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ABSTRACT

The problem of geostrophic adjustment, originally considered by C. G. Rossby, is solved in an axisymmetric
geometry for a continuously stratified fluid, where the adjusted final state is in hydrostatic, gradient-wind balance.
This problem is relevant 10 the generation of submesoscale coherent vortices in the ocean: diapycnal mixing
events can create a local anomaly of less strong!y stratified fluid, which then develops a balancmg circulation
through adjustment. An analytic solution is obtained for a few umfonn-densaty layers, and this is compared
with numerical solutions for continuous stratification. In both representations, two-dimensional soluuons are

compared with axisymmetric ones.

1. Introduction

Submesoscale Coherent Vortices (SCVs) are abun-
dant in the interior of the ocean (McWilliams 1985).
These are intense, rotary circulations which are ap-
proximately symmetric about vertical axes, Typical di-
mensions are 10 km horizontally and 100 m vertically.
SCV lifetimes can be as long as many years, during
which entire ocean basins can be traversed.

In McWilliams (1985) I argued that the principal
generation mechanism for SCVs is mixing and adjust-
ment: local mixing in a stratified environment creates
a region of weaker stratification, and the subsequent
adjustment process creates a balancing circulation.
SCVs are observed to be always of one parity, anticy-
clonic, and this generation mechanism intrinsically has
this parity.

Adjustment has to date been investigated for geo-.

strophic balance, usually for parallel flow, and often
with a linearization assumption (Rossby 1937, 1938;
Obukhov 1949; see Blumen 1972 for a review). The
circumstances of SCVs require centrifugal force as well
as Coriolis and pressure forces in the momentum bal-
ance (i.e., gradient wind balance), the flow geometry
is cylindrical rather than parallel, and several relations
are significantly nonlinear.

As a contribution towards assessing the plausibility
of SCV generation by mixing and adjustment, the fol-
lowing idealized problem is posed and solved below.
In an unbounded, incompressible, uniformly stratified
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fluid, mixing across isopycnals is presumed to have
created an initial state with a local density anomaly
(heavy above, light below, with an amplitude bounded
by marginal static stability) and no motion. The
anomaly shape is assumed to be independent of the
azimuthal coordinate and odd-symmetric about its
middle depth. Gravitational force then acts to compress
the anomaly in the vertical near its center and, by in-
compressibility, to extrude fluid horizontally outward.
The subsequent evolution involves radiation of iner-
tial-gravity waves away from the anomaly and the de-
velopment of a balancing circulation as the Coriolis
force turns the radial motion towards the azimuthal
direction. At a time much greater than the longest wave
period (of order inverse Coriolis frequency ), the waves
will have departed, and the local circulation will be
steady and in hydrostatic, gradient-wind balance. If
viscous and diabatic processes are neglected, the ad-
justed state will have, for every fluid parcel, the same
density, angular momentum, and potential vorticity
as initially, with, of course, the fluid parcels displaced
so as to satisfy the balance relations. The energy of the
final state, however, will be reduced from the initial
state energy, with the deficit lost through wave radiation
to infinity. We seek to determine the final state (the
SCV) as a function of the initial one (the density
anomaly from mixing). Of course, the solutions ob-
tained may have more general applicability than just

"to the SCV phenomenon.

2. Adjustment of a layered fluid

As a prelude to solving the fully continuous problem,
we consider adjustment in the sparser representation
of a few layers with different but internally uniform
densities. This will illustrate many of the qualitative
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features of adjustment in general, through an explicit,
closed form solution.

Consider the layer geometry in Fig. 1. There are five
layers (by vertical symmetry only three are indepen-
dent). The core layer has a density p, and a finite vol-
ume: its half thickness /(r) goes to zero at a finite radius
ro. The outer layers have densities p, (1 + &) and thick-
ness H(r), which has the value H, as r = oo . Finally,
the exterior layers have densities p, (1 £ 6 + A), infinite
thickness, and neither any motion nor any horizontal
pressure gradient.

In this representation, the mixing is presumed to
have created the core layer. Initially, the azimuthal ve-
locity v(r) is zero. The volume of fluid (per unit radian)
in the core layer inside radius r is

Wr) = J; rh(r'dr', 1)
with an analogous expression for the outer layer (i.e.,
with 4 ~» H). (Because of the assumed symmetry, only
the half space z = 0 is included here.) The potential
vorticity and angular momentum are

L S
q= h or "R and
A=, ©)

where f is the Coriolis frequency. Finally the initial
potential energy (per unit radian) is

PE = %gf: [6h% + A(H + h)* — AHL 1rdr, (3)

and, of course, the kinetic energy is zero.
In the final state, the pressure is hydrostatic; thus,

p+&A(H + h), outer @
peA(H + h) + pygdh, core,
3
z ‘-’J'lgo
e, (1-8-4)
p,(1-8) Ho
r
p*(l"'a)
e
P*(|+3+A)
‘} 90 =0

ar

FIG. 1. Geometry of a layered fluid.
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plus terms that are independent of r. The associated
circulation is in gradient wind balance:

or

N
v=z {51} S”[”(p*fzr)dr] - O

Relative, absolute, and potential vorticities and angular
momentum are defined by

19
i'—‘r'gr(w), Z=f+g
q h "’

= S f 4 or = 2 fi7S. (7)

Volume and PE are defined as in (3) and (1), and
kinetic energy (per unit radian) is

KE =1 [ (ke + HOBalrdr. ®

The adjustment problem can now be posed in terms
of Lagrangian time integrals of the parcel conservation
relations. Let £ be the radial displacement of a parcel
in the core layer, such that

&)

and let = be the analogous displacement in the outer
layer. Then the conservation of mass, angular mo-
mentum, and potential vorticity in the core layer is
expressed by

Tinitial = Tfinal — &(76ina1)5

Vs(r) = Vm(r_ g(r))
As(r) = Am(r— E(I‘))

gs(r) = gum(r — £(1)), (10
where subscripts m and s refer to the initial mixing
anomaly and the final SCV, respectively; analogous
relations hold in the outer layer.

