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ABSTRACT

An interpretation in terms of planetary waves is proposed, which sheds light on the dynamics underlying the
large-scale cross-gyre geostrophic flow recently developed in a two-layer ventilated thermocline model.

The cross-gyre communication flow is the result of an arrested nondispersive baroclinic Rossby wave in the
presence of zonal Sverdrup transport along the line of vanishing Ekman pumping. A baroclinic adjustment is
described in which a resting ocean settles to a steady communicating solution.

1. Introduction

The aim of this paper is to give some insight into
the role nonlinear Rossby waves play in the mainte-
nance of large-scale steady subpolar-subtropical cross-
gyre flows found by Pedlosky (1984) and Schopp and
Arhan (1986, hereafter SA) and to propose a process
able to spin up a stratified ocean at rest toward such
solutions.

Pedlosky (1984) and SA have recently extracted
large-scale cross-gyre flow solutions from the inviscid
ventilated thermocline layer model (Luyten et al. 1983,
hereafter LPS). These nonlinear internal modes allow
an exchange of midocean waters at the zero wind stress
curl line, defined as the zonal boundary between the
subpolar gyre where Ekman upwelling takes place and
the subtropical gyre where Ekman downwelling takes
place. Their solutions are entirely specified by imposing
cross-gyre flow, i.e., by applying the appropriate cross-
gyre boundary conditions in their model: either the
correct potential vorticity distribution on the gyre sep-
aration line or on the western boundary, or the spec-
ification of the appropriate outcropping line in the
subpolar gyre. The flow patterns obtained are non-
unique, since the LPS model leads to equally consistent
solutions without communication between gyres.
Therefore, one may wonder whether a solution with
no communication would be more appropriate to the
actual ocean. To remove this ambiguity, one may re-
duce the question to whether a stratified ocean with
no communication would be able, under some time

adjustment process, to settle toward the steady state of -

cross-gyre flow.
This question may be answered by recalling the role
played by Rossby waves in LPS-type steady models.
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Luyten and Stommel (1985, 1986a,b) observed a subtle
interaction between the nondispersive internal Rossby
wave and the mean zonal Sverdrup transport leading
to the appearance of singular points in large-scale lay-
ered models. At these points, the nondispersive Rossby
wave speed is exactly opposed to the eastward mean
zonal current. Due to nonlinear propagation of Rossby
waves, this balance can be applied on a nonzero ex-
tension region along the gyre separation line and will
lead to the internal mode dynamics discussed in section
2: a nonlinear, nondispersive baroclinic Rossby wave
arrested by an opposite-directed zonal mean current.
Further, the crucial role played by the nonlinearity
of the Rossby wave for the existence of these steady
communicating solutions enables us to isolate a simple
mechanism—nonlinear baroclinic adjustment—which
allows the ocean to evolve from a resting state toward
the cross-gyre flow regime. The time scale on which
the ocean reacts to perturbations will be given by the
propagation of the long baroclinic Rossby wave. Fixing
only a time scale is not sufficient to isolate a tractable
problem, the latter being dependent on the spatial scale
relative to the internal Rossby deformation radius.
Luyten and Stommel (1986¢) studied such transient
regimes by considering planetary spatial scales (of
about the width of an ocean basin ) and therefore kept
only the nonlinear steepening term of baroclinic
Rossby wave propagation. The importance of this term
comes from the fact that isopycnal surfaces can present
significant vertical excursions. Thus, the wave feels
layer thickness variations and changes speed while
propagating. Since they need internal Rossby wave
lengths comparable to the width of an ocean basin, the
solutions proposed by these authors cannot account
for smaller structures, which seem to be more respon-
sible for oceanic variability. In this study, we consider
smaller spatial scales of about 200 km, but nevertheless
greater than the internal deformation radius, in order
to keep the nonlinear character of wave propagation.
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This scale is that of “intermediate regimes” or “IG
equations” (Charney and Flierl 1981; Williams and
Yamagata 1984), in which the dispersive term due to
local variation of relative vorticity is of the same order
as the nonlinear propagation term. This dispersive term
prevents the waves from breaking, a possibility not al-
lowed at very large scales. Likewise, coherent isolated
structures can appear in the form of solitary waves in
this dispersion/nonlinearity balance (Charney and
Flierl 1981).

In section 3a, equations for the baroclinic and baro-
tropic modes are derived in a two-layer model. The
interface (or baroclinic mode) presents an equation of
regularized long-wave type (Benjamin et al. 1972) in
a variable mean zonal current, whereas the surface
evolves under the effect of dispersive Rossby waves,
remaining nevertheless coupled to the interface equa-
tion. In sections 3b and 3c¢, this dynamics is applied to
the zero wind curl line, Either communicating internal
modes or solitary waves are obtained according to the
signs and forms of perturbations initially imposed.

2. Cross-gyre communication condition

a. Equations

The physical model used is an inviscid two-layer LPS
model above a resting lower ocean, as shown in Fig.
1. Layers 1 and 2 are in motion and layer 3 is at rest;
yw (or fw, f being the coriolis parameter) is the line of
vanishing wind stress curl taken zonal throughout this
study and thus defining the separation line of the sub-
polar and subtropical gyres, and y,(x) [or f;(x)] is the
outcropping line of layer 2 in the subpolar gyre. The
forcing, i.e., the wind stress curl we(x, y) acts only on
layers in contact with the sea surface. Since the flow is
geostrophic hydrostatic and incompressible, the ve-
locities in the ventilated region (see Pedlosky 1987)
are given by
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FIG. 1. A schematic meridional cross section of the model. The
outcropping latitude y;(x) is located north of the zero wind-stress
curl line yy. Layer 3 is motionless.
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where £ = hy + hy and v, = g(pn+1 =~ pu)/po (n =1,
2). Vertical integration of the vorticity equation Bv,
= f(dw,/9z), and use of (2.1b,d ), lead to the Sverdrup
transport equation

2f?

