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Abstract. This paper discusses the reliability equivalences of a parallel-
series system. It is assumed that the system components are independent
and identical. Each has a constant failure rate. We assumed three different
method to improve the system. Both the reliability function and the
mean time to failure are used to derive two types of reliability equivalence
factors. We also obtain the fractiles of the original and improved systems.
We illustrate the results obtained with an application example.

M.S.C. 2000: 49J15, 90B30.
Key words: Constant failure rate, cold, hot duplication, reduction method.

1 Introduction

Operations Research, in its various fields, is concerned with the problem of having a
system perform in the best possible way. In reliability theory, one way to improve the
performance of a system is to use the redundancy method. There are two main such
methods:

1. Hot duplication method: in this case, it is assumed that some of the system
components are duplicated in parallel.

2. Cold duplication method: in this case, it is assumed that some of the system
components are duplicated in parallel via a perfect switch.

Unfortunately, for many different reasons, such as space limitation, high cost, etc, it is
not always possible to improve a system by duplicating some or all of its components.
For example, satellites and space aircrafts have limited space which doesn’t allow
component duplication. Also, some microchips are so expansive that manufacturers
cannot afford to duplicate them. In such cases where duplication is not possible,
the engineer turns to another well-known method in reliability theory, the so-called
reduction method. In this method, it is assumed that the failure rates of some of the
system components are reduced by a factor ρ, 0 < ρ < 1. Now, once the reduction
method is adopted, the main problem facing the engineer is to decide to what degree
the failure rate should be decreased in order to improve the system. To solve this
problem, one can make an equivalence between the reduction method and the du-
plication method based on some reliability measures. In other words, the design of
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the system improved by the reduction method should be equivalent to the design of
the system improved by one of the the duplication methods. The comparison of the
designs produces the so-called reliability equivalence factors.

The concept of the reliability equivalence factors was introduced by R̊ade [5].
R̊ade [5, 6] applied this concept for the two-component parallel and series systems
with independent and identical components whose lifetimes follow the exponential
distribution. Sarhan [7] -[10] derived the reliability equivalence factors of other more
general systems. The systems studied by Sarhan are the series system [7], a basic
series/parallel system [8], a bridge network system [9], the parallel system [10], and a
general series-parallel system [12]. All these systems have independent and noniden-
tical exponential components.

Sarhan and Mustafa [11] introduced different vectors of the reliability equivalence
factors of a series system consisting of n independent and non-identical components.
The results presented in [11] generalize those given in [7]. Sarhan and Mustafa [11]
assumed that the failure rates of the system components are constants and used the
reliability function and mean time to failure as performances to derive the reliability
equivalences of the system.

In this paper we consider a general parallel-series system and assume that all
components are independent and follow the exponential distribution with the same
parameter λ > 0. First, we computed the reliability function and the mean time to
failure (MTTF) of the system. Second, we computed these same reliability measures
when the system is improved using the hot and cold duplication methods. Third,
we computed these same measures when the system is improved using the reduction
method. Finally, we equate the reliability function (MTTF) of the system improved by
duplication with the reliability function (MTTF) of the system improved by reduction
to get the survival (mean) reliability equivalence factors. These factors can be used
by the engineer to decide to what degree the failure rate of some of the system
components should be decreased in order to improve the performance of the system
without duplicating any component.

The rest of the paper is organized as follows. The next section contains the descrip-
tion of the system and the derivation of its reliability function and MTTF. Section
3 computes the reliability function and MTTF of the system when it is improved by
reduction. Section 4 is divided into two parts. In the first one we obtain the reliabil-
ity function and MTTF of the system when it is improved by hot duplication while
the second one obtains these same measures when the duplication is cold. In each
part the reliability equivalence factors are obtained. Also, in each part, the fractiles
are computed for comparison with those of the original system. In Section 5, the
results obtained are applied to a specific parallel-series system. Finally, the paper is
concluded in Section 6.

2 Parallel-series system

The system of interest to us is depicted in Figure 1. It consists of m modules (sub-
systems) connected in series, with module i consisting of ni components in parallel
for i = 1, 2, · · · ,m. Such a system is called a parallel-series system, see Kue et al. [2].
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Figure 1. Parallel-series system.

The lives of the components are assumed to be independent and following the expo-
nential distribution with the same failure rate λ. Let rij(t) be the reliability function
of the component j (1 ≤ j ≤ ni) in module i (1 ≤ i ≤ m) and let Ri(t) be the
reliability function of module i. That is, rij(t) = e−λ t and

Ri(t) = 1−
ni∏

i=1

(
1− e−λt

)

= 1− (
1− e−λt

)ni
.

