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ABSTRACT

A hierarchy of theoretical and numerical models for the dispersion of discrete floating tracers on lakes and
oceans is presented. Central to these models is the role of Langmuir circulations, which concentrate tracers into
narrow windrows thus inhibiting tracer dispersion. But time-dependent Langmuir circulations cause the rows
of tracers to wander and to split, by local time dependence and by downwind advection, thus promoting
dispersion. Accordingly, the Langmuir circulations generally render the smaller-scale background turbulence
irrelevant for direct estimates of surface dispersion.

Analytical models include: 1) a theory of tracers in a linear mean-flow convergence plus homogeneous tur-
bulence, this theory being applicable to the width of windrows; and 2) a model with a spatially periodic mean
flow and a periodic small-scale eddy diffusion coefficient that allows an estimate of the Langmuir-scale dispersivity
for steady parallel cells.

Random-flight calculations for a model of complex time-dependent and downwind dependent Langmuir
circulations have led to the explicit prediction K* = 0.5T%"'/2 where K* and T are the nondimensional

dispersivity and cellular time scale, respectively.

1. Introduction

The dispersion of floating material on lakes and
oceans can be caused by many scales of motion. At
least since Richardson (1926) it has been recognized
that the growth in size of a cloud of tracers with the
characteristic dimension ¢ depends primarily upon
turbulent scales of roughly the same dimension as the
cloud, if such scales exist. For a full spectrum of tur-
bulent scales encompassing ¢, very much larger scales
simply advect the cloud as a body and scales much less
than o act as a small-scale Fickian diffusion. Okubo
(1971) has summarized many observational studies of
oceanic dispersion, but in general those measurements
were concerned with scales of motion much larger than
those treated here.

In addition to irregular motions characterized as
turbulence, however, there are organized flows such as
those associated with fronts, mesoscale eddies, near-
shore topographic features, etc. that may be nearly
steady on the time scale of any particular cloud of trac-
ers. If we have detailed knowledge of these flows they
can be taken into account explicitly as prescribed flows.
As our knowledge of natural processes assumes greater
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detail, more of what was once called turbulence will
be assigned to these prescribed flows.

Surface motions in lakes and oceans up to a few
hundred meters in scale are often dominated by the
quasi-steady phenomenon known as Langmuir cir-
culation. Langmuir circulations (LCs) consist of a se-
ries of roll vortices of alternating sign of rotation with
horizontal axes more or less parallel to the wind. These
circulations were first systematically investigated by
Irving Langmuir (1938) who attributed mixed layers
largely to the overturning produced by these wind-
driven circulations. Their surface manifestation is gen-
erally a pattern of windrows: bands of surface film,
foam, debris, etc. at the lines of horizontal surface con-
vergence between rolls. But LCs often may be present
without visual indicators to mark their locations. In
natural settings the windrows may adopt a pattern of
“venous streaks” or “parallel streaks” (Stommel 1951)
(Fig. 1), the latter being favored by steady winds and,
in lakes, by a shallow flat bottom; and the former oc-
curring with gusty winds and other disturbing factors.
While most observations of windrows have relied upon
visible tracers, McLeish (1968) has clearly shown that
a similar streakiness of the ocean surface is also often
evident in very sensitive infrared photographs of the
pattern of sea-surface temperature.

An excellent review of the Craik-Leibovich theory
of LCs (a wave/shear interaction that appears to be
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F1G. 1. Examples of venous and parallel streaks, reprinted from Weather (Stommel 1951). Original photographs
were by Prof. A. J. Eardley, University of Utah, on Great Salt Lake (upper), and by Mr. Alfred H. Woodcock,
Woods Hole Oceanographic Institution, on the Banana River, Florida (lower).
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the primary mechanism) and many of the observa-
tional studies has been provided by Leibovich (1983).
In the meantime, recent measurements by Weller et
al. (1985) and Smith et al. (1987) have provided the
first instrumented observations of large vertical veloc-
ities deep in the mixed layer that unambiguously dem-
onstrate the large depth of penetration of LCs. These
confirm and add much detail to the earlier indirect
observations of Woodcock (1950), Johnson and Rich-
ardson (1977), and others that have supported Lang-
muir’s contentions regarding the importance of these
circulations in the dynamics of mixed layers in the
ocean. Observations by Scott et al. (1969), Myer
(1971), and Filatov et al. (1981) have clearly demon-
strated the importance of LCs for mixed layers of lesser
depth in lakes.

Here we are concerned with the effects of LCs pri-
marily upon the lateral (across wind) dispersion of
floating tracers. On the one hand, this presentation is
a study of surface dispersion. On the other, it may be
viewed in terms of the question: How much can we
learn about mixed-layer dynamics by the study of sur-
face tracers? The LCs will be treated as a prescribed
flow, in some cases as time dependent, with a super-
imposed small-scale turbulence. We systematically de-
velop a hierarchy of analytical and numerical ideali-
zations of LCs to explore the parametric effects of the
relevant nondimensional numbers on the dispersion
of tracers. Inasmuch as certain characteristics of LCs,
such as their space and time scales, emerge as dominant
factors for surface dispersion, we now briefly review
some characteristics of LCs that are important for our
development of the subject. .

Langmuir circulations may have spatial scales from
a few centimeters (with capillary waves, as in Faller
and Caponi 1978, hereafter FC); and beneath surface
films, as in Faller and Perini 1984 ) to greater than 100
m (Langmuir 1938; Smith et al. 1987). Laboratory
experiments (Faller 1969; FC) have shown that when
the lower boundary is a controlling factor the spacing
of the largest cells is normally in the range 2.5 < L/H
< 3.5, where L is the crosswind wave length of the cells
and H is the depth of the fluid or perhaps the depth of
the mixed layer. Similar results were independently
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obtained by Buranathanitt and Cockrell (1979) in lab-
oratory studies designed to simulate the effects of LCs
upon particle motions in lakes and reservoirs. This
conclusion with respect to the limiting effect of the
bottom boundary for the largest cells has been con-
firmed in the ocean by the recent Doppler SONAR
observations from FLIP in MILDEX by Smith et al.
(1987) who found the ratio L/ H = 3, the ratio staying
nearly constant while H increased (tidally) from 40 to
60 m. This effect of the bottom would at first seem to
be at variance with the observations of Faller and
Woodcock (1964) and others, namely that wind speed
is an important factor in determining L, as well as
appearing to be at odds with the Craik-Leibovich
mechanisms of wave /shear generation (Craik and Lei-
bovich 1966; Craik 1977). But the effect can readily
be explained in terms of the cascade of energy from
smaller to larger scales, an important characteristic of
two-dimensional turbulence that appears to operate
with these nearly two-dimensional rolls.