N PP =2 =2 (D2
6x[h, +72h|] Bva WEg x(Do ), (2.2)

where
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Integration of (2.2) from the eastern wall taken as a
meridian x = xg, where %; and ¥, vanish, then yields
B+ Dk = Do, y) + B 24)
2
where the constant Hy? is equal to A%(xg) or [A%(x£)
+ (v1/72)M%(xg)], depending on whether y,(x)
reaches the eastern boundary [4;(xg) = 0] or net,
[A(xg) # 0] and h(xg) and h,(xg) are constant in
the y-direction.
Conservation of potential vorticity in layer 2,
uz - V(f/hy) = 0, added to the fact that the deeper layer

3 is at rest, implies that lines of constant potential vor-
ticity are lines of constant 4, i.e.,

flhy = G(h). 2.5)

The function G(#) can be determined at the outcrop-
ping line y; where h, = h and f = f}, and is formally
given by

S fn(h)
- o 2.6)
. The depth of layer 1 is then related to /4 by
)
h=(1—-——1h. 2.7
! ( A0 @7

Using (2.7), (2.4) becomes

2.7 f
B+ Y2 (l fi(h)
Once f1(h) is given, the solution in the ventilated
region can be computed by relations (2.7) and (2.8).
Therefore, to solve the problem, one needs to know
the potential vorticity along the outcropping line. This
is achieved if the outcropping line f} (%) is prescribed,

2
) h?=Do? + Hy’. (2.8)
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the depth of layer 2 along this line being determined
by the Sverdrup constraint and the eastern boundary
condition in the one-layer moving region. In the com-
municating solution of SA, this line y;, was not pre-
scribed, and f;(4) was determined from another con-
dition, namely cross-gyre communication.

The model presented will be used with the simpli-
fying assumption that density jumps between layers
are equal v, = v,.

b. Necessary condition for cross-gyre flow

Schopp and Arhan (1986), after inserting (2.7) in
(2.2), have shown that the Sverdrup constraint (2.2)
can be rewritten as

LY f [, _f lan
"”2[”[1 fx(h)]+hf12(h)[l f.(h)] dh]
=;§WE; (29)

and that communication, i.e., v, ¥ 0 at the line yy
where wg = 0, requires the term in brackets to vanish
along this line yy.. Thus, they defined the communi-
cation condition as

ST [ [, __f ldfi_
f,(h)]”’fﬂh)[’ fx(h)]a’h 0

at f=fw. (2.10)

Integrated, this first-order differential equation leads
to the unknown function f,(4):

fo_ _ [H_oz _ 1]"2,

1+[1-

(2.11)

which is valid for f;y < f and (HO/VE) < h < H,. They
arrived at the conclusion that imposing communica-
tion uniquely determines the function f;(#) and con-
sequently, they were able to compute a deep northward
cross-gyre flow outcropping in the eastern subpolar
gyre. In their solution, SA assumed that (2.10) can be
integrated up to the eastern boundary, i.e., that the
internal mode extends up to xg. Should this not be
true, i.e., should v, vanish over some finite region as
we approach the eastern edge of the gyre, then the out-
cropping line could not reach the eastern boundary
[i.e., i1 (xE) # 0] and would be forced to bend north-
ward, following a constant D,? line. East of this line
layer 2 would be at rest. This would then lead to the
existence of a strong, warm upper-layer northward flow
around the basin confined east of the communicating
gap. Figure 2 illustrates this case.

As will be seen in the next section, the mathematical
condition defining communication represents a non-
dispersive internal Rossby wave arrested by a mean
zonal current.
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FIG. 2. Schematic circulation patterns for the case in which cross-
gyre flow does not extend up to the eastern boundary: (a) upper-
layer flow, (b) deep-layer flow, (c) resulting characteristics.

c. Physical interpretation of the internal mode

The main characteristic of the above-mentioned so-
lution is that the line fi(4) [or G(h)] has not been
specified a priori, but rather is a result of the dynamics
itself due to imposing cross-gyre communication be-
tween subtropical and subpolar gyres, i.e., by canceling
the term in brackets in (2.9) along line yy-. In spite of
plausible results obtained for the eastern North Atlantic
circulation by SA, this mathematical formulation of
communication requires a more detailed examination
of the physical content. This is the aim of this section.
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1) CONDITION REQUIRED FOR COMMUNICATION

To make the physical meaning clearer, we compute
the mean zonal velocity # = [hju; + haua]/h. Using
equations (2.1a, ¢) and (2.7), the following value is
obtained for u:

__bBr AN A A
u 7 [l+(1 f1) +hf12(1 fn) dh]
Oh Bvaf _f\R
x6f+f(l fl)fl‘

Applying condition (2.10) to (2.12), i.e., canceling the
term in brackets, implies the following equality:

(2.12)

372( f)h
= — l—— —— t - ,
S L) A A
which by means of (2.6) and (2.7) leads to
_ By by
u—f2 o (2713)

The right-hand side of (2.13) is the nonlinear phase
speed ¢ of the nondispersive internal Rossby wave only,
so the communication condition can be simply ex-
pressed as a baroclinic long Rossby wave arrested by
an eastward mean zonal current:

u=—c. (2.14)

This turns out to be the critical condition of Rossby
repellor in the characteristic equation of Luyten and
Stommel (1985, 1986a). In a two-layer model over a
resting ocean, they have shown on the one hand, a
region in which information comes from the eastern
boundary (the internal Rossby wave phase speed being
greater than the mean zonal current), and on the other,
a region in which the characteristics come from the
western boundary layer (the mean current this time
being greater). At yy, both regions are separated by a
point they have named Rossby repellor. Since condi-
tion (2.14) applies to one point only of line yy in their
model, they have included interfacial thermal fluxes
to achieve water transfer from one gyre to the other
(Luyten and Stommel, 1986b). In contrast, in the
aforementioned solution as well as in that of Pedlosky
(1984), condition (2.14) continuously applies along
line yy with wind forcing only. Recall that Rhines
(1986) has also shown in a two-layer unforced model
that condition (2.14) is required to generate meridional
currents.