Given h(r) and H(r) initially, we seek the four final
state functions £, =, # and H which are solutions of
the six parcel conservation relations in the core and
outer layers. By this counting the problem appears to
be overdetermined, which it is not. From (1), (6) and
(7), we write

_ (1/2r)d/dr(r*S) _ (/ryd4/dr _ dd/dr
d A a/naviar avidr
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From the first two relations in (10),

dA, @]

ddm I, _
dr (r)—T(r 9 [1 dar

Vs oy @ oy | 9],
hence,
_ dAs/dr(r) _ dAm/dr(r_E) _
qs(r) = dV,dr(r— ) = gm(r — £).

©dvy/dr(r)

Thus, one conservation relation among the three above
is redundant in each layer, and the problem is well
determined.

The preceding relations are valid for arbitrary
anomaly profiles A,,(r) and H,(r). An approximate,
closed form solution can be found for the mixing

anomaly
2
hOm[l —(L) :|, 7' Iom
Tom (11)

'0, ¥ > fom
Hp(r) = —hpy(r) + Hy.

(The second relation states that the initial anomaly is
of limited vertical extent.) This quadratic profile leads
to radially uniform relative and absolute vorticity in
the core layer [see (12) below]. In somewhat different
layered configurations, axisymmetric solutions with
uniform potential vorticity are presented in Csanady
(1979), Flierl (1979), and Ikeda (1982).

When the outer layer is deep (i.e., € = Ag,n/ Hye < 1),
its pressure variations (4) are negligible in the core
layer relations (10). Thus, to O(e) the core layer so-
lution is :

hy(r) = hm[l - (i)z] ,
r()s

E(r) = Eos —

r
Tos

hm(r) =

r
vs(r) = Vos T
Tos

£(r) = 2 2

Om

Pos
Z(r)=f h;’

for r < ry,, outside of which the core layer does not
exist. The constants in (12) are

(12)

hOs Zs —1
=22 =T ¢0,1)
hOm f
Tos — 714 (1, 0)
Tom
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fu _ g7 0,1

Yos

%=—%(1—T"/2) e(—%,O) (13)
for

T=1+8b and b=f,5f:%:>o. (14

Thus, the core layer undergoes a gravitational flattening
and spreading, and it has anticyclonic flow with a con-
stant vorticity bounded from below by — f. Note that
the volume scale hgro? is preserved during adjustment.

The outer layer volume conservation relation can
be written

1 r

=(r) = —f [hs(r) = h(r)Yr'dr’ + O(e). (15)

H,rJo g
The solution in the outer layer is
Hy(r)= H, — hy(r), r<ro

=H,, r>rg
2

By =Lteal-a -1+ a-1H=) |,

2 2 Tom

r< TYom

2 2
o[ (Y _1(rs
2erT [l 2(r0:) 2\ R

Tom < T < Igs
= 0, rl> Tos
2
wn =31 -2 -La- ()],
- m

r<rom

2 2
I Py N v 1(ros
2efrT [ 1+2("0s) +2 . R

Tom <t < Ios

=0, r>ry
. r\2
(r) = ef[l — T -1 - T-')(——) ]
Tom
Y < rom

r\2
= —efT‘”z[l - (—) ] s Tom <T<To

Tos
=0, r>rg (16)

with relative errors O(e). We see that all outer layer
quantities have an amplitude factor ¢, demonstrating
a posteriori the consistency of the core layer decoupling
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approximation described above. The E is negative V r
< ros; thus, the horizontal spreading of the core layer
is compensated by a contraction in the outer layer.
Therefore, by angular momentum conservation, the
outer layer circulation has v; > 0 V r < ry,. However,
its vorticity changes sign at

T~ T1/2 172 Tom
Tl—-] G(T , ro,,,) . (17)

Within this radius { is cyclonic, which is the reverse
of the anticyclonic core layer vorticity.
The circulation in the outer layer,

r= rOm'[

C5=L ¢E(r)yrdr, (18)

is zero from (15) (Circulation is not well defined for
the core layer, since it does not extend to mﬁmty )
Azimuthal transport, however, is finite:

Tr(r) = hsvs,core(r) + Hsvs,outer(r),

= %fho,,,r(l - T"”)[l -T2 - (% T'”?

2
+——T‘”2 s T<Tom
rOs

- %thmrT‘”z[—z + T2 4+ (% - T‘”z)

(o) +22)]

X{t—1 *+=1— 1, rom<r<ry
Yos 2\ r

=0, (19)

This is positive {opposite the core layer transport) in-
side the radius

_ 2
T\t

r> ros.

172
) €0, 7o)  (20)

and negative between there and ro,. Integrated in r,

fw Tr(r)rdr = fm fw vrdrdz
o o Jo

= 5o T4+ T4 1), 21)
which is always positive (i.e., cyclonic).