Many observers (e.g., Williams 1965; Assaf et al.
1971) have found that several scales of LCs may exist
simultaneously. Laboratory experiments (FC) showed
that when wind-wave generated LCs first form, their
scale is generally smaller than the cells that dominate
the flow at a later time. Vane-generated rolls (FC) also
clearly showed the upscale energy transfer to larger,
depth-limited cells. This upscale cascade of energy also
was independently found in the numerical experiments
of Leibovich and Paolucci (1980). One infers from
these results that in nature the smaller scales may be
the direct result of wave/shear generation and have a
scale L related to the dominant scale of gravity waves
and perhaps related to the depth of the layer of high
shear near the surface. The depth-limited scales with
L =~ 3H, however, appear to be a consequence of up-
scale energy transfer, with the exception of those cases,
of course, where Ly is already close to, or greater than,
3H. Figure 2 illustrates the concept of continuously
generated small vortices and their accumulation into
larger, depth-limited, and less rapidly changing cells.

The possibility of this important upscale energy
transfer was first suggested to one of us (Faller) during
conversations in Woods Hole (circa 1963) by E. R.

FIG. 2. A sketch of the superposition of smaller-scale and larger-scale Langmuir circulations, the former
being driven directly by wave-shear interaction and the latter generated by an upward cascade of energy

from smaller scales.
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Baylor on the basis of observations at sea. Baylor was
one of the early investigators of the effects of LCs upon
biological processes, and it was in one of his publica-
tions (Sutcliffe et al. 1963) that the term “Langmuir
circulation” was first adopted.

The t-(time) dependence and x-(along wind) de-
pendence of LCs both seem to be important factors for
dispersion and appear to be closely related. The smaller
LCs, those directly generated by wave/shear mecha-
nisms, are likely to be subject to time and space vari-
ations of the wind because of their lesser inertia. Thus,
as observed by Stommel (1952), small windrows re-
spond rapidly to gusty winds. Accordingly, and noting
Fig. 2, one should expect: 1) t- and x-dependence of
the small scales in relation to the gustiness of the wind;
2) a drift of these scales to both the left and right of
the wind direction (relative to any mean drift of the
mixed layer); 3) stochastic forcing of the largest scales;
and 4) - and x-dependence of the largest scales, perhaps
more or less in proportion to that of the small scales.

The characteristic time scale of LCs, T, may depend
upon several factors: lateral scale, depth of penetration,
time scale of the wind, undulations of the mixed layer
depth, and possible hydrodynamic instabilities of well-
developed LCs themselves. Parallel streaks (and rolls)
probably occur only for steady winds and perhaps they
require a well-defined shallow bottom, as well. Then
T¢ can be considered to be essentially infinite, (ex-
cepting slow changes of the weather) as in many of the
observations of Kenney (1977) in shallow, flat-bot-
tomed lakes. But under the stochastic forcing condi-
tions that may occur in the ocean, what is the value of
T. to be expected? In appendix A, we identify a min-
imum 7, with the characteristic response time of LCs,
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Tg, to an abrupt change of forcing. We then enlist a
set of somewhat disparate natural and laboratory es-
timates of Ty that suggest the formula T = L/(0.03
m s~') (see Fig. 3). Imperfect as this result may be,
some such estimate is required in later sections, and
so we adopt the relation T, = L/(0.03 s71).

McLeish (1968) discussed many of the qualitative
effects to be expected from organized turbulent motions
acting on tracers confined to the free surface, but Csan-
ady (1974) was the first to quantitatively discuss the
larger-scale dispersion of surface tracers due to LCs.
For certain conditions on Lake Huron, he estimated
an effective surface eddy-diffusion coefficient of K
= 10% cm? s™'. This estimate was based on a length
scale L (103 cm) and a time scale T¢ (103 s), values
that seemed appropriate to a variety of observations.
The value of K was determined simply from K = L?/
T¢, and was, at least in order of magnitude, in agree-
ment with the results of earlier dye-dispersion studies
(Csanady 1970). His description of the dispersive effect
was “as a cloud [ of discrete floating tracers] is released
it rapidly forms itself into a number of windrows. Given
a typical lifetime of 103 s each windrow acts as a new
source with about this frequency, redistributing its load
over a few successor windrows”.

In view of the wide variability of natural conditions,
estimates of the above type may be all that can be ex-
pected to describe the gross effects of LCs at the present
time. Nevertheless, it is interesting and perhaps worth-
while to speculate on further details of the effects of
LCs on the motions of surface tracers with the expec-
tation of obtaining better estimates of K and other
characteristics of the problem. Indeed, as appealing as
the above row-splitting argument may seem, it will be

7 b ® (Langmuir)
(welander) ®
6
T(s)=L (cm)/3
5
InTp(s) (Stommel)
4+
3+
(Faller - Cartwright)
Py (Faller-Caponi) o
1 L 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10

In L (cm)

FIG. 3. Estimates of the time scales of Langmuir circulations with uncertainty bars as
appropriate, for a large range of spatial scales.
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found that our models indicate that row-splitting
should occur infrequently and that the principle mech-
anisni of dispersion is the stochastic wandering of rows
in time and space, somewhat like a random walk and
with K ~ T,~!/2

2. A linear convergence model, nondimensional num-
bers, and “standard values”

It is to be expected that when LCs are strong relative
to the turbulence, floating tracers will become concen-
trated in narrow bands (windrows) at the convergence
lines. In the vicinity of these narrow bands one can
consider the mean flow to be linear in y, the crosswind
direction. Thus in the simple periodic case with

= —V sinky, (1)

close to the convergence line at y = O the mean flow
D can be approximated by

av/dy = —Vk. 2

Analytical solutions for the distribution of tracers with
this mean flow and with a superimposed homogeneous
turbulence were developed in Faller and Mignerey
(1982, hereafter FM) and some of the basic results are
reviewed here for their relevance to our problem.

Let the linear mean flow be ¥ = —Ay where 4
= gv/dy is constant. Then from FM the steady-state
distribution of tracers about y = 0, as specified by the
tracer variance, is

32 = v24T,/A%(1 + AT) (3)

where v? is the mean square turbulent velocity com-
ponent along y and T is the Lagrangian time scale of
the turbulence. This result can be found by 1) assuming

a turbulent velocity autocorrelation v(£)v(z + 7)/v?
= exp(—7/T;) to allow explicit integration, 2) inte-
grating the equation dy/dt = —Ay + v(t) to obtain
y(t) for an individual tracer, 3) squaring and taking
an ensemble average to obtain a general expression for
y(¢), and 4) taking the limit of large ¢. Thus (3) is an
exact analytical, steady-state solution that takes into
account the separate effects of v and T, but contains
the assumption of an exponentially decaying autocor-
relation function for v.
The corresponding eddy-diffusivity solution (FM)
is
=D/A 4)

where D = v2T, is the eddy diffusivity. Thus (4) differs
from (3) by the factor (1 + AT}), and the significance
of this difference rests on the magnitude of the non-
dimensional number 47,. Random flight computa-
tions (section 4) have verified (3) and shown, in ad-
dition, that the distribution of tracers about y = 0 is
Gaussian.