The reason the internal mode can exist and possess
a zonal extension is linked to variations of 4, and A,
which aliow the Rossby wave phase speed ¢ to vary in
relation to longitude, so as to exactly balance the west-
ward increasing mean zonal current proportional to
dD,?/3y. However, this balance cannot go on west-
ward indefinitely. The fact that the Rossby wave speed
exhibits a maximum and that the internal mode must
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satisfy the Sverdrup relation A% + h;2 = H,? together
impose a constraint on the choice of #, and Ah,, and
therefore limit possible values of phase speed c. Re-
placing 4, and A, by their values in terms of /2 by means
of the Sverdrup relation, the latter can be written
_ ke _Bva[(H =)' b (Hy? — k)
Hy*  f? H, H, )

This relation is illustrated in Fig. 3. The expression /c
shows a maximum for a value 42/ Hy2 of (2 + V2)/4,
corresponding indeed to that obtained by SA, which
in their model determined the western boundary of the
ventilated region along yy.. The branches of this curve
to either side of the maximum illustrate the two possible
solutions of the internal mode (northward flow and
southward flow in the deeper layer). The arrow in Fig.
3 indicates the variation of wave speed in the westward
direction for a typical applied wind forcing, for which
the Sverdrup mean zonal flow increases westward. For
both solutions, the western limit is located at the lon-
gitude where hc reaches its extremum and beyond
which it can no longer equal the zonal transport, which
increases westward. It can be noticed in this region that
u > —c, and therefore, that information carried by the
Rossby wave propagates eastward. The solution can
also present an eastern boundary, such as the one de-
veloped by Pedlosky (1984). Since the boundary con-
ditions A, (xz) and h,(xg) are chosen as nonvanishing
on the eastern boundary, the wave speed ¢ at x¢ will
be different from zero while u vanishes so that the ven-
tilated region can only exist from the longitude where
u reaches the critical value ¢(xg). This more general
case determines a second region at yy, where infor-
mation comes from the eastern boundary: ¥ < —c,
contrary to the northward solution developed in SA,
where ¢ vanishes at x g (h; being forced to stay zero at
Xg) and is able to balance the mean zonal current up
from the eastern boundary {u(xg) = 0]. In Fig. 3,
boundary values of 4 equal to Hy and (2'/2/2)H,, h

Hy?

-hec
H|.

0.1+

0.

0.6 A 08

gy, T

FIiG. 3. Curve representing the Rossby phase speed —hc/ Hy? [unities
—(v28/1%)7"] as a function of the depth #/H,. The maximum ob-
served divides the curve into two branches, where each represents
the possible values for the two cross-gyre solutions in SA. The right
branch is the current to the north in the deeper layer; the arrow gives
the westward direction.
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enabling communication, can also be noticed. Like-
wise, singularities observed in the model come from
the nonlinear Rossby wave speed ¢, presenting a shock
wave on the western boundary (intersection of char-
acteristics).

We have shown that all internal mode properties
along the latitude of the zero wind curl line can be
interpreted as an arrested wave from the sole relation
(2.14). Let us now try to extend this formulation to
the whole ocean basin.

2) CHARACTERISTIC EQUATION

We again develop the characteristic equation of
Luyten and Stommel (1986a) and apply it to both

gyres.
Conservation of potential vorticity in layer 2 can be
rewritten by means of (2.1a, b) as

J(hy, h) +§hzhx =0,

or, knowing that 4 = A, + h,, as
hxhyy — hyhyy + 8/ fhah, = 0, (2.15)

where the subscript x or y represents partial derivation.

Multiplying (2.15) by 2A, and using equation (2.4)

yields

3D,?
dy

2_5 2f2WE
f B2

In a more condensed form, the characteristic equation
(2.16a) becomes

[hc+ Ulhy+ Vh, =0, (2.16b)
where U = —v,/(2f)D}, and V = f/Bwg represent
zonal and meridional Sverdrup transports, and

- _Br2luh
f* ok
is the nondispersive internal Rossby wave speed.

On yy, where the meridional Sverdrup transport V'
vanishes, equation (2.16b) reduces to

hyhy —

]hx + h,=0. (2.16a)

oh
+Ul—=
[he + U] o 0, (2.17)

whose two possible solutions are given by

® 6h/dx = 0 or h = constant zonally, i.e., a zero
meridional transport in layer 2 and therefore in layer
1, thus no communication in this case.

® hc+U=0o0rc=—-U/h=u,ie., communicating
solution obtained in the preceding paragraph.

In addition to a solution in which the gyres are au-
tonomous, this equation contains the internal mode
as a particular solution. Since it is more general, (2.16)
allows us to determine the characteristics of the whole
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basin. In fact, fixing values of the thicknesses # = Hj
and A, ~ 0 on the eastern boundary and # = Hy on
the western boundary, i.e., values giving the northward
flow solution in SA, makes it possible to solve (2.16)
easily, providing the characteristic trajectories (see
Luyten and Stommel 1986b). Let us recall that only
one condition can be imposed on the western bound-
ary, since the Sverdrup transport is determined on the
whole basin by the knowledge of eastern boundary
conditions, and thus A, must satisfy the equation 4,2
+ HW2 = D02 + Hoz.