Since the modules are connected in series, then the reliability function of the system
is

R(t) =
m∏

i=1

Ri(t)

=
m∏

i=1

[
1− (

1− e−λt
)ni

]

=
m∏

i=1

ni∑

j=1

(
ni

j

)
(−1)j+1e−jλt.(2.1)

The last equality follows from the binomial expansion. We also derive the MTTF of
the system as

(2.2) MTTF =
∫ ∞

0

m∏

i=1

ni∑

j=1

(
ni

j

)
(−1)j+1e−jλtdt.

This integral can be evaluated explicitly for some specific values of m and ni but in
general it has no closed form.
Also of interest to us is the α−fractile, L(α), of the original system, defined by

(2.3) L(α) = λ R−1(α),

where R−1 denotes the inverse of the reliability function. It can be computed by
solving the following equation with respect to (w.r.t.) L = L(α)

(2.4) α =
m∏

i=1

ni∑

j=1

(
ni

j

)
(−1)j+1e−(ni−j)L.
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In the sequel, for any set A, we will denote its cardinality by |A|. Also, for any
sequence Ai of mutually exclusive sets, we will denote their union by

∑m
i=1 Ai. Fur-

thermore, when ri components from module i are improved we will use the notation
(1r1 , · · · iri , · · · mrm) to show the number of components improved in each module of
the system.

3 Reduction method

We are interested in this section in the system when it is improved by reducing the
failure rates of some of its components by a factor ρ ∈ (0, 1).

Now, let us denote by A the set of system components whose failure rate is reduced
and by r their number, so that |A| = r with r ≤ n. Since these components may
be arbitrarily chosen in the system, we will denote by Ai the set of ri out-of ni

components from module i whose failure rate is reduced, so that |Ai| = ri, (i =
1, · · · ,m) and A =

∑m
i=1 Ai with r =

∑m
i=1 ri.

The reliability function R
(i)
A,ρ(t) of module i, (i = 1, · · · ,m) is now given by

R
(i)
A,ρ(t) = 1−

ri∏

i=1

(
1− e−ρλt

) ni−ri∏

i=1

(
1− e−λt

)

= 1− (
1− e−ρλt

)ri
(
1− e−λt

)ni−ri
,

from which we immediately have the reliability function of the system improved by
reduction

RA,ρ(t) =
m∏

i=1

R
(i)
A,ρ(t)

=
m∏

i=1

[
1− (

1− e−ρλt
)ri

(
1− e−λt

)ni−ri
]

=
m∏

i=1




ni−ri∑

j=0

ri∑

k=1

(
ni − ri

j

)(
ri

k

)
(−1)j+k+1e−(j+kρ)λt

+
ni−ri∑

j=1

(
ni − ri

j

)
(−1)j+1e−jλt


 .(3.1)

We now compute the MTTFA,ρ of the system improved by improving the set A
components by the reduction method as

MTTFA,ρ =
∫ ∞

0

m∏

i=1




ni−ri∑

j=0

ri∑

k=1

(
ni − ri

j

)(
ri

k

)
(−1)j+k+1e−(j+kρ)λt

+
ni−ri∑

j=1

(
ni − ri

j

(
− 1)j+1e−jλt


 dt.(3.2)
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Finally, the α-fractile L = L(α) is found by solving the following equation

α =
m∏

i=1




ni−ri∑

j=0

ri∑

k=1

(
ni − ri

j

)(
ri

k

)
(−1)j+k+1e−(j+kρ)L

+
ni−ri∑

j=1

(
ni − ri

j

(
− 1)j+1e−jL


 .(3.3)

Of course, the expressions giving the MTTFA,ρ and the fractiles need to be evaluated
numerically since they are both highly nonlinear.

4 Duplication methods

We now obtain the reliability measures of the system when it is improved by dupli-
cation. We will successively consider below the hot and then the cold duplication
methods.

4.1 Hot duplication

We mentioned earlier that hot duplication means that some of the system components
are duplicated in parallel. Therefore, let us assume that the system is improved by
hot duplicating each of k components in a set B by a redundant identical standby
component, so |B| = k. If we assume that ki out-of ni components in module i are
hot duplicated and if we denote by Bi the set of these ki components, then we have
|Bi| = ki, (i = 1, · · · ,m) and B =

∑m
i=1 Bi.

