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Abstract. In this paper we present an alternative order-theoretic proof
of the Banach fixed point theorem for selfmaps on complete metric spaces
which is based on formal balls and, contrary to the case of Edalat and
Heckmann [Theoret. Comput. Sci. 193 (1998), 53-73], does not derive
from the well-known dcpo fixed point theorem.
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1 Introduction

In [2], Edalat and Heckmann established new connections between the theory of metric
spaces and domain theory. In particular they introduced the ordered set of formal
balls as a computational model for metric spaces. It was proved, among other results,
that every metric space is complete if and only if the ordered set of formal balls is
directed complete, and that it is separable if and only if the associated set of formal
balls is a ω-continuous ordered set. Moreover, it was showed that every metric space
is approximated by its set of formal balls, in the sense that every metric space is
homeomorphic to the set of maximal formal balls endowed with the Scott topology.
Furthermore, as an application of the theory presented in [2], Edalat and Heckmann
gave a domain-theoretic proof of Banach’s fixed point theorem based on the so-called
dcpo fixed point theorem (Theorem 1 below).

Our main goal in this paper is to give a novel order-theoretic proof of the classical
Banach’s fixed point theorem which differs from that given by Edalat and Heckmann
in that it is not based on the dcpo fixed point theorem. This is done employing only
the dcpo completeness of the set of formal balls.

2 Preliminaries

From now on the letters R+ and ω will denote the set of nonnegative real numbers
and the set of nonnegative integers numbers, respectively.

We briefly introduce very basics of domain theory. For a more extensive treatment
of the subject we refer the reder to [1].
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An ordered set is a pair (X,≤) where X is a nonempty set and ≤ is a binary
relation on X satisfying for all x, y, z ∈ X :

(i) x ≤ x
(ii) x ≤ y and y ≤ x ⇒ x = y
(iii) x ≤ y and y ≤ z ⇒ x ≤ z

(reflexivity)
(antisymmetry)
(transitivity)

In the sequel, given x, y ∈ X, we will write x < y if and only if x ≤ y and x 6= y.
An element x ∈ X is maximal if x ≤ y implies y = x. Let Y ⊆ X. A least element

of Y is an element z ∈ Y such that z ≤ y for all y ∈ Y. A bottom element is a least
element of X. An upper bound of Y is an element x ∈ X such that y ≤ x for all y ∈ Y.
The supremum of Y is the least of the set of all its upper bounds provided it exists.
We will write tY to denote the supremum of Y when it exists. We will say that Y is
directed if for every pair x, y ∈ Y there exists z ∈ Y such that x ≤ z and y ≤ z.

An ordered set (X,≤) in which every directed subset has a supremum will be
called a directed-complete partial ordered set (dcpo for short).

As usual, by an ascending sequence in an ordered set (X,≤) we mean a sequence
(xn)n∈ω in X such that xn ≤ xn+1for all n ∈ ω.

Let (X,≤) and (Y,¹) be two ordered sets. A mapping ϕ : X → Y is said to
be monotone if ϕ(x) ¹ ϕ(y) whenever x ≤ y. As usual, by a continuous mapping ϕ
between dcpo’s (X,≤) and (Y,¹) we mean a monotone mapping such that, ϕ(tA) =
tϕ(A) for each directed subset A of X. In case of the mapping ϕ is a selfmap on X,
then we will denote by fix(ϕ) the set of fixed points of ϕ, i.e. fix(ϕ) = {x ∈ X :
ϕ(x) = x}.

The next result, known as the dcpo fixed point theorem, plays a central role in
domain theory.

Theorem 1. Let (X,≤) be a dcpo with bottom element. Then every continuous
mapping f : X → X has a least fixed point. Furthermore, it is given by tn∈ωfn(⊥),
where ⊥ is the bottom of X.

3 Banach’s fixed point theorem: A new order-theoretic
proof

Let (X, d) be a metric space. A formal ball in the metric space (X, d) is a pair (x, r)
with x ∈ X and r ∈ R+. The set of formal balls of X is denoted by BX. An order
can be defined on BX in the following way:

(x, r) v (y, s) ⇔ d(x, y) ≤ r − s.

Note that (x, r) v (y, s) clearly forces s ≤ r.
The maximal elements of BX are the formal balls (x, 0).
Edalat and Heckmann proved the following useful equivalences which play a central

role in our below discussion.

Theorem 2. A metric space (X, d) is complete if and only if BX is a dcpo.

Theorem 3. For an ascending sequence (xn, rn)n∈ω in BX and and element (y, s) ∈
BX, the following are equivalent:
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(i) (y, s) is the least upper bound of (xn, rn)n∈ω.

(ii) (y, s) is an upper bound of (xn, rn)n∈ω and limn→∞rn = s.

(iii) limn→∞xn = y and limn→∞rn = s.

Next we give an alternative order-theoretic proof of the classical Banach’s fixed
point theorem which uses the dcpo completeness of the set of formal balls instead of
the dcpo fixed point theorem (Theorem 1 above).

Theorem 4. Let f be a mapping from a complete metric spaces (X, d) into itself
such that there exists a real number c with 0 ≤ c < 1, satisfying

(3.1) d(f(x), f(y)) ≤ cd(x, y)

for all x, y ∈ X. Then f has a unique fixed point which is the limit of the orbit of any
point in the space.

Proof. Let Bf,c : BX → BX given by Bf,c(x, r) = (f(x), cr). Then the mono-
tonicity of Bf,c follows easily from (3.1). Moreover, we note that (z, t) ∈ BX is a
fixed point of Bf,c if and only if z ∈ X is a fixed point of f and t = 0. Furthermore,
it is obvious that if Bf,c has a fixed point then, by (3.1), it is unique. Consequently,
if f has a fixed point then this is also unique.

Let x ∈ X. Put Rx = 1
1−cd(x, f(x)) and take r ≥ Rx. Then (x, r) v Bf,c((x, r))

and Bn
f,c(x, r) v Bn+1

f,c (x, r) for all n ∈ ω. Applying Theorem 2 we obtain that the
ascending sequence (Bn

f,c(x, r))n∈ω has a least upper bound (y, s). Hence Bn
f,c(x, r) v

(y, s) v Bf,c((y, s)) for all n ∈ ω. It follows, by Theorem 3, that limn→∞cnr = s and
limn→∞fn(x) = y. So s = 0. Since (y, s) v Bf,c((y, s)) we have that (y, 0) v (f(y), 0).
Thus we conclude that f(y) = y because (y, 0) is a maximal element of BX. Therefore
y is the unique fixed point of f. The proof is complete. ¥
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