Figure 4 shows the characteristics emanating from
both boundaries for the circulation developed in SA.
These characteristics also represent lines of equal po-
tential vorticity and, consequently, the field on which
Rossby waves propagate in this two-layer model; three
distinct regions can be observed:

e a region dominated by the eastern boundary,
where ¢ > —u;

¢ asecond region dominated by the western bound-
ary, where ¢ < —u in the vicinity of latitude yy and ¢
> —u more southerly, (recall that layer 2 is at rest in
these two regions);

e and a third region located between these two in
which no information can come from either the eastern
boundary or the western one and which corresponds
to the ventilated domain of the northward commu-
nicating solution of SA.

05 L L
0. Qas

FIG. 4. Characteristics field of the deep northward cross-gyre so-
lution in SA (realized with a model borrowed from H. Stommel).
One can observe the two regions influenced by eastern and western
boundaries. The ventilated region accepts no information from either
the eastern or the western coast, but from the line yy; arrows indicate
information flow direction. (Basin width @ = 6000 km; f = 1.11
10™*s7" v, = 0.01 ms™ we = —wy sin(wf/fiw); Wo = 10 cm s
Hy = h(xg) = 1200 m; hy(xg) ~ 0; Hy ~ 1150 m.)
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Since knowledge of the conditions on both eastern
and western boundaries alone is insufficient to deter-
mine characteristics of the ventilated region, additional
information is required. The origin of this information
is the separation line yy- of both gyres. In fact, according
to (2.16), information propagates northward from yy,
in the subpolar gyre (V being positive ) and southward
from this line in the subtropical gyre (V being negative).
However, the characteristic velocities are equal to zero
along yw, and no information can escape from this
line. It can nevertheless be anticipated that simple per-
turbations generated along this line will propagate to-
ward both gyres, and the observed steady circulation
can be adjusted. The information-generating role of
yw was already implicit in the internal mode formu-
lation, where the communication condition applied to
yw imposed circulation in the whole basin and fixed
above all the subduction line localization.

Figure 2 schematically shows the characteristics for
the case in which the cross-gyre flow does not extend
up to the eastern edge of the basin. An eastward regime
along the gyre separation line and in the subpolar gyre
is seen.

An objection has often been raised to the specifi-
cation of a subduction line in the subpolar gyre, where
the vorticity distribution is determined at the course
end, i.e., where the fluid column reaches the surface.
Such a specification, it is claimed, requires a priori
knowledge of the whole past history of this column.
This objection is no longer justified when it is the in-
formation coming from yy,, which is largely responsible
for the observed circulation. Likewise, the vorticity
distribution applied along the eastern boundary in the
second example of SA can be the result of the infor-
mation carried by Rossby waves toward this region,
thus enabling junction of current lines to the eastern
boundary. '

The qualitative contribution of the Rossby wave
concept in this study, interpreting circulation in the
Atlantic as a wave arrested by a current, enables us to
account for the importance of the separation line of
both gyres, which happens to be the place where in-
formation can be generated and propagated toward the
inside of each gyre. The next section will propose a
time-dependent model, using this wave notion to adjust
the ocean to the steady circulation obtained previously.

3. Spinup toward communication

In this section, a time-dependent mechanism is pro-
posed for which the ocean evolves from a stationary
regime (where both subpolar and subtropical gyres are
independent) to the preceding communicating steady
state, under the effect of perturbations generated on
the eastern and western basin boundaries.

a. Equations

Time introduction by means of internal long Rossby
waves propagation in a two-layer model above a LPS-
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FI1G. 5. Vertical section of the two-layer model.

type resting ocean would require that we solve simul-
taneously two nonlinear coupled equations represent-
ing both baroclinic modes, the barotropic mode being
given by the Sverdrup transport. To disregard this cou-
pling, a single two-layer model with a flat bottom will
be considered, which contains only one of these baro-
clinic modes.

The vertical structure of this ocean is schematically
represented in Fig. 5. ,

The dynamics is assumed to be inviscid and in hy-
drostatic (H/L < 1) and geostrophic (e = U/ fL < 1)
balance. The velocities are then given by

Sfoi =~ ghy (3.1a)
Juy =~ —ghy (3.1b)
Sv2 =~ ghye + g(Ap/p)hox (3.10)
S = —ghy — g(Ap/p)hyy, (3.1d)

where Ap/p = (p2 — p1)/po, B = hy + h and where
the subscripts x, y and ¢ represent partial derivations.
The meaning of various quantities is illustrated in
Fig. 5.

Vorticity equations for both layers are given by

Layer 1:
a oh
h ?E; + hu, - V& + hlﬁvl —thl
— fu; - Vhy = fue, (3.2a)
Layer 2: :
oh
o 24y Vi + hafioy — [ = - Vs = 0,

(3.2b)

where wg represents the Ekman pumping, and §;
=k-V X u; and & = k- V X u, are the vertical com-
ponents of the relative vorticity of each layer. Assuming
spatial scales smaller than the earth’s radius, 8L/f < 1,
these components become:

& =(g/f)V*h and
£ = (g/f)V[h + (Ap/p)h:]. 3.4

Equations (3.2) will be nondimensionalized, and
asterisks will be used to represent dimensional quan-
tities.
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Since the dynamics is geostrophic, thicknesses can
be parameterized by (see Pedlosky 1987):

h* = H h=H[l + ¢Fn)
h$ = H hy=H[Hy/H + eFp(H H2/H?*)n,] (3.6)
hY = h* — h¥,

where 7 and #, are surface and interface displacements,
F = (fL)?/(gH) = L*/Lg? is the external Froude
number, Lz = (gH)'?/ f, the external deformation ra-
dius, Fp = (fL)?/(g'H\H,/H) = L?/ L,? the internal
Froude number, g’ = gAp/p, the reduced gravity, and
Ly = (¢'H\H,/H)'?/f, the internal deformation ra-
dius.