Inserting the solutions (12) and (15) into (3) and
(8) yields

(KE, + PE,) _4 ., (L+35T717)
PE,, 3 Q+7177) "
KE, _(1—T"'?) ”
PE, (1+T77'7)° (%2)

whefe' the contributions from the outer layer fields are
negligible [i.e., O(¢)]. Both of these ratios are always
between zero and one; thus, adjustment inevitably re-
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quires a loss of energy, and the SCV kinetic energy
cannot exceed its potential energy.

This solution is characterized by its size, amplitude,
and shape. In (12)-(22), the dependence of the first
two attributes is relatively simple, in large measure be-
cause, in this simple layer formulation, the environ-
ment does not have any natural size or amplitude
measures. Variations of shape (here the aspect ratio
ho/ry) are more complex but they depend only on the
parameter b from (14). b has the form of a Burger
number (or inverse Froude number), except that the
deformation radius, (gdkom,)'/%f !, is based upon the
disturbance amplitude (since the environment lacks a
relevant scale). This intrinsic combination of distur-
bance amplitude and shape is a consequence of the
sparse layer representation. It also precludes a quasi-
geostrophic solution to the present problem. These as-
pects will be separated in the continuously stratified
problem solved below.

As b increases from small to large values (due to a
larger density difference or core layer thickness, or a
smaller core layer width ), the adjustment process yields
larger shape change, stronger vorticity and velocity,
larger transport, greater relative energy loss, and greater
relative kinetic energy. Thus, a SCV with these attri-
butes results from a mixing anomaly of larger aspect
ratio, Mo,/ 7om, as it enters the Burger number,

g5 (hOm)2 Nz(hOM)
hOmf Tom f2 Tom ’

where N is a buoyancy frequency.

b_

(23)

3. A two-dimensional layered comparison

The two-dimensional (2D) counterpart of the axi-
symmetric problem will be solved here for comparison.
We assume the same layered geometry as in Fig. 1,
where r is now considered a Cartesian horizontal co-
ordinate. The three parcel-conservative quantities in
2D are

Wr) = J:h(r’)dr’,

.z z
q h H’
A=fr+v, (24)
and the balance relation is exactly geostrophic,
1 dp
= —_—— 25
So dr =
Vorticity in 2D is
_av
Cdre (26)

The horizontal integrals PE, KE, C, and [ Tr all have
dr in place of rdr.
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In 2D the initial profile (11) has a solution in the
core layer of nearly the same form as (12), except for

vy(r) = 2%(}) . @7)

Os

However, the constants are different from (13); viz.,

hOs Zs
—===U"" ¢0,1
Fom  f «(0. )
2 _ P (1, o)
Yom
fos _ o
=1-U (0, 1)
Tos
Yos _ _ Loy _ 13 _l.
Fos 2(l U ) e( 2,0), (28)

where U (b) is the solution of

(U=-2b)*-U?=0 (29)
for b from (14). As b increases from zero to +oo0, U(b)
increases from one to +oo. Here it is the product of
horo which is preserved during adjustment.

There is considerable similarity between the 2D and
axisymmetric solutions. The constants in (13) and (28)
all have monotonic dependences upon b and span the
same ranges of values. The detailed functional depen-
dences are different, though. To examine these differ-
ences, we consider the relations between T(b) and U(b)
from (14) and (29); in particular,

U'B=T"=T1Y2=1 at b=0
U_l/3'->‘ T-Y4s T2 for 0<b<32
T V4> U '3>T12 for b> 32,

where U~'/3 never exceeds 7~'/% in the lower range of
b by more than about 2%. The near equality of U™'/3
and T~'/4 implies that the horizontal particle displace-
ments are quite similar between 2D and axisymmetric
adjustment. However, U~'/3 > T~!/2indicates that the
vertical displacements are larger in axisymmetric ad-
justment, as is the magnitude of the SCV relative vor-
ticity. On the other hand, the azimuthal velocity is
larger in 2D, due in part to the extra factor of two in
(27), although the difference is not appreciable for b
< 1. Although the balance relations imply that, for a
given pressure gradient, the velocity is larger in an axi-
symmetric geometry than in 2D, the pressure gradient
is sufficiently larger in 2D to overcome this effect.

The outer layer solution in 2D is also qualitatively
similar to axisymmetric adjustment, hence so are the
circulation and transport integrals. The energy ratios
corresponding to (22) are
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(KE; + PE)) _1
PE,, 2
KE, 1., _ i
PE, 2 [1—-U].
(31) exhibits the same qualitative dependence upon b
as (22). At any particular b > 0, however, the axisym-
metric adjustment process has a relative greater energy
loss than 2D, and its proportion of kinetic energy is
also larger.
In summary, the adjustment process effects a greater
change (in energy, in vorticity) in an axisymmetric
geometry than in a two-dimensional one.

U—1/3[3 _ U—1/3]

31

4. Adjustment of a continuously stratified fluid

We now consider the complete problem posed in

~ the Introduction. The equations are made nondimen-

sional with the following scaling factors:

h

~ ~ 2 7%

r~1I, . p PxNy g
z~ hy A~1D
U~ Uy g~ fN%

D~ pyVufly (KE, PE) ~ htli”i

g~
*

Tr ~ Vyhs. (32)

Associated parameters are

4v,
R=—
Sl

N,h, )2
B= (=22
(F
- R
4B°
The mixing-induced density anomaly O(r, z) has a

dimensional scale pyy 14/ ghs, such that the nondi-
mensional total density field is

(33)

pm=—2z+v0O. (34)
Hence
dpm )12 _ _ 901172
Nm—[ az} ,—[1 vaz} (35)

is the initial buoyancy frequency. The nondimensional
potential vorticity and angular momentum fields are

dm = Np?