As a possible example of the use of (3), consider the
distribution of Sargassum in the subtropical conver-
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gence zone of the North Atlantic Ocean due to the
Ekman drift from the north and from the south. Es-
timating 4 to be 0.1 m s~!/1000 km (A_= 1077 s“)
and letting the turbulence parameters be v = 0.10 m?
s"2and T, = 20 X 107 s (for Rossby waves propagatmg

through the region), one finds AT, = 0.2 and »?

= 400 km, the standard deviation of spread of the ac-
cumulated Sargassum. This is a reasonable estimate
of the north-south distribution of Sargassum which
“covers an oval measuring 1000 miles by 2000 miles”
(Cowen 1960). Note that the value of A7, is on the
verge of being an important correction to the diffusion
solution, but with the uncertainties of our estimates
and the omission of recirculation patterns and other
processes this is a moot point.

In the periodic case governed by (1), near y = 0 the
combination AT, becomes VkT, = T¥, denoting non-
dimensional numbers by asterisks. 77 is one of
three independent nondimensional numbers that can
be formed from the five dimensional variates V, v, k,
T, and T¢. Our other two nondimensional numbers

will be v* = vzl/z/V, and T* = VkT,. Lengths, ve-
locities and times are scaled by k™', V, and T»
= (Vk)™!, respectively. The latter factor, Ty, can be
viewed as the overturning or advective time scale of
the cells, not to be confused with T which involves
time-dependence of the cell pattern. The combination
D* = Dk/V = v* ’T* is the nondimensional eddy dif-
fusion coefficient.

It should be noted that a diffusion solutlon makes
no distinction between the separate effects of v and 7,
and may be thought of as the limiting case of finite D
but with 7, = 0. Thus, in the case of linear ¥ the dif-
fusion result in (4) corresponds to A7, = 0 in (3) and
in the periodic case it corresponds to7'# — 0. Random
flight calculations, however, explicitly include the ef-
fects of a finite 7,. As a general rule we refer to the
spread of tracers in time as diffusion only in reference
to small-scale turbulent effects. Otherwise the spread
of tracers will be referred to as dispersion.

In later sections it is desirable to make estimates of
oceanic dispersion and for this purpose we adopt

“standard values” of the independent parameters.
Theseare V=0.10ms ™, L=37.7Tm(k=0.17m™"),

2 = =004ms, T,=6s, and T¢c = 20 min. It
follows that D = 0.0096 m?s~'. We also take U, =030
m s~! as the downwind speed of tracers in a windrow.
These values have been chosen in part to represent
what we believe to be a typical set of oceanic conditions
and in part to give the convenient nondimensional
numbers 7% =0.10, T% = 20, v* = 0.4, and, therefore,
D* = 0.016.

3. An analytical model for steady, periodic cells

This analysis assumes a pattern of free-surface con-
vergence and divergence due to steady and spatially
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FIG. 4. An illustration of the periodic spatial variation of variates
for the analytical diffusion model of section 3.

periodic two-dimensional LCs. A spatially variable
eddy diffusivity patterned in relation to the mean flow
(in a manner to be explained) also is aliowed. While
this model permits estimates of dispersion only for this
idealization, it also serves as a base for the test of ran-
dom-flight calculations that must be used in those more
involved situations where analytical solutions are not
available.

Consider a periodic mean flow #(y) and a corre-
sponding eddy diffusivity D(y). The repetition length
is L and the dominant wavenumber is k = 27w /L. As
shown in Fig. 4 a convergence line is assumed to lie at
y = 0, and therefore ? is an odd function of y, expres-
sible as a sine series. In turn D should be symmetrical
with respect to a convergence line (Fig. 4) and must
be an even function of y, expressible as a cosine series.

The one-dimensional advection-diffusion equation
is

aC/at + d(dC)/dy = a(DAC/3y)/dy (6)
where C is the concentration of tracers per unit length
crosswind. A cloud of tracers with standard deviation
o is assumed to span many cells, hence ¢ > L. Within
cells C is expected to have a small-scale variation that
is essentially the same from one pair of cells to another,
as in Fig. 4. But a running average of C with an av-
eraging length L, as defined by

e y+L
C= ) C(yhdy'/L, )
produces the smooth curve C(y).

We seek the formulation of an effective dispersivity
K that describes the spread of the large cloud of tracers
due to the combined effects of the cells and the tur-
bulence. The dispersion equation will be

3Cot = K3*C/ay> 8)
If the distribution of C were Gaussian with standard

deviation ¢ it would follow that do? /8¢ = 2K, but a
Gaussian distribution is not used in the following anal-
ysis.

Any within-cell adjustments of C should take place
in a short time T = (Vk)™! where V is now simply a
representative magnitude of the mean flow, ¥. T will
be much smaller than the dispersive time scale asso-
ciated with (8), so after initial rapid adjustments of
the tracers to the cells, C will change only slowly, with
the same time scale as C. Then in (6) there will be
nearly a local balance of advective and diffusive terms
with small 8C/dt.

A solution for K is obtained essentially by a double
integration of (8), making use of the small 3C/dt and
0C/dy and the fact that at y = nL/2 (nodd) ¥ = 0.
At these points the total flux is limited by the minimum
values of D (see Fig. 4), Further details of the method
may be found in Faller and Auer (1987). The solution
is

K =1/(eFef/D) 9
where F is defined by
y
F= —f (v/D)dy (10)
0

and, as before, the bar is an average over one wave-
length.

The solution (9) is of the same form as that which
appears in the physics literature for the diffusion of
Brownian particles in a periodic potential (e.g. Das
1979; Ryter 1982) although derived differently and in
quite different notation. The exposition of Weaver
(1979) illustrates a particularly interesting and com-
pletely different approach with the same result. The
corresponding concentration of tracers is specified by

C(») = C(0)e™ ™. (1
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In applying these results, note in particular the re-
striction that D and ¥ must be even and odd functions
of y, respectively, as the problem is defined here.
Therefore a non-zero average value of 9, i.e., a‘mean
flow D across the cells, as might sometimes occur in
nature, is not permitted in this model.