The scaling has been performed so that n and n, are
of the same order O(1).

The time scale has been chosen to give order 1 prop-
agation of long linear baroclinic Rossby wave:

Bo
F,’ (3.7

~le

i.e., linear phase speed BLy%/(wL) ~ O(1), where 8o
= B L/ [ represents the planetary parameter and  the
inverse of a time-scale 77! (frequency).

The nonlinear propagation term, or steepening term,
is of order ¢ Fp, and is small at the spatial scales used
(~200 km, By < 1). This term will nevertheless be
kept (spatial scale greater than the internal Rossby ra-
dius, i.e., Fp > 1), since it allows the communicating
solution to exist by being opposed to the mean zonal
current variation. Notice that this term is neglected in
quasi-geostrophy, where isopycnal surfaces cannot have
significant vertical excursions and, therefore, do not
allow Rossby waves to feel the layer thickness varia-
tions. At these scales, the dispersive term, of order Fp, !,
is of the same order and balances the nonlinear term
in case the wave should present steepening. This bal-
ance is characteristic of solitary wave propagation. The
spatial scale will thus be determined by the balance of
both terms, the term in the e F, being nevertheless able
~ to dominate:

Fp_l < eFp.

(3.8)

Charney and Flierl (1981) have already shown the
existence of solutions that propagate in the ocean in
the form of solitary waves at these scales, when the
nonlinear advection term is of the same order as the
zonal dispersion term. Notice that this balance would
require very low currents for large scales compared to
the internal deformation radius, since dispersion de-
creases at large scales (u ~ fLp*/L3); it is for this
reason that nonlinearity is allowed to dominate
in (3.8).

To filter out the nondispersive barotropic mode, we
suppose further Ap/p < Fp~'. This is essentially an
instantaneous adjustment, at order 1, of the steady
Sverdrup regime.
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By adding (3.2a) and (3.2b) and considering only
terms of order ¢ F, we obtain

Ny + Hy/ Hnox + eFpH Hay/ H*nomax
+ Fp~'V?[n, + Hy/ Hny) — €/ Bo{ H\/HJ(V?n, 1)

+ Ho/ HITV?(q + m), 1 + m]} = we/(efofH).
(3.9)

Substituting this barotropic mode into the vorticity
equation (3.2a) of layer 1, an equation for interface
displacement 7, or baroclinic mode is obtained:

o — M2x — €Fp(Hy — Ha)/ Hnamax — Fp~'Viny
— eFpwe/(eBofH)n, ~ €/BoJ(Vn, 1)
+ ¢/BoJ[V3(n + m2), 1 + m] — €Fp/Bo (2, 1)
= we/(efofH)). (3.10)

A term in (e Fp)? H, H,/ H*n,n,, has been neglected
in this equation, (e Fp) being assumed to be small. This
quadratic term is a higher order term in the baroclinic
Rossby wave phase speed and will be taken into ac-
count subsequently in order to bring to the fore both
internal modes observed in the steady communicating
state. We might also note that the nonlinear part of
the phase speed can be canceled in case H, = H,, the
Rossby wave phase speed possessing an extremum. But
in view of the thermocline position in this two-layer
model, as well as in the actual ocean, H, < H,, this
possibility will not be reached. It is sufficient that (H,
— H,)/H>» ¢Fptojustify neglecting the 1,2 term noted
above. Nevertheless, in LPS model where there is a
deep layer at rest, both surface layers can present similar
thicknesses and satisfy the extremum condition of
Rossby wave propagation velocity (this extremum
being exactly that obtained in the internal mode of
Fig. 3).

Since this equation is too complex, an additional
approximation will be made concerning the elimina-
tion of relative vorticity advection. This is achieved if

6/60<<6FD. (3.11)

Notice that this is the most constraining approxi-
mation for all derived equations.

Integrating the barotropic mode (3.9) with respect
to longitude x, the free surface 5 can be expressed in
terms of n,:

=_H2 — ¢F HIHZ 2
n _H n2 D 2H 2
1 H
“5 . vz(n, + ?2 nz,)dx’ + Do + K(3, t),

(3.12)
where

Dy? = _—J; we/(eBofH)dx'
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and K(y, t) is an integration constant that depends on
the eastern boundary condition and thus will be sup-
posed constant (i.e., no flow through the boundary).

The term represented by the integral in (3.12) is at
maximum of order Fp™! inside the fluid that is of in-
terest, but it can nevertheless become significant on
the western boundary where it is responsible for the
formation of boundary layers. Also notice the appear-
ance of the ventilated thermocline Sverdrup func-
tion Dy2.

Substituting this value of » in (3.10) and neglecting
any term in ¢/ 8y, we obtain

N — Max — €Fp(Hy, — Hy)/ Hnompy — Fp 'V,
— eFpwg/(eBofH)n, — eFp/BoJ(n2, Do?)

= we/(eofH1), (3.13)

where

® 1, — 12, represents the nondispersive linear Rossby
wave propagation;

o —c¢Fp(H, — H,)/Hnmyy, the nonlinear contri-
bution responsible for steepening and shock wave for-
mation;

e — Fp~'V?y,,, the dispersion that enables steepening
stabilization and solitary wave propagation;

e —(eFp)/BoJ(n2, Dy?), the barotropic effect re-
sulting when wind introduces a mean zonal current;

o the right-hand side is the wind forcing, which acts
directly on the fluid column.