The reliability function R
(i)
B,H(t) of module i, (i = 1, · · · ,m) is now given by

R
(i)
B,H(t) = 1−

ni+ri∏

i=1

(
1− e−λt

)

= 1− (
1− e−λt

)ni+ri
,

from which we immediately have the reliability function of the system improved by
hot duplication

RH
B (t) =

m∏

i=1

R
(i)
B,H(t)

=
m∏

i=1

[
1− (

1− e−λt
)ni+ri

]

=
m∏

i=1

ni+ri∑

j=1

(
ni + ri

j

)
(−1)j+1e−jλt.(4.1)

We now compute the MTTFH
B of the system improved by improving the set B com-
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ponents by hot duplication method as

(4.2) MTTFH
B =

∫ ∞

0

m∏

i=1

ni+ri∑

j=1

(
ni + ri

j

)
(−1)j+1e−jλtdt,

and the α-fractile L = L(α) is found by solving the following equation

(4.3) α =
m∏

i=1

ni+ri∑

j=1

(
ni + ri

j

)
(−1)j+1e−(ni+ri−j)L.

Finally, to derive the hot reliability equivalence factor, it suffices to solve the set of
two equations RA,ρ(t) = α and RH

B (t) = α.

4.2 Cold duplication

We mentioned earlier that cold duplication means that some of the system components
are duplicated in parallel via a perfect switch. Therefore, let us assume that the system
is improved by cold duplicating each of k components in a set B by a redundant
identical standby component via a perfect switch, so |B| = k. If we assume that ki

out-of ni components in module i are cold duplicated and if we denote by Bi the set
of these ki components, then we have |Bi| = ki, (i = 1, · · · ,m) and B =

∑m
i=1 Bi.

The reliability function R
(i)
B,C(t) of module i, (i = 1, · · · , m) is now given by

R
(i)
B,C(t) = 1− [

1− (1 + λt) e−λt
]ri

(
1− e−λt

)ni−ri
,

from which we immediately have the reliability function of the system improved by
cold duplication

RC
B(t) =

m∏

i=1

R
(i)
B,C(t)

=
m∏

i=1

{
1− [

1− (1 + λt) e−λt
]ri

(
1− e−λt

)ni−ri
}

=
m∏

i=1




ni−ri∑

j=0

ri∑

k=1

k∑

`=0

(
ni − ri

j

)(
ri

k

)(
k
`

)
(−1)j+k+1(λt)`e−(j+k)λt

+
ni−ri∑

j=1

(
ni − ri

j

)
(−1)j+1e−jλt


 .(4.4)

We now compute the MTTFC
B of the system improved by improving the set B com-

ponents according to the cold duplication method as

MTTFC
B =

∫ ∞

0

m∏

i=1




ni−ri∑

j=0

ri∑

k=1

k∑

`=0

(
ni − ri

j

)(
ri

k

)(
k
`

)
(−1)j+k+1(λt)`e−(j+k)λt

+
ni−ri∑

j=1

(
ni − ri

j

)
(−1)j+1e−jλt


 dt,(4.5)
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and the α-fractile L = L(α) is found by solving the following equation

α =
m∏

i=1




ni−ri∑

j=0

ri∑

k=1

k∑

`=0

(
ni − ri

j

)(
ri

k

)(
k
`

)
(−1)j+k+1(λt)`e−(j+k)L

+
ni−ri∑

j=1

(
ni − ri

j

)
(−1)j+1e−jL


 .(4.6)

Finally, to derive the cold reliability equivalence factor, it suffices to solve the set of
two equations RA,ρ(t) = α and RC

B(t) = α.

5 Application

Let us consider in this section the parallel-series system consisting of two modules
in series (m = 2) and assume that the first module has two components in parallel
(n1 = 2) while the second module has three components in parallel (n2 = 3). The
total number of components is n = 5. The MTTF of the system is 1.05. Figures 2
and 3 show the MTTF of the system improved by improving some sets of components
according to the reduction method by the factor ρ, 0 < ρ < 1. It seems from these
two figures that:

1. MTTFA,ρ decreases with increasing ρ for all possible sets A.

2. Reducing the failure rate of one component from the module 1 gives a better
system than that system improved by reducing the failure rate of one component
from the module 2, see figure 1.

3. Reducing the failure rates of two components, one from each module, gives a
better system than that system improved by reducing the failure rate of two
components from the same module, see figures 1 and 2.

4. Reducing the failure rates of all components gives the best system, see figure 2.

One could conclude, for the system considered in this section which consists of two
modules, that: (1) improving one component from the module with a smaller number
of components gives a better system than that system improved when the component
improved belongs to the module with a larger number of components; (2) improving
an even number of components selected from the two modules, with equal numbers,
produces a better system than the system improved by improving the number of
components selected from the same module or selected from the two modules with
unequal numbers.
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Figure 2. The MTTF of the system improved according to reduction method.
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Figure 3. The MTTF of the system improved according to reduction method.

