarly to C1([a, b];E), we denote by
C2([a, b]; E) the space of twice continuous differentiable mappings x : [a, b] → E with
a determining system of semi-norms {‖x‖p

2}p∈P where

‖x‖p
2 = sup

a≤t≤b
‖x(t)‖p + sup

a≤t≤b
‖ẋ(t)‖p + sup

a≤t≤b
‖ẍ(t)‖p.

Therefore, the problem of calculus of variations is

(5.1) J [x] =
∫ b

a

L (t, x(t), ẋ(t)) dt −→ min ,

where L : [a, b] × E × E → R is twice continuously normally differentiable and x ∈
C2([a, b]; E).

Let us introduce a local Lie group hs with generators T e X. A transformation
h in the space R × E is a twice continuously normally differentiable mapping h :
R× E → R× E with h(t, x) = (t̄, x̄) defined by the equations

t̄ = ht (t, x) , x̄ = hx (t, x) ,

for ht and hx given functions. The symmetry transformations, which define the
invariance of problem (5.1), are transformations which depend on a real parameter
s ∈ R. Let s vary continuously in an open interval |s| < ε, for small ε, and hs be a
family of transformations defined by

(5.2) t̄ = hs
t (t, x) = ht (t, x, s) , x̄ = hs

x(t, x) = hx (t, x, s) ,

where ht and hx are analytical functions in [a, b] × E × (−ε, ε). The one-parameter
family of transformations hs is a local Lie group if and only if it satisfies the local
closure property; contains the identity (without loss of generality, we assume that the
identity transformation is obtained for parameter s = 0); and inverse exist for each
s sufficiently small. Since normally differentiable mappings admit a Taylor formula
in the asymptotic form [16], if hs defined by (5.2) is a local Lie group, then one can
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expand ht = (t, x, s) and hx = (t, x, s) in Taylor series about s = 0:

(5.3)

t̄ = ht (t, x, 0) +
∂ht

∂s
(t, x, 0) s +

1
2

∂2ht

∂s2
(t, x, 0) s2 + · · ·

= t + T (t, x) s + o (s) ,

x̄ = hx (t, x, 0) +
∂hx

∂s
(t, x, 0) s +

1
2

∂2hx

∂s2
(t, x, 0) s2 + · · ·

= x + X (t, x) s + o (s) ,

where the quantities T (t, x) = ∂ht

∂s (t, x, 0), and X(t, x) = ∂hx

∂s (t, x, 0) are called the
generators of hs. A local Lie group hs induces, in a natural way, a local Lie group h̃s

in the space R{t} × E{x} × E{ẋ}:

h̃s :





t̄ = ht (t, x, s) ,

x̄ = hx (t, x, s) ,

˙̄x = dx̄
dt =

∂hx
∂t + ∂hx

∂x ẋ
∂ht
∂t +

∂ht
∂x ẋ

.

This group is called in the Rn-setting the extended group. Noticing that

∂ht

∂t
= 1 + s

∂T

∂t
+ o(s) ,

∂ht

∂x
= s

∂T

∂x
+ o(s) ,

∂hx

∂t
= s

∂X

∂t
+ o(s) ,

∂hx

∂x
= 1 + s

∂X

∂x
+ o(s) ,

then

˙̄x =
s∂X

∂t +
(
1 + s∂X

∂x

)
ẋ + o(s)

1 + s∂T
∂t + s∂T

∂x ẋ + o(s)
=

ẋ + sX ′ + o(s)
1 + sT ′ + o(s)

= ẋ + (X ′ − ẋT ′) s + o(s)
= ẋ + V s + o(s) ,

(5.4)

with V (t, x, ẋ) = X ′(t, x)− ẋT ′(t, x) the generator associated with the derivative.
The integral functional J[·] of the fundamental problem of the calculus of variations