¢ the remaining term in %, is the correction of the
direct forcing for nonsmall 5, values.

Equation (3.13) contains only #n, and can therefore
be solved easily given initial conditions and boundary
conditions. Once 7, is determined, 7 is obtained by

Nx + Fp™'VPn, = —Fp 'Hy/ HV 1y, — Hy/ Hupy
— eFpH Hy/ H*nomox + we/(eBofH), (3.14)
or ‘
nex + Fo 'VZnp = we/(eBofH),

where ng = n + (Hy/ H)ny + e FpH Hy /(2 H?)1,° rep-
resents the nonlinear barotropic mode, which evolves
under the influence of dispersive Rossby waves and
which is forced by the wind. Notice that the barotropic
mode is decoupled from the baroclinic mode.

Since communication is of interest, we shall apply
(3.13) and (3.14) to the zero wind curl line.

b. Regularized long-wave equation (RLWE) along yy

In order that line yy- be a place where information
can be generated and spread toward both gyres, it is
essential to reach the communicating steady solution
along this line from an ocean at rest or from a flow
pattern in which both gyres are separated. We apply
(3.13) and (3.14) at yw where Ekman pumping van-
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ishes. We shall also suppose that the scale in y is larger
than that in x, which will allow neglect of the y com-
ponent dispersive term and simplify resolution, al-
though this approximation is not very realistic. This
gives

N2 — Nax — €Fp(Hy — Hy)/ Hnonax
— Fp 'myse — €Fp/BoDdymax = 0, (3.15)

where D3 y represents Sverdrup zonal transport.
The we will be chosen as a linear function of latitude:

We = =wo(l = Yu/Yw),

which is indeed the approximation of a sinusoid when
y tends toward yy, and is therefore representative of
the choice of wg in SA. Thus, we have the following
expression for the Sverdrup function:

Do? = wo/(eBofH)(1 = ¥)(x& — X),

with xz = 0 and y = y*/ yy . The zonal Sverdrup trans-
port, which also represents the mean zonal velocity in
this nondimensionalization, is given by

~Dj, = —wo/(eBoH)x, x<0. (3.16)

Equation (3.15) for the baroclinic mode 75, can there-
fore be rewritten as

N — [1 + Evmp + UxInax — Exmaxe =0, (3.17)

where E, = eFp(H, — Hy)/H; E; = Fp™'; U = Fpwy/
(Bo>fH).

With U = 0, (3.17) is the regularized long-wave
equation (RLWE) or “BBM equation”, analyzed in
detail by Benjamin et al. (1972), and accepts solitary
waves as solutions. Its structure is similar to the KDV
equation (Korteweg and de Vries 1895), differing only
in having a dispersive term of the form 7, rather
than 7,,.,. For more details on the solutions and prop-
erties of these equations, the reader is referred to Whi-
tham (1974) and Dodd et al. (1982). Let us recall,
however, that if a system governed by such dynamics
is disturbed, the perturbation evolves toward a solitary
wave train. Equation (3.17) presents an additional
term, which is a function of longitude and is due to
the mean zonal current —Ux. The effect of this term
is to make the medium in which waves propagate in-
homogeneous. It represents a damping term for the
baroclinic mode, which can be seen with the following
change of variable: = | + E 9, + Ux leading to

Vi — YWx — Exfna = —UY.
The free surface equation will be given by
N + Exfiye = H2/H
X [—Eamaxa — M2x — eFpH1 [/ Hnonax],

and its evolution will be governed by dispersive baro-
tropic Rossby waves, with dispersion relation w

(3.18)
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= —(Ek)™!, or dimensionally w, = —8/k, k being the
wavenumber.

The most significant remark to be made concerning
Eq. (3.17) is that it contains the communication in-
ternal mode as a stationary solution: ¢ = 1 + Ejn,
= —Ux (dimensionally ¢ = —u) or

n=—(1 + Ux)/E,, (3.19)

and in consequence, the steady free surface of this state
will be given by (3.18):

n = (Hz/ HYU/E){[l — H,/(H\ — H2)]x
—Hl/(Hl—Hz)U/2x2}+K, (3.20)

where K represents an integration constant given by
the eastern boundary conditions.

The objective to be reached is to adjust this state by
perturbing the other steady state, which is also a so-
lution of (3.17) and in which 7, is constant, i.e., both
gyres are independent.

¢. Numerical resolution—application

The application will concern an ocean whose inter-
face along the zero wind curl line has no zonal varia-
tion. Perturbations will be performed on the eastern
and western boundaries of the domain considered by
specifying different thicknesses. Nevertheless, com-
munication can exist in the basin only for a particular
choice of parameters imposed by the presence of a
communicating window in the basin. This choice
amounts to assuming the existence of a region where
information comes from the western boundary (u
> —¢) and one where it comes from the eastern
boundary.

1) CHOICE OF PARAMETERS

According to the analysis in paragraph 3a, spatial
scales must satisfy the following conditions:

Bo<1; Fp'<eFp, Ap/p<[eFp, Fp'l;
Fp> 1; €/Bo<[eFp, Fp~'l.

A possible choice that would satisfy these conditions
is Lp = 50 km and L = 500 km with velocities of the
order of 0.5 cm s™!, hence:

Bo~10"% €Fp~ 1073 Ap/p ~ 1073
Fp'~ 1072 (Fp ~ 100); ¢/Bp ~ 10‘3; e~ 1074

When the equations’ validity conditions are all sat-
isfied, the communicating regime still needs to be lo-
cated in the basin. Knowing that U = Fpowy /(8o fH)
~ 0.025 with wy ~ 10™* cm s™' and H ~ 4000 m,
the communication window will be situated out of the
basin. As a matter of fact, this window is situated at
the longitude where 7, ~ 0, which, by means of (3.19),
gives as localization x = —1/ U ~ —40 or dimensionally
Xy = Lx ~ 20000 km.