Am=s1% (36)

N -
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and the energy of the anomaly is

1 re * 2
—2BJ;> rer; dz ©2,

After adjustment, hydrostatic, gradient-wind balance
implies the following relations for the SCV:

(37

.
Ps 'Yaz
&p
N52=1+'y?
2r
=—[S—1
v=205-1]
R 172
s=[1+—@]
r or
_1.3(m)
g-_r or
R réd
=14+=¢= s
Z +4§‘ S+26r
Ry [ &p
- 2_X¥ [ OD
4 = 2N 4S( roz
_1, R 1,
As—zr +4vr 2rS

PE rdr f dz( ) .
gin (36)and (38 ) is Ertel potential vorticity, the scalar
product of the absolute vorticity vector and the dens1ty
gradlent

As in the layered problem, we are concerned with
Lagrangian displacements durjng adjustment, here de-
fined as

(3%)

YE(rs, zp)=rr—1;
‘Y’l("f, Zf)=zf_zt> (39)

where the subscripts denote final and initial parcel po-
sitions. Fluid incompressibility requires that the Ja-
cobian of a Lagrangian coordinate transformation be
equal to unity (Monin and Yaglom 1971). In an axi-
symmetric geometry, this is expressed by

Li(Ori 0z Oni Oz _
r, dry 8zy  dz; dry ’

B[ ap\ &p
-1 — i —=
6QS[p] (qs 1) r ar( ar) 622
=Bl—5@ (1—S)216p
S oar? S(1+S8)r
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or, from (39),

The parcel conservation relations for continuously
stratified adjustment are

os(r, 2) = p(r — v&(r, 2), z — yn(r, z))
am(r — v&(r, 2), z — vn(r, 2))
Am(r —v&(r, 2), z = y0(r, 2)).

qs(r, z) =
Ay(r, z) =

(40) and (41) comprise four relations for the three un-
knowns p, ¢ and ». Again there is a redundancy by one
relation, and we will discard angular momentum con-
servation in our method of solution. Boundary con-
ditions are

(41)

(P, &m)—>0 as rP+z2—>

_op_ _

E=2=0 at r=0

=2 0 a z=o0 (42)
0z

Because the equations are nonlinear an iterative
method is used; viz.,

p© = £© = @ =

(Ba( ap™ & 30
- = + — p(n) = - —
r ar or 9z 0z

X(r=y§" 0, z—yn™")
~ v 0g,[p" "]
n=1,2 17" =-0(r—y£",
ap(n)
_ (n—1)y _
z=yn""") .
1 r
E(n) = _f r!drrc[n(n)’ E(n—l)].
rJo

(43)

These relations are, respectively, the conservation of g
and p from (38) and (41) and the incompressibility
condition (40) (with C[n, £] its right-hand side). The
nongquasi-geostrophic component of potential vorticity
dq; is defined by

R (&p 13p\&p &p
4S( r or ) 9z> 4S(ara ) - (44
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We adopt the following normalization conventions
and functional form for the initial anomaly. Let © have
the form

O = 2z¢~+

r 2
22+ (—
Tom

and B a positive constant. This satisfies the conditions

(45)
for

p (46)

" a-0
O—>0 as u—> w0,
O0=0 at z=0
30
—(-9-r——0 at r=0, 47

consistent with mixing having acted only locally and
with the symmetries stated in the Introduction. Fur-
thermore,

30
_8_2 (0’ 0) - 29

so that y¢€(0, 1/2) spans the range of statically stable
initial states in (35). Finally, given the radial scale ro,,
in (46), we set B = 1 without loss of generality, hence
R = 4. Therefore, the initial anomaly is fully pre-
scribed by an amplitude v, a radial scale r,,,, and a
profile steepness parameter 3. More. fundamentally,
perhaps, 7§}, is a normalized aspect ratio for the mixing
anomaly, based upon its radial and vertical dimensions
and the environmental quantities N, and f.

We are also interested in a posteriori measures of
the SCV solution to (40)-(46). Consider a rescaling
of the solution by nondimensional pressure and co-
ordinate scales py;, 1os and zo, such that, after rescaling,

p(0,0)=1
Z(0,0)=V1 - 2R,
R
N2(0,0)=1——>, (48)
5 ( 2B,
where
R,=R%:
r's
zds
B, =B— (49)
Tos .

FIG. 2. Potential vorticity anomaly v "' (g(r, z) — 1) for y = 0.25,
fom = 1, 8 = 1:(a) before adjustment, contour interval (c.i.) = 0.133;
(b) after adjustment, c.i. = 0.133; (c) difference due to adjustment,
c.i. = 0.033.
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are SCV Rossby and Burger numbers. The relations
(48) are obtained from a kinematic SCV model in
McWilliams (1985). Note the bounds

R, < % R, <2B, (50)
for the existence of a SCV of the general shape being
considered here.

An approximate solution to the adjustment problem
may be obtained by taking the limit (R, ¥) — 0 in
(40)-(46); this is the quasigeostrophic (QG) limit.
This has the advantage of simplicity, since the govern-
ing relations become full linear in the fields p, £, and
1, hence (43) can be solved completely at n = 1.