Some special cases of (9) serve to illustrate its ap-
plication. For ¥ = —V'siny* and D = D(1 + a cosy*)
it follows that (10) can be integrated directly with the
result

F=—-81In(l + acosy*) (12)
where 8 = V/kDa = (D*a)~'. Then (9) becomes
K/D=1/(1 + acosy*)? (1 + a cosy*)~ '+ (13)

which can be evaluated computationally. In the es-
pecially simple case V' = 0, i.e. only a spatial variation
of D, one finds

K/D=1/(+ acosy*)™". (14)
When (14) is written as
1/K=1/D (15)

K will be recognized to be the harmonic mean of D.
Another example is the case « = 0, 1.e. D = D. With
the mean flow given by (1) the solution reduces to

K/D = 1/{exp[—D* ' (1 — cosy*)]

X exp[D* (1 = cosy*)]} (16)
which is a function of only the singl_el parameter D*,
Figure 5 illustrates K/D versus D*  from (16) and
can be used to estimate the surface dispersion due to

steady paral!?l cells. With our standard values (see sec-
tion 2) D* = 62.5, and it is apparent from Fig. §
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that the cells then completely dominate the turbulence
and give, in effect, K = 0. Thus, theory verifies that we
should expect surface tracers to be strongly concen-
trated in rows as is frequently observed.

The distribution that corresponds to (16) is

C = C(0) exp[—D*'(1 — cosy*)], a7
and for small y* the approximation is
C = C(0) exp(—D* 'k3y*’/2), (18)

a Gaussian distribution with the standard deviation
ot =D*" go=(D/KV)'2.  (19)

In natural circumstances there are several factors
that may cause tracer distributions in narrow windrows
to be slightly different from (17) apart from #- and x-
dependence of the cells. These factors include spatial
variations of D, harmonics of ¥, wave oscillations, fi-
nite T;, and surface films. The effects of a surface film
will depend upon the nature of the tracers and of the
film in subtle ways that we cannot consider here. Thus,
we assume that significant films are not present or that
the tracers are immersed a few centimeters into the
water so that film effects can be neglected.

The wave oscillations of importance will be those
normal to the windrows. Assuming a 10 m s~' wind,
the significant wave height would be about 2 m (Neu-
mann and Pierson 1966). Then the standard deviation
of tracer oscillation along the wind direction would be
about 1 m and waves moving at 20 degrees to the
windrow would produce a transverse oscillation of
about 0.35 m. The wavelength of such waves, however,
would be about 40 m, very long compared to the row
width, and the waves would only bend the row slightly
without causing local apparent dispersion. Waves that
would directly affect the spread of tracers would be of

1/2

H T

20 30 40
o*l-viko

FIG. 5. The ratio of the large- and small-scale diffusion coefficients from the diffusion model
of section 3 (ordinate) as a function of the inverse, nondimensional diffusion coefficient (ab-
scissa). The value of D*~' to be expected in lakes and oceans lies far off scale to the right thus
implying that for steady parallel cells the large-scale diffusion is essentially zero.
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about the same dimension as the row width. From (19)
an estimate of the row width is o = 0.76 m, but waves
of comparable length would have negligible transverse
oscillations.

Variations of D and harmonics of ¥ can be explicitly
included in our model. At the free surface one should
expect the turbulence to be strongest at the convergence
lines, except perhaps for possible film effects, because
water moving toward the windrows has been subjected
to the wind stress and wave action for the longest time.
At the divergences, upwelling brings up relatively calm
water. These effects were very obvious from dyes and
discrete tracers in laboratory experiments (Faller 1978)
although turbulence levels were not directly measured.
To examine the effect of variable D we have tried «
= 0.9 in (13) thus producing a spatial variation of D
from 0.1D to 1.9D. )

_Table 1 gives the ratios 2¢¢/ L for several values of
D*, where o is the standard deviation of C within
cells, i.e., for —v < y* < «. This ratio is the relative
(within-cell) spread of C. The maximum ratio is 2a¢/
L = 0.577 which occurs for a uniform distribution of
C(V—0,D* - ). For small D* we see from Table
1 that the spread (with a = 0.9) was only 1.91/%2 = 1.38
times that for @ = 0. This result also can be seen from
the linear ¥ model of section 2 because for small D*
the tracers are concentrated near y = 0.

The effect of harmonics in ¥ is of the opposite sign
from that due to variations of D and is of about the
same magnitude. To see this let

. . V.

D= —-Vsiny* — 5 sin2 p*, 20)
the relative signs of the two components being consis-
tent with the well-established concentration of down-
welling beneath windrows as observed in nature. The
chosen amplitude, V' /2, of the first harmonic (2k) is
based on the experiments of Faller and Cartwright
(1983) and an interpretation of the response of surface
tracers in other experiments (FC), and it doubles the
rate of convergence at y* = 0. From section 2 o¢ is
reduced by 0.7071. Thus the effects of the assumed

TABLE 1. The relative spread of tracers 2o/L within windrows as
a function of D*. Column A is a spatially constant D* = D* and
column B is for D* = D*(1 + 0.9 cosy*).

x _ l
b kD A B
0 .59 .59
0.5 .488 458
1.0 404 374
2 278 284
4 174 207
10 .103 156
20 072 097
50 .045 .062
100 032 .044
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variations of D and harmonics of ¥ on the spread of
tracers tend to cancel.

The resuit (19) suggests the interesting possibility of
estimating the relative strengths of the cells and of the
turbulence by measuring the spread of large numbers
of tracers in quasi-steady windrows. For example in
the experiments of Faller and Cartwright (1983 ) where
k was known and the values of V were measured, es-
timates of the spreads of tracers (plastic floats and paper
dots) have shown that the turbulent diffusivities were
in the range 0.25 < D < 1.8 cm? s™! for the various
experiments.

The - and x-dependence of naturally occurring cells
are, of course, limiting factors for the study of windrow
widths, but if T/ Ty is large some rows will be quasi-
steady and the theory can be judiciously applied. For
our standard conditions T¢/ Ty = T¢ = 20.

4. The random-flight method

Random-flight calculations are correlated random
walks of a large number of fluid tracers, a Monte-Carlo
technique. The tracers are given an initial distribution
in y characterized by some standard deviation ¢. In
time, due to the effects of the LCs and turbulence, the
tracers disperse and ¢ increases. The dispersivity K is
found from

do? /dt = 2K. (23)

The turbulent velocity component v;,, for tracer i at
time step m is calculated from the recursion relation

(24)

where R is the one-time-step autocorrelation of v, Q
= (1 = R>Y2 and ¥, is randomly chosen from a
Gaussian distribution with variance v2. First-order
Markov chains of the type in (24) now have an exten-
sive literature with applications to turbulent dispersion
and have appeared with various key words such as
“random walk”, “Monte-Carlo”, “Langevin equation”,
“random flight” (Durbin 1980), etc. A recent example
in oceanography, where some of the history of this
method is presented and where a partial justification
of (24) for the simulation of turbulent fluid flow is
advanced, is that of Rahm and Svennson (1986).
The forward time step

Yim+1 = YVim + (f)(yi,m) + v;m) At (25)

advances the tracer. Each tracer is treated indepen-
dently, and in this application we imagine the tracers
to be strung out in x so that tracers with the same y,,
are advected by the same D but are not influenced by
the same turbulent eddies.