RICHARD SCHOPP

1249

For this processes study, we shall violate the most
restrictive constraint (3.11), which neglected the rel-
ative vorticity advection, and we shall take for spatial
scales:

L =200km, Lp =20 km, 3.21)

with H = 4000 m, H, = 400 m and H, = 3600 m,
hence:

Bo ~ 0.04; eFp ~ 0.1; Fp~' ~ 0.01 (Fp ~ 100);
Aplp ~ 1073 e~ 1073 /By ~ 0.02.

Since U ~ 0.15 with these values, the window will
be situated at a longitude of x, = 1300 km, a value
which, this time, is indeed included in the basin.

The window width, which is also a significant char-
acteristic of the problem for a given perturbation Az,
will be given by (3.19):

Ax = eFp/UAn, ~ 1300 km (An, ~ 10).

The time scale is given by (3.7), i.e., T= Fp/(Bof),
of the order of T ~ 0.8 year (f ~ 10~ s™!), with the
aforementioned choice.

2) NUMERICAL MODEL AND TESTS

The equation to be solved numerically is Eq. (3.17)
for the interface. Once the communicating stationary
regime is achieved, the surface will be given by (3.20).
The transient regime (3.18) for the free surface will
not be solved.

The numerical scheme used is derived from a three
time-level finite differences scheme developed by Eil-
beck and McGuire (1975). Because of these three lev-
els, it is necessary to apply a two-level scheme to the
first time step, which is chosen as in Peregrine (1966).

Two simple applications will be proposed in preview.
They will be useful on the one hand for testing the
model and on the other for illustrating what will happen
in the more complex case when the zonal flow —Ux is
different from zero and is a function of longitude.

(i) Solitary wave (U = 0). A solitary wave is a so-
lution of equation (3.17) with U = 0. The transfor-
mation

6=x-Ct, a( )/ =0, (3.22)

with 7, 724 and n.4 tending to zero at infinity, leads
to the solution

’=t,

— E\Namax .
M2 = M2max sechz[[#] (x— Ct)] , (3.23a)

with

C = —1—(E/3)72max, (3.23b)

which keeps its form while propagating with veloc-
ity C.

This solitary wave solution exists only if the term
under the square root is positive, i.e., when the non-
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linear effect can be balanced by the dispersion. For the
case E, < 0 (H, < H;), E, always being positive, 7,
must satisfy 7amax < 0 (C < —1) OF Namax > —3/E, (C
> 0); this last condition must be rejected, since the
amplitude necessary for eastward propagation is too
large.

Notice that eastward propagation is only possible if
the perturbation exceeds a certain minimum value
| —3/E,|. This eastward propagation is possible in the
BBM equation but not in the KDV one, because of
the time derivative in the dispersive term.
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If, on the contrary, this wave were propagating
(eastward) in a positive constant zonal flow U, solution
(3.23) would still be valid, but the velocity C would
be given by

C= -1+ U= E/3%max, (3.24a)
and eastward propagation with small and positive per-
turbations would be possible, since the nonexistence

interval of this solitary solution is shifted to another
range of possible 7, values, the zonal flow entailing an
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eastward transport of these waves. This interval for the
case E; < 0 is given by

Mmax > 3(1 — U)/(—E;) and  nmomax > 0, (3.24D)
or
Momax < 3(1 = U)/(—E;) and momax <0. (3.24c)

Now we test this solitary wave in the numerical
model by disturbing the interface at the initial instant
by a deformation given in (3.23). A maximum am-
plitude 72max = —10 has been taken with the choice of
preceding parameters. Figure 6, where 1, is represented
as a function of longitude, illustrates this wave prop-
agation through a basin of width 4000 km. The east-
ward propagation, shown at two equal time intervals
on this figure, keeps the wave form at constant speed,
as expected by theory, and provides validation for the
numerical model used. ,

(ii) Heaviside perturbation (U = 0). We test a sec-
ond case in which an interface level difference is im-
posed initially at the eastern boundary and remains
.imposed constant in time on'this boundary. In this
type of equation, any perturbation satisfying (3.24) in-
evitably breaks into solitary waves; therefore, the initial
condition is chosen negative for these waves to appear.
Figure 7 represents the time evolution of this front im-
posed on the eastern boundary. The appearance of a
solitary wave-train can effectively be observed, with
decreasing amplitudes propagating westward. During
propagation, these waves will break away from the front
and become isolated entities, each propagating at its
own velocity given by dispersion relation (3.23b), the
largest ones at the edge of the front propagating faster.

3) COMMUNICATING SOLUTION WITH DEEP
' NORTHWARD FLOW

The parametric choice in the preceding section, im-
posed by the presence of a communicating window in
" the basin, will be applied with the variable mean zonal
flow function of x. To perform the stationary state
adjustment, however, perturbations on the initial state,
in which the interface is horizontal, must first be spec-