Now consider a particular SCV solution for a mixing
anomaly of intermediate strength (y = 0.25), unit
normalized aspect ratio (7y,, = 1), and Gaussian shape
(B=1).

The g anomaly initially has a minimum at the center
of the mixing region, with a lesser maximum above it
(Fig. 2a). After adjustment, ¢ has a similar pattern
(Fig. 2b), with the largest changes occurring away from
the g extrema (Fig. 2c).

The SCV pressure field has a high value at the core,
with a low above (Fig. 3a). This corresponds to an
anticyclonic circulation about the central high with
much weaker cyclonic velocities about the low (Fig.
3b). The vorticity, though, shows a four center pattern
(Fig. 3c), and the circulation

C(z) = J; rdri(r, z) (51)
is equal to zero.at all z, to within small numerical
errors. The azimuthal transport

T.(r)= Lw dzv(r, z)

is zero at r = 0, has a maximum of 0.012 at r = 0.49,
is zero at r = 1.20, has a minimum of —0.002 at r
= 1.65, and decays to zero as r = oo. All of these
features have a qualitative correspondence with those
of the layered solution in section 2.

The SCV density anomaly has a positive extremum
above the core (Fig. 3d), as in the mixing anomaly
(45), but it also has a weak minimum further above
that, due to sinking motions along the axis (Fig. 3g).
“The SCV stratification anomaly (Fig. 3e) also shows
an additional extremum at (r = 0, z large); for com-
parison, the field in Fig. 2a is the identical quantity
y~Y(N,2 — 1) before adjustment. The Lagrangian dis-
placements (Fig. 3f, g) have much larger amplitude in
the core region of gravitational collapse (downward
and outward); the displacements are smaller in the
peripheral zone of upward and inward motion.

The a posteriori SCV measures (48)-(49) have the
following values:

(52)

R, = 0.181
B, = 0.241
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ros — 1.350
Zos = 0.663
Dos = 0.329.

Thus, during adjustment, the height has diminished
from z;,, = 1, the horizontal extent has increased from
rom = 1, the aspect ratio has changed from 1.00 to 0.49,
and the intensity measure R, is 36% of its upper bound
(50) while the initial intensity vy is 50% of its bound.
The energy ratios are

(KE, + PE,)
—PEm 0.605
KE,
PE, 0.389.

Each of these values can be found within the ranges
spanned by the layered solution as a function of b.
However, it is not possible to simultaneously come
close to all of them for any particular b value.

We now examine the amplitude dependence of ad-
justment, which is not possible in the layered approx-
imation. The variation of SCV parameters with v (0,
0.5) is listed in Table 1. (v = 0.49 is included instead
of v = 0.50, since the rate of convergence of the iter-
ation sequence (43) goes to zero as ¥ — 0.5.) The
most obvious dependence is that the amplitude of the
SCV (e.g., R,) increases with . The other parameters
in Table 1 show somewhat less strong dependences,
and none of the dependences depart too strongly from
a linear function of . Relative to QG, a balanced SCV
has a smaller aspect ratio (i.e., greater gravitational
slump), a larger velocity and azimuthal transport® (n.,
these nondimensional quantities in (32) have been
scaled by factors proportional to v), a diminished en-
ergy loss during adjustment, and a smaller kinetic en-
ergy fraction.

In Fig. 4 the ratio R,/+ is plotted; this is a measure
of the efficiency of SCV generation by adjustment. Here
it has values less than one [assuring the first bound in
(50)] and is a decreasing function of v. Also plotted
is R,/ 2 B,, which appears in the second bound in (50).
This is an increasing function of 4, which is to be ex-
pected since dR,;/dy > 0. Note that it, in fact, does
approach its limiting value of one as v approaches 0.5;
thus the strongest SCV (for fixed r,,, and 8) has the
smallest possible aspect ratio, consistent with static
stability in the core. This limit for R;/2 B, has been
confirmed for many different ry,, and 8 values. There-
fore, we summarize the asymptotic limits in y by

Ri—>0 a v—=>0
Rs 1
ZBS_)I as y—>5. (53)

'In the QG limit, Tr(r) = 0 since v o £ from conservation of 4
in (41) and [;° £dz = 0 from (40) and (42).
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The solution fields show patterns for all ¥ which are
similar to those in Figs. 2 and 3. One notable change
is that the amplitude of the normalized potential vor-

ticity difference (e.g., Fig. 2c) increases approximately .

as v2.

Next we examine dependences upon r,,,, which
spans (0, oo ). (It is appropriate to compare these with
b~'/? variations in the layered problem. ) The variation
of SCV parameters is listed in Table 2. As the radial
scale of the mixing anomaly decreases, the adjusted
SCV increases in both R, and B;, and the shape de-

formation during adjustment increases. Azimuthal ve- .
locity and transport both show a maximum at inter-
mediate (but different) values of ry,,. Energy loss in-
creases as rg,, decreases, such that (KE; + PE,)/PE,,
is proportional to ry,, for small r,,,, and the relative
amount of kinetic energy after adjustment also in-
creases. All of these features occur in the layered ad-
justment solution as well, even the intermediate ro,,
peak of v and Tr extrema in (12), (13), and (19). One
qualitative difference is that KE,/PE; exceeds the value
of one as ry,, = 0, which is prohibited in (21).
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The bounded amplitude measures of (50) are plotted
in Fig. 5. The functional dependence on r,, are strongly
nonlinear. The asymptotic limits are