The value of R is frequently determined from R
= exp(—At/T;), where At is the time step, but it is
shown in appendix B that with the combination of
(24) and (25) and with no gradient of the mean flow,
at large ¢ the tracer variance is given exactly by using

Vim = RV + Qi
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FI1G. 6. The phase relation between one of the primary sinusoidal
components of the surface flow (solid line) and its harmonic (dashed
line). The convergence lines coincide at y¥, (see appendix B). y¥%,
changes with time as the cells move laterally and is different for each
of the three components; y* is the position of some tracer.

R=Q2-AyT)/(2+ Ay T) (26)
for all At < 2T,, and therefore (26) is preferable to the
exponential form which is correct only to second order
in At/T,. At At =2T,, R = 0 and v;y,, = ;,, a random
walk. Therefore in suitably simple circumstances a
random walk can be used for each tracer provided At
= 2T,.

When convergent mean flows are present, however,
(26) can no longer give exact results. The modification
of (26) for uniformly convergent flow involves the pa-
rameter 77 and will be given in a separate publication.
With variable convergence higher derivatives of D
should also be taken into account but no such correc-
tions have as yet been devised. Approximately correct
results can be obtained using (26) or with the expo-
nential form, however, if a sufficiently small value of
At/ T,is used.

Random-flight calculations require that the turbu-
lence be specified by at least v? and T,. If the turbu-
lence is inhomogeneous or nonisotopic much more
information is required and the computational meth-
ods are elaborate. An apparently successful method has
been developed for spatial variations of v? (e.g.,
Thompson 1984; van Dop et al. 1985) but their meth-

_ods cannot be applied here, and in all of the following
random-flight calculations we have treated only ho-
mogeneous, isotopic turbulence.

5. Time-dependent, spatially irregular cells

Here the LCs remain independent of x but have
time-dependent amplitudes and phases, and a more
complicated structure in y is introduced. Our original
time-dependent cell calculations (Auer 1985) repre-
sented cells in y and z and included the dispersion of
internal tracers of various specific gravities. But here
we limit our discussion to computations of the lateral
dispersion of surface tracers.

The mean surface flow was assumed to be
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3
A, .
D=Vk 2 (k— smk,,y+%cosk,,y

n=1

! !

A B
= s == 27
+ 2%, sin2k,y + 2%, cos2k, y) 27

where the 4, and B), are related to 4,, and B, as de-
scribed in appendix C and as shown in Fig. 6. Thus D
was that due to the sum of three primary sinusoidal
cells plus first harmonics. The primary wavenumbers
were k; = k, ky = 3k/4 and k; = 4k/ 3. The amplitudes
A, and B, were time-dependent, and each was inde-
pendently determined by a recursion relation analogous
to (24), namely

Xm = RCX -1 + QCXm (28)

A A M

M AN M)

M AN N NALL

N AN AN

A I\ N\ %
LT NV

0 on y*

1
© 4N 61 8w

FiG. 7. An example of the time evolution of the surface flow ¥
from Eq. (27). The number of time scales T¢ is indicated at the
right.
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where
Rc=(2—-At/Tc)/(2 + At/ T¢),

Qc=(1-RA"?, (29)

and X,, was randomly selected from a Gaussian dis-
tribution with variance X 2 = 0.133V 2, This coefficient
guaranteed that the time-space average of #? would be
V'%/2, the same variance as for a single sine wave with
amplitude V. Figure 7 illustrates a typical time-space
variation of ¥ from (27). There one sees large changes
of amplitude and phase, and an obvious effect of the
harmonics as well.

Equation (27), although arbitrary, allowed the lateral
drift of cells and changes of the relative amplitudes of
the three basic components, all with the time scale 7¢.
It also provided an instantaneous spatial variability of
the cell scales and speeds that might be expected in
natural circumstances due to stochastic variations of
the wind or other disturbing factors. It is believed,
therefore, that surface dispersion calculated with this
version of ¥ is reasonably representative of natural
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conditions except for effects attributable to the down-
wind variation of the cells that is frequently observed.
This latter effect is added in section 6. _

To minimize computations while obtaining mean-
ingful statistics on the large-scale dispersion, each tracer
was started from y = 0 but a different sequence of ran-
domly selected amplitudes was applied to each tracer.
This procedure avoided the nécessity of having to wait
excessively long computational times, which would
have been necessary for representative results with a
coherent cloud of tracers. Thus if all tracers were subject
to the same cellular motions, as in the examples of Fig.
8, one would have to integrate for many 7T¢ for statis-
tical significance.

The computed random-flight dispersion results are
most conveniently represented in terms of non-dimen-
sional parameters. The independent variates spanned
the ranges 0 < v* < 3.2 and 1 < T} < 80 while T
was kept at 0.1. This latter value is representative of
natural conditions and is small enough that its specific
value has little effect except as it enters D* = v*'T*.
Thus with fixed 7%, the value of v* is itself a measure
of the small-scale turbulent diffusion.

754
!

y*t-

yl»

60 O t*

60

FIG. 8. Trajectories of 100 tracers calculated from the random-flight model of (27). All panels have the same time-dependent cells and
are for T¢ = 10; (a), (b) and (c) are for v* = 0, 0.4 and 0.8, respectively, and the tracers are randomly distributed in the interval { < y*
< 75.4 at t* = 0. (d) The tracers are introduced randomly in time and space and have an average lifetime of 5¢* = 5.
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TABLE 2. Dispersion coefficients, K*, from random-flight computations with time-dependent cells having phase-locked harmonics. Upper:
K* as dependent upon v* and T& with T = 0.1. Bottom: The corresponding ratios K*/D* as dependent upon D* and T§&. Statistical
uncertainties for K* are typically 3 to 10 percent for one standard deviation of the given means. The boxed value denotes our standard
oceanic conditions. The dashed line encloses most conditions to be expected in nature.