(5.1),

J [x] =
∫ b

a

L (t, x(t), ẋ(t)) dt ,

is said to be invariant under a local Lie group hs if, and only if,

∫ t2

t1

L

(
t, x(t),

dx

dt
(t)

)
dt + o(s) =

∫ t̄2

t̄1

L

(
t̄, x̄ (t̄) ,

dx̄

dt̄
(t̄)

)
dt̄

=
∫ t2

t1

L

(
hs

t , h
s
x,

∂hs
x

∂t + ẋ
∂hs

x

∂x
∂hs

t

∂t + ẋ
∂hs

t

∂x

)
dhs

t

dt
dt ,

(5.5)

where t̄1 = ht(t1, x(t1), s), t̄2 = ht(t2, x(t2), s), hs
t = ht(t, x(t), s), hs

x = hx(t, x(t), s),
and (5.5) is verified for all |s| < ε, for all x ∈ C2([a, b]; E), and for all [t1, t2] ⊆ [a, b].
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Condition (5.5) is equivalent to

(5.6)
d

ds

∫ t̄2

t̄1

L

(
t̄, x̄ (t̄) ,

dx̄

dt̄
(t̄)

)
dt̄

∣∣∣∣∣
s=0

= 0

⇔ d

ds

∫ t2

t1

L

(
hs

t , h
s
x,

∂hs
x

∂t + ẋ
∂hs

x

∂x
∂hs

t

∂t + ẋ
∂hs

t

∂x

)
dhs

t

dt
dt

∣∣∣∣∣
s=0

= 0 .

The requirement that (5.6) hold for every subinterval [t1, t2] of [a, b] permits to remove
the integral from consideration, and to put the focus on the Lagrangian L(·, ·, ·).

Definition 5.1 (Invariance/symmetry). The fundamental problem of the cal-
culus of variations on locally convex spaces (5.1) is said to be invariant under the
local Lie group hs if, and only if,

(5.7)
d

ds

{
L

(
hs

t , h
s
x,

∂hs
x

∂t + ẋ
∂hs

x

∂x
∂hs

t

∂t + ẋ
∂hs

t

∂x

)
dhs

t

dt

}∣∣∣∣∣
s=0

= 0 .

We then say that hs is a symmetry for the problem.

Theorem 5.1 (Necessary and sufficient condition of invariance). The fun-
damental problem of the calculus of variations (5.1) is invariant under a local Lie
group (5.2) with generators T and X if, and only if,

(5.8) (Lt
(x(t),ẋ(t)))

′(t)T (t, x(t)) + (Lx
(t,ẋ(t)))

′(x(t))X(t, x(t))

+ (Lv
(t,x(t)))

′(ẋ(t))
(
X ′(t, x(t))− ẋ(t)T ′(t, x(t))

)
+ L ◦ µx(t)T ′(t, x(t)) = 0 .

Proof. Carrying out the differentiation of equation (5.7) we obtain:

(5.9) L
d

ds

(
dt̄

dt

)∣∣∣∣
s=0

+
d

ds
L

(
t̄, x̄,

dx̄

dt̄

)∣∣∣∣
s=0

= 0 .

Recalling (4.2), and having in mind that by (5.3) and (5.4)

d

ds

(
dt̄

dt

)∣∣∣∣
s=0

=
d

ds

(
d

dt
(t + sT + o(s))

)∣∣∣∣
s=0

= T ′ ,

d

ds
L

(
t̄, x̄,

dx̄

dt̄

)∣∣∣∣
s=0

=
∂L

∂t
T +

∂L

∂x
X +

∂L

∂v
(X ′ − ẋT ′) ,

we obtain from (5.9) the intended conclusion.