R,
(27(1—'7)r—"—’2(1"7)
0%

R, — as g, —> 0

R
Bs—>oo,2B -0

s
<

R
R,—~0,——=0
Y as Fom —> O

R,
BS—>0,2BS—>2'Y

(54)
for v # 0. The large ry,, limit is equivalent to no change
in N2 at the core during adjustment when the breadth
of the mixed region becomes infinitely wide; the as-
sociated relative vorticity becomes vanishingly small.
This limit is also found in the layered model as b —
0. The small r,,, limit is equivalent to relative vorticity
dominating vortex stretching at the core (i.e., gs(0,
0)—> Z(0, 0) as rg,, = 0). Numerical verification of
the small ry,, limit is limited by failure of iteration con-
vergence in (43) at finite . The limitation is increas-
ingly severe as vy — 1/2; for example, at v = 0.25 so-
lutions could not be found for ry,,, < 0.04, and at v
= 0.4 for ry,, < 0.22, and at ¥ = 0.45 for ry,, < 0.26.
Nevertheless, for each of these v values, the trends of
R, and B; as ry,, = 0 are consistent with (54).

Among the limits (53)-(54) there is only one ap-
parent nonuniformity; viz.,
lim lim B; = 0.25

rom—>0 v>1/2

lim lim B;= oo.
v=>1/2 Fom=>0
At finite, small r,,,, B, is a strongly decreasing function
of v; for example, B, = 2.36, 1.11 and 0.56 for ry,,
=(0.25 and v = 0, 0.25 and 0.40, respectively. Thus
B; can assume a wide range of values as the double
limit in v and ry,, is approached. In contrast, R, — 1/
2 uniformly in v and ry,.

Variations with v and ry,, are approximately super-
posable, in that the signs of @ (SCV parameters)/dy
do not change with ry,,; the magnitudes, however, tend
to increase as ry,, decreases.

Finally, we consider the influence of the shape of
the mixing anomaly on the resulting SCV. In Table 3
are listed the SCV parameter dependences on 3. What
seems most remarkable is how small the parameter
variations are. Those that are most sensitive are velocity
and transport, which decrease as the radial pressure
gradient diminishes with a smoother profile (smaller
B), and the scale parameters z,, and ry,, which increase
as 3 decreases and the far-field decay rate diminishes.
Least sensitive are the relative energy loss and core
stratification change [R;/2 B;—see (48)] during ad-



1188 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 18
TABLE 1. Amplitude dependence (rg,, = 8 = 1).

KE; + PE; KE,

Y R.\' Bs Zos Tos ~Unin Trmax P] Em PE;

(0] 0 334 746 1.291 205 0 .599 .402

125 .095 285 705 1.320 .210 .006 .602 395

25 .181 241 663 1.350 215 .012 .605 .389

375 257 201 619 1.382 221 018 .606 .385

.49 316 .163 574 1.420 227 .023 .609 379

justment. SCV parameter sensitivities are even less with
smaller v, particularly so in QG.

However, SCV shapes are sensitive to 8. For large
8, with a broad core region of relatively uniform N,,?,
the resulting SCV also has relatively uniform ¢, Z, N?
and q in its core (Fig. 6).

5. A two-dimensional continuously stratified compar-.
ison

As with the layered solutions, we here present two-
dimensional solutions to compare with the axisym-
metric solutions of the previous section.

The nondimensionalization (32), parameter defi-
nitions (33), and mixing anomaly relations (34)-(35)
apply to the 2D continuously stratified problem as well.
The integrals PE, KE and C(z) in (37), (38) and (52)
are changed only by replacing [ rdr with [ dr. Several
relations in (36) and (38), however, do change since
the 2D balance relation is exactly geostrophic:

R
An,=r, As=r+—r-v

op v
v = — N T= —
ar 3 ar
— R _ 2 Ry azp 2
Z=1+78 ¢=2-N 4(araz . (55)
1.0 T T T T
08 R./y -1
06 - -
04 -
02 -~
R./28B,
o 1 ) | i :
(o] 0.1 02 03 ’0.4 05

Y
FIiG. 4. Amplitude dependence of the SCV for r,,, = 8 = 1.

The 2D Lagrangian displacement relation is

#_ _on, (asan azan)_

or oz "\oroz ozor (56)

\oraz oz or
The adjustment problem is again as in (41)-(42), and
an iterative solution method analogous to (43) is used.
The SCV parameter definitions (48)—(49) are altered
only to accommodate 2D geostrophic balance; viz.,

Z(0,0) =1 —%Rm. (57)
Hence the parameter bounds (50) become
R <2, Ryp<2Bp. (58)

A comparison of SCV parameters between 2D and -
axisymmetric adjustment is given in Table 4. In the
axisymmetric geometry the SCV is stronger in vorticity
[smaller Z(0, 0)]; it is weaker in velocity; it has un-
dergone a greater decrease in height (smaller zy;) and
in aspect ratio (smaller By); its relative energy loss is
greater; and its fraction of kinetic energy is greater.
Each of the preceding statements was found to be true
in the layered adjustment solutions (section 3). The
one qualitative discrepancy is that ry,/ o, is somewhat
smaller in the axisymmetric geometry for a continu-
ously stratified fluid, whereas it usually is slightly larger
in this geometry for a layered fluid [n., (13), (28)
and (30)].

The 2D SCV variations with the parameter ry,,, 3
and v are not qualitatively different from the the axi-
symmetric ones. However, the quantitative differences
do increase as 7y,, decreases. This is illustrated in Fig.