Table 1: The MTTF of the improved systems.

{11, 02} {01, 12} {21, 02} {11, 12} {01, 22} {21, 32}
Hot 1.2167 1.1333 1.3238 1.3238 1.1905 1.6044
Cold 1.3433 1.2044 1.6033 1.4922 1.2885 2.1547

It seems from the results given in Table 1 that

MTTFD
{01,12} < MTTFD

{01,22} < MTTFD
{11,02} <

MTTFD
{21,02} ≤ MTTFD

{11,12} < MTTFD
{21,32},

where D = H(for hot), C(for cold), and

MTTFH
B < MTTFC

B , ∀ B.
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This means that: (1) as it was expected, the cold duplication method provides a
better improved system than the hot duplication method; (2) improving components
from the module with smaller number of components gives a better improved system
than the system improved by improving the same number of components belonging
to the module containing a larger number of components.
Tables 2 and 3 present the hot and cold reliability equivalence factors when one
component from module 1 is improved by the reduction method and hot and cold
duplications of different possible components.

Table 2: The values of ρH
i1,j2

, i ∈ {0, 1, 2} and j ∈ {0, 1, 2, 3}.

α ρH
11,02

ρH
01,12

ρH
21,02

ρH
11,12

ρH
01,22

ρH
21,32

0.1 0.7032 0.7901 0.5612 0.5612 0.6692 0.7472
0.2 0.6514 0.7624 0.4927 0.4927 0.6295 0.7072
0.3 0.6097 0.7440 0.4399 0.4399 0.6047 0.6750
0.4 0.5712 0.7309 0.3931 0.3931 0.5886 0.6453
0.5 0.5332 0.7219 0.3486 0.3486 0.5799 0.6156
0.6 0.4932 0.7176 0.3040 0.3040 0.5798 0.5839
0.7 0.4487 0.7197 0.2570 0.2570 0.5918 0.5480
0.8 0.3951 0.7329 0.2045 0.2045 0.6242 0.5034
0.9 0.0100 0.7717 0.1391 0.1391 0.6996 0.4376

Table 3: The values of ρC
i1,j2

, i ∈ {0, 1, 2} and j ∈ {0, 1, 2, 3}.

α ρC
11,02

ρC
01,12

ρC
21,02

ρC
11,12

ρC
01,22

ρH
21,32

0.1 0.4854 0.6067 0.3304 0.2466 0.4562 0.5656
0.2 0.4395 0.5896 0.2746 0.1890 0.4334 0.5299
0.3 0.4045 0.5824 0.2348 0.1473 0.4262 0.5024
0.4 0.3736 0.5813 0.2017 0.1120 0.4290 0.4777
0.5 0.3440 0.5860 0.1718 0.0800 0.4414 0.4535
0.6 0.3139 0.5975 0.1436 0.0494 0.4651 0.4283
0.7 0.2815 0.6185 0.1157 0.0190 0.5043 0.4002
0.8 0.2437 0.6556 0.0867 -0.012 0.5677 0.3658
0.9 0.1928 0.7264 0.0539 -0.046 0.6760 0.3159

We computed the α-fractiles of the original system and the system improved by the
hot and cold duplications. Table 4 gives the fractiles of the original system. Tables
5 and 6 give the fractiles of the system improved by the hot and cold duplications,
respectively.

Table 4: The fractile of the original system.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L(α) 1.9358 1.5314 1.2770 1.0826 0.9190 0.7721 0.6324 0.4908 0.3310
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Table 5: The fractile LH
i1,j2

, i ∈ {0, 1, 2} and j ∈ {0, 1, 2, 3}.
α LH

11,02
LH

01,12
LH

21,02
LH

11,12
LH

01,22
LH

21,32

0.1 2.1285 2.0619 2.2621 2.2621 2.1575 2.5908
0.2 1.7187 1.6477 1.8466 1.8466 1.7343 2.1655
0.3 1.4593 1.3842 1.5820 1.5820 1.4624 1.8917
0.4 1.2599 1.1807 1.3773 1.3773 1.2503 1.6777
0.5 1.0910 1.0074 1.2027 1.2027 1.0679 1.4930
0.6 0.9380 0.8498 1.0434 1.0434 0.9003 1.3222
0.7 0.7911 0.6979 0.8890 0.8890 0.7370 1.1539
0.8 0.6398 0.5414 0.7281 0.7281 0.5677 0.9749
0.9 0.4646 0.3621 0.5383 0.5383 0.3739 0.7568