T¢
v* 1.0 25 50 10.0 200 40.0 80.0
0 0.192 0.200 0.150 0.071 0.037
0.2 0.206 0.172 E 0.114 0.072
]
0.4 0214 0213 0161 1 0.107 0.077 0.059 0.017
]
0.8 0.241 0.224 0475 1 0.130 0.095 0.050 0.026
1.6 0.342 0.143 0.057
32 1.193 0.965 0.885 0.869 0.485
D*
0 0 o] (o] o) [o'e] Q0 fe'e]
e oS S
0.004 52 43 : 29 18
|
0.016 13 13 10 - 37 L1
0.064 38 3.5 2.7 20 1.5 0.8 0.4
0.256 1.34 0.56 0.22
1.024 117 0.94 0.86 0.85 0.42

The maximum allowable time step At* =2TF =0.2
was used, and thus the turbulence was treated as a ran-
dom walk while at the same timeA¢* / T% was generally
small. Nevertheless, to obtain reasonable accuracy each
advective step was iterated so as to use the average of
D at the beginning and end of each displacement. Oc-
casional checks with shorter time steps showed little

differences in the computed values of the significant

dependent variate, K* = KV /k. In each calculation
the displacements of 1000 tracers were calculated for
nondimensional time intervals ranging from 80 to 160.

Table 2 presents the calculated values of K* and the
ratios K* / D* for wide ranges of v* and T¥. For K*/
D* < 1 the cells inhibit dispension. The trends of K*
with v* and T* are as should be expected. Up to the
value 0.8, v* has little influence on K* as long as T¢
< 40 because dispersion is then dominated by the time-
dependent wandering of the cells and rows. This is the
region of the table where K* /D* > 2. As v* increases
above 0.8 and as T¢ increases, the turbulence has a
more noticeable effect. Note that at the highest value
v* = 3.2 (D* = 1.024) the cells inhibit dispersion (K*/
D* < 1) when T¢ > 1 even though they are time-
dependent.

Our standard oceanic conditions (section 2) are
shown in Table 2 by the boxed values, and the dashed
line is meant to suggest that probably all natural con-
ditions fall within this region, the steady parallel streak
conditions lying at large 7°%. For very rapidly changing

cells, i.e., below T¢ = 1, sample computations (not
tabulated) show decreasing K* because the cells lose
their strong advective effect and act only to augment
the turbulence. Thus, the maximum dispersive effect
occurs when TF¥ = O(1) as might be expected.

In the vicinity of our standard conditions K* varies
as Té‘”z. This dependence upon T¢ is quite different
from the T% "' dependence of the Csanady (1974) row-
splitting model. In an attempt to understand this dif-
ference the complex model of (27) was simplified in
steps to the single-wave, fixed-phase model

D = A(1t) siny*. (30)

The values of K*(T¢) in Table 3 were obtained by
the random-flight method with v* = 0.4 and using
(30) for the prescribed flow. The resnltant K* of Table
3 are remarkably close to the values of Table 2, con-
siderir:ég_ l/z’the simplifications, and still show K*
~ T .

The similar results from (27) and (30) are a con-
sequence of two counter-balancing effects. On the one
hand the simpler model does not have the continuous
cell wandering effect that characterizes the complex
model. But there are abrupt 180 degree phase changes
when A4(¢) changes sign. At such a change each well-
developed row is suddenly found to be directly over a
divergence line and row splitting begins. Thus row
splitting is the sole mechanism of dispersion for the
simpler model, excepting the negligible direct effect of
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TABLE 3. Values of K* from random-flight calculations for time-
dependent cells represented by a single sine wave and for a wide
range of T%. The other parameters were fixed at v* = 0.4 and T¢
= 0.1, hence D* = 0.016. Near oceanic conditions (T¢ = 20), K*
oc (T%)~'2. Uncertainties are | standard deviation of the mean.

T K*
0.125 .0533 +.0027
0.250 0779 = .0048
0.50 1137 +.0065
1.0 .1524 + .0067
25 .1805 = .0083
5 .1408 + .0072
10 1072 = .0051
20 .0866 = .0064
40 0551 +.0081
80 0384 + .0018
160 i 0228 + .0014

turbulence. But row splitting takes time and sometimes
A(t) changes back and restores the original row before
splitting has been completed, and the parameters v, V'
and T¢ all play a role in this question.

An extended analysis of this process suggests that
the T2 ? effect for the simpler model is related to the
finite time required for row splitting in relation to T,
an effect not present in the Csanady model. From the
complex model based upon (27) and the simpler model
based upon (30) we conclude that both row wandering
and row splitting lead to K* ~ T# ™"

Figure 8 illustrates simulated ¢* — y"‘ trajectories
based upon (27). 100 tracers were released randomly
in the interval 0 < y* < 75.4 at t* = 0. (This interval,
12 X 2, is the smallest range of y* that includes in-
tegral multiples of the 3 assigned wavelengths). The
same sequence of random numbers was used to gen-
erate the cell amplitudes, hence all the patterns of Fig.
8 are similar.

Panels (a)-(c) of Fig. 8 differ only by the values v*
=0, 0.4 and 0.8, respectively. Panel (d) is for v* = 0.4
but the tracers are introduced randomly in time, as
well as in y*, and have a finite lifetime, A¢*, randomly
selected from the interval 0 < At* < 10. Thus panel
(d) illustrates how tracers with different characteristics
may present rather different patterns in the same cells.
Following this line of thought one should not interpret
any of these patterns as being analogous to instanta-
" neous patterns of tracers on the ocean surface.

Panels (a)-(c) show increased row width and in-
creased row splitting for large v*, but in general the
row splitting is overcome by row merging and a re-
duction of the number of rows with time. Over a much
longer time, however, as the whole pattern spreads,
one might expect the eventual appearance of many
more rows. In panels (a)-(c) it is not obvious from the
appearance of the rows that there has been any tracer
dispersion at all, but in fact the nondimensional
dispersion coeflicients, computed from A y"‘z J2At*
and from * = 10 to t* = 60, were K* = 0.44, 0.45
and 0.40 in (a), (b) and (c), respectively. These values
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are about four times the corresponding values from
Table 2 and are not at all good estimates of an average
K* for these conditions. The above values suffer from:
1) a small sample of tracers, 2) a short time, and 3)
the fact that of all 100 tracers only 5 to 10 can be
considered to be independent because all tracers are
imbedded in the same cellular pattern and group into
only a few rows.

In dimensional terms and based upon our standard
conditions the band of tracers is 452 m wide, the time
of observation is 60 min, and the dispersivity is about
K = 0.25 m? s~!. These model results suggest that the
determination of a representative value of X on the
ocean by following surface tracers will be at best a te-
dious task.

The row widths in panels (b) and (c) of Fig. 8 are
in general agreement with (19) and with Table 1, but
precise values cannot be obtained from the figure.

The time-dependent-cell model as developed in this
section has cells independent of x. But if we assume
that all tracers move downwind in rows (along x) at
some fixed speed U¥*, the t* coordinate in Fig. 8 can
be converted to x*. For Uy = 3 and for our other
standard values the abscissa would correspond to a
length of 1080 m. This representation will be consid-
ered further in section 6 where an x-dependence of
the cells is introduced.