ified. In doing so, the northward flow solution obtained
in SA, in which the interface thickness between moving
layers is deeper on the western boundary than on the
eastern boundary, will be considered. Thus, in this ap-
plication, the interface perturbation will be taken as
constant and negative on the western boundary (which
is equivalent to a warming ) and as positive on the east-
ern boundary [equivalent to a cooling, which corre-
sponds to the analysis carried out by Luyten et al.
(1985) in this region]. Equation (3.17) is solved nu-
merically this time with the mean current —Ux a func-
tion of longitude. Figure 8 represents the interface time
evolution. The sloping line is the stationary solution
given by relation (3.19). It can be observed that both
eastern and western fronts propagate toward the com-
municating window, although the eastern front is
dominated by Rossby wave speed, whereas the western
one is dominated by the mean zonal flow. During
propagation, these fronts become less steep, the speed
of perturbations is larger for lower amplitudes (due to
nonlinear wave propagation), and, reducing speed
slowly, they adjust to the stationary solution in which
the baroclinic wave speed balances the mean zonal
current. This balance is reached after about 20 years,
i.e., the time scale characteristic of wind-forced large-
scale circulation. The communicating window width
is given by the difference of depths fixed on both
boundaries, given in paragraph (i) by Ax = 1300 km.
The surface is determined from (3.20), and the final
steady equilibrium solution is represented by Fig. 9. A
southward flow in the surface layer and a northward
flow in the deeper layer are indeed observed. The com-
municating solution of the ventilated thermocline
equations in SA has thus been reached by a rather re-
alistic transient regime.

4) COMMUNICATING SOLUTION WITH DEEP
SOUTHWARD FLOW

The solution of a southward flow in the deeper layer
(Pedlosky 1984 ) does not appear in this analysis at first
glance; however, it is included. As a matter of fact,
changing the sign of E|, i.e., choosing H, > H,, enables
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us to change the sign of the stationary solution slope.
A similar transient regime, but with opposed pertur-
bations on both boundaries, would make it possible to
reach this solution. But in order to make both north-
ward and southward solutions appear simultaneously,
it is sufficient to keep the term in 1,2 in the baroclinic
Rossby wave nonlinear phase speed (see paragraph 3a).
Figure 10 shows the effect of this additional term on
the northward communicating stationary solution
(very small effect justifying the approximation used).
It makes this second mode appear with deep southward
flow in layer 2, which is inaccessible for the values of
depths chosen. However, although this term is very
small, it can become significant when both layer thick-
nesses are close. Let us suppose that they are equal (H,
= H,, possible in LPS models), the term in 7, becomes
zero (E; = 0), and the term in 7,2 balances the mean
zonal current variation. The parabola of Fig. 11 then
represents both modes of the communicating stationary
state. A maximum can be observed west, which rep-
resents the boundary found in SA and Pedlosky (1984)

40.0 T T

and corresponds to the Rossby wave speed maximum
(the term in 7, being the first term of this wave speed
limited development).

Notice that this maximum also exists for different
thickness values: pushed westward out of the domain,
it does not appear in Fig. 10. A transient regime for a
southward flow has been done in this case and is illus-
trated in Fig. 11. The perturbation is applied only on
the eastern boundary and represents a warming. A
cooling at this boundary would lead to a northward
flow in this particular case, where H, = H,.

5) SOLITARY WAVES

In these solutions, the solitary waves of the preceding
equation study did not appear. The dispersive term
only played the role of stabilizing initial fronts in these
cases and enabled us to easily solve the equations nu-
merically. The occurrence of these waves depends
principally on the initial deformation (sign and form).
In fact, in applying different initial conditions on
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FIG. 10. Stationary communicating solution that represents the two internal modes by considering the
quadratic term in the Rossby wave speed: 7.y northward solution and 7,5 southward solution (Pedlosky
1984).
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boundaries, the interface will react toward other states,
more complex than that of the communicating solu-
tion. In imposing a positive disturbance on the western
boundary, for example, this front will propagate east-
ward, decomposing into solitary waves transported
eastward by the zonal flow —Ux. Figure 12 illustrates
this outbreak of solitary waves; but as a result of the
variation of the zonal current —Ux, these waves are
slowed down when they get closer to the communi-
cating window and are arrested there when the zonal
flow has decreased to the point of opposing to the ve-
locity of these waves. Inequality (3.24b) can no longer
be verified, i.e., dispersion can no longer balance non-
linear propagation. Notice that long waves propagate
toward the window while short waves propagate away
from it; however, since the group velocity of all waves
is zero where u = —c, energy is accumulated at these
points. Notice that from (3.24b), by increasing the
amplitude of the perturbation, solitary waves would
be able to cross this region. However, to avoid these
pathological cases, other processes must be taken into
account to solve the problem, such as, for example,
dissipation of energy or advection of relative vorticity.

4. Discussion

The interpretation of the cross-gyre internal modes
found in Pedlosky (1984) and Schopp and Arhan

(1986) in terms of an arrested nondispersive baroclinic
Rossby wave by a barotropic mean zonal current along
the zero wind-stress curl line shows the importance of
the gyres’ common boundary, which happens to be the
place where information can be generated and spread
toward the interior of each gyre and which justifies the
specification of the outcropping line in the subpolar
gyre in SA. The time-dependent study presented sug-
gests a process able to generate currents connecting the
gyres from an ocean at rest or from an ocean with no
initial mass transfer. It therefore validatesthe particular
stationary internal mode solution of the ventilated
thermocline, and the northward flow solution proposed
in SA as a transfer mechanism of Mediterranean water
toward high latitudes.

The effect of the nonlinear potential vorticity ad-
vection term has been neglected in this process study.
Were this term linearized around a mean current, other
communication possibilities would appear, such as
stationary solitary waves in a zonal current, commu-
nication then having the form of cells along the zero
wind curl line. Moreover, it would enable a connection
between the eastern and western regimes and would
prevent energy from being blocked in the communi-
cating window. .

For reasons of simplicity, the dispersion meridion
component has been neglected. This is an unrealistic
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approximation of the model, since this component is
partly responsible for evacuation of energy stored at
the control point. Likewise, forcing the model by ther-
mohaline processes (of upwelling type) at the interface
would probably be more physical than imposing in-
terface displacements. Finally, since the equations are
valid for the whole basin, it should be possible to use
them to study realistic transient regimes.
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