Table 6: The fractile LC
i1,j2

, i ∈ {0, 1, 2} and j ∈ {0, 1, 2, 3}.
α LC

11,02
LC

01,12
LC

21,02
LC

11,12
LC

01,22
LH

21,32

0.1 2.3489 2.2155 2.5716 2.7240 2.3859 3.4226
0.2 1.8985 1.7643 2.0980 2.2317 1.9048 2.8898
0.3 1.6127 1.4767 1.7940 1.9165 1.5936 2.5415
0.4 1.3927 1.2543 1.5577 1.6719 1.3505 2.2662
0.5 1.2061 1.0650 1.3555 1.4626 1.1419 2.0263
0.6 1.0369 0.8932 1.1707 1.2713 0.9515 1.8026
0.7 0.8744 0.7282 0.9914 1.0853 0.7685 1.5803
0.8 0.7070 0.5596 0.8050 0.8912 0.5830 1.3416
0.9 0.5131 0.3694 0.5866 0.6614 0.3789 1.0477

Table 7: MREF when reducing one component from module 1 for hot and cold
duplications.

Reduction of the failure rate of 1 comp from module 1.
Method ξH

11,02
ξH
01,12

ξH
21,02

ξH
11,12

ξH
01,22

ξH
21,32

Hot 0.5897 0.3876 0.7477 0.7264 0.5754 0.8630
Cold 0.3984 0.1709 0.5886 0.6000 0.3406 0.7817

Reduction of the failure rate of 5 comp. and cold duplication.
ξH
11,02

ξ01,12 ξH
21,02

ξH
11,12

ξH
01,22

ξH
21,32

Hot 0.1443 -0.0823 0.3095 0.4411 -1.01752e-006 0.6545
Cold -0.1409 -0.3367 7.45927e-008 0.2847 1.90735e-007 0.4873

According to the results shown in Tables 2-7, one can see that:

1. Hot duplication of one component belonging to module 1 increases L(0.1) from
1.9358 to 2.1285. The same increase can be reached by reducing the failure rate
of one component belonging to the same module by the factor ρH

11,02
(0.1) =

0.7032.

2. Cold duplication of one component belonging to module 1 increases L(0.1) from
1.9358 to 2.3489. The same increase can be reached by reducing the failure rate
of one component belonging to the same module by the factor ρC

11,02
(0.1) =

0.4854.
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3. Hot duplication of one component belonging to module 1 increases the system
mean time to failure from 1.05 to 1.2167. The same increase can be reached by
reducing the failure rate of one component belonging to the same module by
the factor ξH

11,02
= 0.5897.

4. Cold duplication of one component belonging to module 1 increases the system
mean time to failure from 1.05 to 1.3433. The same increase can be reached by
reducing the failure rate of one component belonging to the same module by
the factor ξC

11,02
= 0.429.

5. The negative values in Table 3 mean that the reliability function of the system
improved by reducing the failure rate of one component can not be increased to
be equal to the reliability function of that design obtained by cold duplication
method. As an example, ρC

{11,12}(0.8) = −0.012 means that at the level α =
0.8, it is not possible to reduce the failure rate of one component belonging to
module 1 in order to obtain an improved system which can be obtained by cold
duplicating two components one of them belonging to module 1 and the second
one belonging to module 2.

6. The negative values in Table 7 mean that it is not possible to make equivalence
between the system improved by the reduction method and the system improved
by the duplication methods. For example, ξH

11,02
= −0.1409 means that it is not

possible to reduce the failure rate of one component belonging to module 1 to get
an improved system which has the mean time to failure equal to the mean time
to failure of the system improved by cold duplicating one component belonging
to module 1.

7. In a similar way, one can read the rest of the results shown in Tables 2-7.

6 Conclusion

In this paper, we discussed the reliability equivalences of a parallel-series system with
independent and identical components. We assumed that each component had a
constant failure rate. We also considered three ways, namely the reduction, hod du-
plication and cold duplication methods, to improve the system. We used both the
reliability function and the mean time to failure to derive two types of reliability equiv-
alence factors. The fractiles of the original and improved systems are also obtained.
For illustrative purpose, a numerical example is presented. The results discussed
in this paper can be extended to include the following cases: (1) more complicated
systems with independent and identical or non-identical components; (2) simple sys-
tems with non-independent and identical components; (3) systems with non-constant
failure rate components. We believe that the cases when the components have non-
constant failure rates will be more complicated. Another problem of interest to OR
researchers would be to determine the optimal number of components to duplicate in
the duplication methods and the optimal number of components whose failure rate is
to be reduced in the reduction method.
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