6. Downwind dependence of the cells

When LCs have a significant time dependence, pre-
sumably because of fluctuating winds, it seems likely
that they also will be x-dependent more or less in pro-
portion to their ¢-dependence. Therefore, we now as-
sume that the joint ¢- and x-dependence can be rep-
resented by

An =~ exp(—t/T.) exp(—x/X.) 31

where A, is the amplitude of some cellular component
in (27) and X, is a characteristic length scale of the
cells along x. Now letting x = U,¢, where U, is a fixed
speed of tracers in the windrows, we define 74, an ad-
vective time scale, as

Ty = Xc/Uy. (32)
Then (31) becomes
A, ~ exp(—t/Tp) (33)
where T is the harmonic mean
T,T.
Tp = ————. 34
BT LT (34)

As a specific example, and perhaps a case typical of
oceanic conditions, take X, = mL and m = 10. Then
using U, = 0.3ms'and T, = L/(0.03 m s7") it is
found that T4 = T, and therefore

Tg=T,/2. (35)
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In such a case both the ¢- and x-dependence of the cells
are taken into account simply by using 7% = T¥/2 in
place of T¥ in Table 2. Then for 7% = 20, T} = 10,
and it was for this reason that the plots of Fig. 8 were
based upon T¥* = 10. The abscissa of Fig. 8 can now
be interpreted as x* and the plots can be thought of
as representing results for 7% = T% = 20. The curves
then represent x* — y* Lagrangian trajectories.
Continuing in this vein, for 7% = 20 and v* = 0.4
we may enter Table 2 with 7% = 10 (to account for
the x dependence) and find K* = 0.107. Then, within
the uncertainty of Table 2
K* =0.35T%

-1/2 -1/2

=0.5T*"", (36)

a specific model prediction for comparison with
oceanic data that we may hope to obtain in the future.
It also may be considered desirable to represent the
large-scale dispersion by
K, =V*T, or K =VET?: (37)
where ¥ and T, are appropriate Lagrangian velocity
and time scales for displacements in y when all effects
of the turbulence and the cells have been included. But
it is not a simple matter to propose a formulation of
either V; or T; because of the several velocity and time
scales that must be involved. The V; must be a com-
posite of the effects of V, v and (kT,)™! (a cell-wan-
dering speed) and 7; must represent the effects of 7,
T.and (kV)~!. In particular a simple relation such as
Ve, = Vv®(kT)"(a + 8 + ¥ = 1) cannot succeed
inasmuch as Table 2 shows that for v* = 0 there is still
a finite value of K* and therefore a nonzero V¥.
Values of V¥ and T¥ can be calculated from the ran-
dom-flight model of section 5, however, and for the
case 7% = 10 and v* = 0.4 a sample calculation gave
Tt =0.38 and V¥’ = 0.29. A second calculation at
T3 = 10, but for v* = 0, gave T = 1.51 and V2
= 0.09. Thus these values are quite sensitive to the level
of v* even though the small-scale turbulence plays only
a small role in the dispersion.

The observations necessary to test the dependence
of K* upon T¥, asin (36), and to determine the pro-
portionality factor might be obtained by scattering
many sheets of paper from a helicopter and then de-
termining their individual and collective motions by
photogrammetry. Measurements of ¥ would require
frequent photos within the first 2-3 min after the papers
landed, i.e., before they lined up in rows. The imme-
diate determination of tracer motions would also allow
an estimate of the average surface flow along and to
the right of the wind, values that become highly biased
once the tracers find the windrows. Instrumented an-
chored buoys could provide reference markers and the
necessary environmental data. Estimates of the tur-
bulence could be obtained from the tracer motions, as
could V; and T}, and turbulence could also be esti-
mated from the width of windrows as in section 2.
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Such measurements could materially enhance our
knowledge of Langmuir circulations and their role in
the mixed layer.

7. Summary and conclusions

We have presented a series of dispersion models de-
signed to simulate the probable roles of Langmuir cir-
culations on the dispersion of surface tracers in lakes
and oceans. A second objective is to learn as much as
possible about mixed-layer processes by a comparison
of these models with the directly observable motions
of surface tracers that may be obtained in future ob-
servational studies. We hasten to add that rolls pro-
duced by thermal convection or by Ekman layer in-
stability will have the same scales of motion and the
same kinematic effects as the larger LCs.

Some significant model results and conclusions are:

1) Small scale turbulence has only a negligible effect
upon lateral surface dispersion when LCs are present.
Steady, parallel LCs concentrate floating tracers into
lines, completely dominating any dispersive effect of
the turbulence. With - and x-dependent LCs the small-
scale turbulence may slightly enhance dispersion by
causing wider windrows and thus increasing the prob-
ability of row splitting by the time dependence of the
cells and by downwind advection of the tracers.

2) The widths of windrows of discrete tracers can
be used to estimate the relative strengths of the cellular
circulations and the surface turbulence by using (19),
provided that surface films do not seriously affect the
tracer motions.

3) The random-flight model, with parameters rep-
resentative of the ocean, indicates that stochastic vari-
ations of the LCs in ¢ and in x, and the associated
wandering of the windrows, is the principal mechanism
of dispersion. Row splitting occurs occasionally but
the width of the rows is usually too small for frequent
splitting. This conclusion is based upon the results in
Table 2, namely that the turbulence parameter v*,
which in part governs the row width, has only a small
influence upon K* in the range of our standard con-
ditions. ) )

4) The random-flight model has led to the explicit
prediction K* = 0.5 7* " for variable wind condi-
tions. The dependence of K* upon T’ %' (rather than
upon T% ', as in the Csanady (1974) row-splitting
model) has been tested with several variations of the
model of section 5 and appears to be robust for the
oceanic range of parameters.

5) Model results for a wide range of conditions other
than our standard values can be obtained from the
nondimensional results in Table 2. In dimensional
terms and in the vicinity of our standard values the
dispersion coefficient is K = 0.5(V/k3T¢)'/?, and for
our specific standard values one obtains K = 0.067 m?
s~!, approximately 5 times the assumed turbulent dif-
fusivity, D. '
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Because of the importance of LCs in mixed-layer
dynamics, we believe that detailed observations of the
motions of surface tracers on lakes and oceans under
a wide variety of circumstances would be an efficient
and inexpensive way of determining the effects of LCs
under various weather and water conditions. The the-
ories and models presented here can provide a guide
to the conduct of such experiments in our efforts to
find out what mixed layer processes are really like and
how they respond to the wide variety of forcing con-
ditions that are found in nature.
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APPENDIX A
The Time Scales T and T,

In the time-dependent-cell model of section 5 we
introduce a cell time scale, T, that characterizes the
changing amplitudes and phases of the cells. This
should not be confused with the overturning time scale,
T, = (Vk)™'. For natural processes the corresponding
T, might be the correlation time scale of the crosswind
component of the surface flow, or a temporal pattern
correlation time scale, all with respect to some defined
point moving with some average speed of the mixed
layer. For the convenience of theory and computation
we assume that temporal correlations of v(x, y, t) are
of the form exp(—t/T.).