7. Note the larger extent and peak amplitudes of the

SCV density anomaly and velocity in 2D. The ampli-
tude peaks in 2D are also located further from the or-
igin, so that the derivative quantities ¥ ~'(N? — 1) and
¢ are weakened near the core relative to the axisym-
metric solutions. This competition between scale and
amplitude is such that —¢{ is larger in the axisymmetric
solution, while —y~'(N? ~ 1) is larger in 2D. (Con-
servation at the origin precludes both quantities being
larger in either geometry. ) Specifically, the core values
for the solution in Fig. 7 with r,, = 0.25, v = 0.4, and
B = 1 are the following,.

axisymmetric:
Z(0,0) =0.332
N,2(0, 0) = 0.604



AUGUST 1988

JAMES C. MCWILLIAMS

1189

TABLE 2. Horizontal size dependence (y = 0.4, § = 1.0).

o KE, + PE, KE,
Tom R, B, Zos Tom ~Vmin Trmax PE,, PE,
2.0 141 092 736 1.212 .191 .008 .808 0.168
1.0 272 .193 .609 1.387 222 .019 606 0.386
0.5 .387 334 487 1.685 207 .026 372 0.763
0.25 445 561 394 2.103 156 022 185 1.343
2D: is much farther from zero for 2D in (59) than it is in

Z(0,0) = 0.531
N,2(0,0) = 0.377. (59)

Analogs to the limiting relations (53 )-(54) also hold
in 2D, modified only by the altered bounds (58):

R,—»>0 as yvy—-0

Rs 1

28,*1 as 'y—>5

R;—>4y, B,—> o0 as ry,—>0

R;

235-»27, B,—>0 as ry,—> . (60)

To approach closely the r,,, = 0 limiting values, though,
requires much smaller values of ry,, in 2D than in the
axisymmetric case; for example, the value of Z (0, 0)

04 i~ /

/
]
,.
o021
]
!
1
/

0 ] 1 1 A
2

o] |

FI1G. 5. Radial size dependence of the SCV for y =0.4and 8 = 1.
Arrows mark the asymptotic limits in (54), and the dashed lines are
interpolations between calculated values and the 7o, = 0 limit.

the axisymmetric case.

6. Energy ratio

There has been considerable interest recently in the
ratio of locally generated kinetic energy to potential
energy locally released during geostrophic adjustment.
This is defined by

_ KE
PE,, — PE,

e (61)

Previous calculations of ¢ have been based upon
various vertically sparse representations (as in the lay-
ered calculations of sections 2 and 3). Van Heijst and
Smeed (1986 ) remarked that the adjustment solutions
of Rossby (1938), Gill (1976), and Van Heijst (1985)
all have the value e = ', and they speculated that this
might, in some sense, be a universal value. Ou (1986)
remarked that a family of solutions with initially weak
density gradients has the value e = ', and e decreases
to ¥ as the initial gradients become arbitrarily steep.
Middleton (1987) obtained solutions in which e is
bounded from above by the value %2 and is a mono-
tonically decreasing function of the ratio of the defor-
mation radius to the dominant horizontal scale of the
initial anomaly; this ratio is equivalent to 4'/? (which
is proportional to rg.,) in the layered representation
and to ry;), in the nondimensional continuously strat-
ified representation. Van Heijst and Smeed (1986)
demonstrated similar behavior (except with an upper
bound of ¥3) where distance to a nearby lateral bound-
ary provides an additional horizontal scale.

The present solutions can also be examined for their
e values. The layered solutions [(22) and (31)] have

axisymmetric:

T-12(2 + T2
CTUFTIHE T

1 _
~>—bp"2 « rom as b~ o0 or 1y >0

312
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TABLE 3. Shape dependence (y = 0.4, ry,, = 1),
R KE +PE,  KE,
ﬂ RJ B.v 2B s Zos Tos “~Umin Trmu PEm PE:
2.00 257 .180 713 565 1.332 282 .031 616 .360
1.50 264 .186 .709 574 1.332 256 .026 613 370
1.00 272 .193 .705 .609 1.387 222 .019 .606 .386
0.75 278 .198 .700 .668 1.501 203 015 .604 .390
2D: R (i.e., 0 and oo ) has been examined to an extreme degree
L s (because of numerical limitations), both the ro,, = o
e=-UY upper bounds and the ry,, = 0 power laws for e in the
2

1
—>2f2—l/—3b‘”3 o rgh as b—» o0 or ro, = 0.
(62)

In both geometries e is bounded from above and de-
creases monotonically with rg.. Note, however, the
differing upper bounds and the differing asymptotic
power laws.

The continuously stratified solutions (sections 4 and
5) have the remarkable property that e is independent
of the model amplitude and shape parameters, v and
8, for both axisymmetric and 2D geometries. Of course,
the confidence with which this conclusion can be drawn
is limited by the numerical accuracy of the solutions,
which 1 believe to be better than 2% in e throughout
the parameter ranges surveyed above. The particular
value does depend on the geometry, however: for axi-
symmetric solutions with ry,, = 1, ¢ = 0.30(0), whereas
for 2D e = 0.33(3). The third significant digits should
be viewed somewhat skeptically: if e truly is indepen-
dent of 4 and 8, then I estimate the uncertainty in e
to be no more than +0.002.