Theorem 5.2 (Noether’s Theorem on Locally Convex Spaces). If

J [x] =
∫ b

a

L (t, x(t), ẋ(t)) dt

is invariant under a local Lie group hs with generators T and X, then

(5.10)
[
L ◦ µx(t)− ẋ(t)(Lv

(t,x(t)))
′(ẋ(t))

]
T (t, x(t))

+ (Lv
(t,x(t)))

′(ẋ(t))X(t, x(t)) = constant

∀t ∈ [a, b], and along all the solutions x of the Euler-Lagrange equation (4.3).
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Remark 5.1. If we introduce the Hamiltonian function H(·, ·, ·) by

H (t, x, ẋ) = −L (t, x, ẋ) + ẋ
∂L

∂v
(t, x, ẋ) ,

with ∂L
∂v as in (4.2), then the conservation law (5.10) can be written in the form

[
∂L

∂v
◦ µx(t)

]
X (t, x(t))− [H ◦ µx(t)] T (t, x(t)) = constant .

Proof. Direct calculations show that:

d

dt

(
∂L

∂v
X

)
−X

d

dt

∂L

∂v
=

d

dt

∂L

∂v
X +

∂L

∂v
X ′ −X

d

dt

∂L

∂v
=

∂L

∂v
X ′ ,(5.11)

dL

dt
T − ∂L

∂x
ẋT − ∂L

∂v
ẍT =

(
∂L

∂t
+

∂L

∂x
ẋ +

∂L

∂v
ẍ

)
T − ∂L

∂x
ẋT − ∂L

∂v
ẍT

=
∂L

∂t
T ,

(5.12)

d

dt

(
∂L

∂v
ẋT

)
− ẋT

d

dt

∂L

∂v
=

d

dt

∂L

∂v
ẋT +

∂L

∂v

d

dt
(ẋT )− ẋT

d

dt

∂L

∂v

=
∂L

∂v
(ẍT + ẋT ′) .

(5.13)

Substituting (5.12) in the necessary and sufficient condition of invariance (5.8) we
obtain that

(5.14)
dL

dt
T − ∂L

∂x
ẋT − ∂L

∂v
ẍT +

∂L

∂x
X +

∂L

∂v
X ′ − ∂L

∂v
(ẋT ′) + LT ′ = 0 ;

substituting (5.11) in (5.14) we get

(5.15)
dL

dt
T − ∂L

∂x
ẋT − ∂L

∂v
ẍT +

∂L

∂x
X +

d

dt

(
∂L

∂v
X

)

−X
d

dt

∂L

∂v
− ∂L

∂v
(ẋT ′) + LT ′ = 0 .

Finally, using (5.13) in the last equation (5.15) one obtains

dL

dt
T − ∂L

∂x
ẋT − ∂L

∂v
ẍT +

∂L

∂x
X +

d

dt

(
∂L

∂v
X

)

−X
d

dt

∂L

∂v
+

∂L

∂v
ẍT − d

dt

(
∂L

∂v
ẋT

)
+ ẋT

d

dt

∂L

∂v
+ LT ′ = 0 ,

which, by simplification, takes form

dL

dt
T +

∂L

∂x
(X − ẋT ) +

d

dt

(
∂L

∂v
X

)
− d

dt

(
∂L

∂v
ẋT

)
− d

dt

∂L

∂v
(X − ẋT ) + LT ′ = 0

⇔ d

dt

(
LT +

∂L

∂v
X − ∂L

∂v
ẋT

)
+ (X − ẋT )

(
∂L

∂x
− d

dt

∂L

∂v

)
= 0 .
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By definition, along the solutions of the Euler-Lagrange equations (4.3) ∂L
∂x− d

dt
∂L
∂v = 0,

and one gets the desired conclusion:

d

dt

(
LT +

∂L

∂v
X − ∂L

∂v
ẋT

)
= 0 .

The theory of the calculus of variations on locally convex spaces is under devel-
opment. Much remains to be done, in particular, in the vectorial setting. Even for
the scalar case, it would be interesting, for example, to have a version of the DuBois-
Reymond necessary condition on locally convex spaces. With such condition one can
try to prove Theorem 5.2 for more general classes of admissible functions, following
the scheme in [19].
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