For the time-dependent-cell model of section 5 we
require a typical value of 7, to accompany a typical
value of L for the ocean. Nearly steady cells with very
large values of 7, may occur in the oceans for stable
wind conditions. But for gusty winds it seems likely,
as argued below, that T, will be closely related to the
natural response time for the generation of cells, Tx.
And because of the inertia of larger cells we should
expect T to be a monotonically increasing function
of the cell scale, L.

Assume a linear model for the growth of cells

dav
M—(E—F(t)—bV

(A1)
where Vis a representative speed, M ~ L2 is the mass
per unit length of fluid accelerated, F(¢) is a prescribed
forcing, and b is a linear damping coefficient. With F
= Fy cos(wt) the solution of (A1) is

F
V=

ﬂo(b' cosw? + w sinw?

— b exp(—=b'1))/(b” + @?) (A2)
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where b’ = b/ M. Equation (A2) illustrates the expo-
nential transient response at small ¢ and the periodic
long term response.

For steady forcing (i.e., w = 0) (A2) reduces to

V =Feb~'(1 — exp(—b't)) (A3)

and it is apparent that the response time is
Tr=0b" = M/b. (A4)

Stochastic forcing can be represented by
F(t) = 3 F, coswyt, (A5)

n=0

and by the linearity of (A1) the solutions for each »
can be added. Then it is apparent from (A2) that for
w2>b'" the corresponding amplitudes will be relatively
small. Then if F, is more or less independent of n, T
will be not only the response time but the cutoff time
scale below which there is little energy in the cells.
Therefore, one should typically expect to find observed
time scales satisfying

T.= Tkg,

and Ty is, in effect, a minimal T.

Now note that whereas T = M/b and M ~ L2, if
we assume that b ~ L we obtain Tr ~ L, aresult that
is also suggested by observations shown in Fig. 3. The
assumption b = L is not unreasonable if one imagines
that large cells are accompanied by large eddy viscosity.

The available observations of the time dependence
of LCs all relate to the response time 7k. Langmuir
(1938) reported that windrows of Sargassum with L
= O(100 m) reoriented within 20 min due to a shift
of wind direction. Stommel (1952) reported that an
analysis of film streaks from several small ponds under
generally gusty wind conditions showed that the streaks
quickly reoriented after a shift of wind direction “in 1
or 2 minutes”, say 100 s. Spacings were not reported,
but from similar experiences of the authors, spacing of
2-3 m would be appropriate. Welander (1963) reported
that a streak spacing of 8 m reoriented with an abrupt
wind shift within about 10 min. Faller and Cartwright
(1983) measured the rate of growth of LCs having a
predetermined wavelength of 44 ¢cm in a laboratory
tank and found characteristic time scales for their
growth of 2.6, 12 and 15 s (nominally 10 s), the value
of T¢ increasing with the wind speed. Finally Faller
and Caponi (1978, Fig. 6) found that for wind-gener-
ated cells: in water of average depth 5.5 cm the initial
cells had an average spacing of about 6.2 cm and they
first became evident in dye at the bottom of the tank
at an average time of about 22 s after they began to
form. This collection (Fig. 3) spans a large range of L,
but it is neither of sufficient uniformity nor accuracy
to support other than a simple linear relation and,
therefore, we adopt the relation Tx = L/(0.03 ms™).

To proceed with a time-dependent model it is nec-

(A6)
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essary to have a value of T, and so we assume that

Tc = L/(0.03 m s™!) thus implying that our model

refers to somewhat irregular wind conditions.

APPENDIX B
Random-flight Calculations
Starting with

m = Rvi,m—l + Qﬁi,m (Bl)

and
(B2)

we seek an expression for R such that at large ¢ = mA¢
the variance y?,, for an infinite ensemble (represented
by the bar) is the same as the corresponding analytically
derived variance, y*(t), where t = mAt.

Combining (B1) and (B2), after four time steps the
displacement of a tracer (dropping subscript i) is

YVim+1 = Yim + Uimll

+ Q1+ R+RH)D, + (1 +R)D, + D3)]. (B3)
The mean square value of y, is then
Vel = yo° + At®2(4 + 6R + 4R? + 2R%) (B4)

having used the relations 9,,2 = vo2 = v2, v,vk =0, Jj
# k,and Q% = 1 — R%; and having assumed no linear
relation between vg and Yo. _

An examination of expressions like (B4) for several
time steps shows that for m steps

Yt = Y02 + At%0’[m + 2((m — )R

+(m—=2)R*+ --+ (m—(m—1))R"MH]. (BS)
For large m (BS) reduces to simply
Vol = Y2 + At20Zm(1 + R)/(1 — R). (B6)

The corresponding large-time theoretical solution for
continuous diffusion, following Taylor (1921) is

y2(1) = y}(0) + 20Ty, (B7)

Comparing (B6) and (B7) using ¢ = mAt one obtains
R=02-A1T)/(2 + At T)). (B3)
Random-flight calculations of dispersion in homoge-
neous turbulence have confirmed that (B8) is correct
up to At/ T, = 2. This formulation, however, does not

preserve higher moments of the tracer distribution and
therefore should be used with caution.

APPENDIX C

Harmonic Phase Relations

It is well known from a variety of field observations,
laboratory experiments, and theory that LCs have con-
centrated strong downwelling and broad weak up-
welling. To properly represent the corresponding
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asymmetry in the surface flow would require a large
number of harmonics of the basic sinusoidal variation
of D, but for practical computational reasons we have
included only a first harmonic of each basic component
in (27).

Our computed convergence lines drift laterally due
to the stochastic nature of 4, and B,,, and to maintain
concentrated downwellings the harmonic amplitudes
Ay and B}, in (27) must change in such a way as to
keep a convergence line of each harmonic coincident
with a convergence line of each primary wave (Fig. 6).

Algorithms to directly determine 4/, and B/, are un-
necessarily complex and computations are minimized
by the use of

¥ = —D,(sinAy, + 0.5 sin2Ay,) (C1)

in place of (27). In (C1) D, = (4,2 + B,.>)'?, Ay,
=yx = Yk, Y& = k.y/k, yrl,O = t‘an—l(An/Bn) + 7/
2 and y%o = y%o + = if B, < 0. Equation (Cl1) is
applied to each component 7 and the total mean flow
is D* = ¥ + 0¥ + DY,
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