In the continuous solutions e also decreases mono-
tonically with rg,),. While neither of the limits for ry,

02 - T T

T e e -

L(r, o}

20 30

FIG. 6. Vorticity profiles for different 8 values (rom = 1, v = 0.4).

layered solutions (62) seem to be approximately valid
for the continuous ones as well, in both axisymmetric
and 2D geometries.

In summary, the energy ratio e does exhibit a con-
siderable degree of insensitivity to the initial anomaly
profile shape and intensity, and it does vary within a
relatively narrow range as a function of the normalized
anomaly aspect ratio or as a consequence of the ge-
ometry. There seems to be no greater degree of uni-
versality for e than this.

7. Discussion

We have examined solutions of the fully nonlinear,
finite Rossby number (i.e., balanced) adjustment
problem in an axisymmetric geometry. The parameter
dependences upon initial stratification strength (how
well mixed the anomaly is), aspect ratio, and profile
shape have been explored. Comparisons have been
made with solutions in a coarse layered representation,
in the quasi-geostrophic limit, and in a two dimensional
geometry. All of these comparison situations exhibit
qualitatively similar solutions, but in each case the
quantitative differences are appreciable.

SCVs typically have been observed long after their
generation. Their characteristic parameters do not ap-
pear to have universal values, nor do radial or vertical
profiles appear to have universal forms, although these

TABLE 4. A two-dimensional comparison (v = 0.4, ry,, = 1, 8 = 1).

Axisymmetric Two-dimensional

%’ 0.680 0.929
Z(0,0) 0.675 0.814
By 0.193 0.246
R,
25, 0.705 0.754
Zos 0.609 0.732
Tos 1.387 1.475
~Umin 0.222 0.274
KE; + PE;

PE, 0.606 0.759
KE,
PE. 0.386 0.187
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FI1G. 7. SCV density anomaly and velocity fields for v = 0.4, r,,, = 0. 25, 8 = 1. Contour intervals are 0.025.

latter are difficult to measure (McWilliams 1985). It
is possible that this lack of universality develops during
the long lifetimes of SCVs from generation events
which produce more universal forms, although I doubt
it. In any event, we have seen here that variety in the
initial states created by mixing yields variety in the
SCVs. Suggestions of possible universality have been
made by recent observers: Armi (personal communi-
cation) has observed a core region of approximately
constant vorticity in a Mediterranean Outflow SCV,
and D’Asaro (1988a) has observed cores of almost zero

absolute vorticity in Bering Sea SCVs. We have seen
that such states can occur through adjustment under
certain circumstances. An extended core region of
nearly constant vorticity results from a mixing anomaly
of nearly constant N2 (n., this occurs for large 8 values
in our model profile). Zero absolute vorticity at the
SCV core is approached as the aspect ratio of the mixed
region becomes large (n., this is the small 7y, limit in
our profile) and by near neutral stability in the core
(large v ). Large aspect ratio (large compared to f/N,
which is typically small) and near neutral stability are
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not implausible for strong mixing events which arise
from processes not importantly controlled by Coriolis
effects, such as buoyant convection or shear flow in-
stability.

The adjustment problems solved here are highly
idealized ones, because of the assumptions of inviscid,
adiabatic motion, axial and vertical symmetry, uniform
stratification and rotation, and an infinite domain.
However, I doubt that relaxation of these assumptions
would make drastic changes in the resulting SCVs.
Nonuniform stratification or vertical asymmetry will
undoubtedly lead to vertical asymmetry in the SCV,
but it likely will be interpretable mainly as a vertical
coordinate stretching proportional to N(z) (the Sar-
gasso Sea SCV described by Elliot and Sanford 1986
has this property). Nonuniform Coriolis frequency
should not matter miuch to mixing anomalies whose
lateral dimensions are at most a few tens of kilometers.
The present solutions also are valid with a solid, slip-
pery boundary at z = 0, such as might result from
stress-driven mixing at the sea surface or bottom. The
solutions also apply to the situation of negative buoy-
ancy forcing at the sea surface, leading to penetrative
convection, entrainment, and sinking to an interior
level of neutral buoyancy, as long as the final level is
sufficiently deep; if the final level is only a little below
the surface, the idealization of an infinite domain will
be inapplicable. Mixing against lateral boundaries (as
has recently been proposed for SCV generation by
D’Asaro (1988b), although with finite velocity in the
pre-adjustment state) also would have an important
influence on the adjustment process, making it much
more like 2D adjustment, unless the mixed patch is
advected away from the boundary before adjustment
occurs. Modest departures from axial symmetry also
should not have a major influence, because the bal-
ancing circulation, as it develops during adjustment,
will be efficient in symmetrizing the SCV through non-
linear interactions (Melander et al. 1987); this process,
however, is not a wholly conservative one. Weak dis-
sipation is unlikely to produce changes comparable to
those occurring during adjustment, except on very
much longer time scales.

Finally, I remark that the idea, due to C. G. Rossby,
of solving adjustment problems by means of Lagran-
gian conservation relations relating initial and final
states is a very powerful one. It would be quite difficult
to solve the time-dependent problems directly, even
by computational methods. The lack of the latter,
though, leaves several fundamental questions open. For
any new circumstance, there is no certainty a priori of
the existence of a solution of the type sought (evidently
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we have escaped this pitfall here, as have previous in-
vestigators). Nor is there any certainty of uniqueness
in the adjusted state (although I have seen no indication
of multiple solutions here). Finally, even if a unique
solution exists, there may not be any evolutionary
pathway leading to it (although it seems to me plausible
that there often, if not always, would be one).
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