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ABSTRACT

A linear, small amplitude model of Rossby waves forced by idealized meanders is presented in order to
ascertain whether or not the observed low frequency motions near the Gulf Stream are capable of being so
generated. Two crucial ingredients are shown to be necessary; the meandering activity must vary in the downstream
direction and the meanders must have a transient behavior. Cast as a stochastic average over a large number
of meanders the predicted amplitudes of the kinetic energy and Reynolds stresses are similar to those observed.
Implications for the forcing of a mean flow are discussed.

1. Introduction

The dominant low frequency motions on the lower
continental slope and rise of the western North Atlantic
are energetic topographic Rossby waves. Various
mechanisms have been explored for their generation,
the most visually compelling being that of Louis and
Smith (1982) who were able to reproduce a burst of
motions at a mooring with a model of generation by
a Gulf Stream ring.

Indeed, the Gulf Stream itself has been implicated
as the source for these motions (Hogg 1981; Weatherly
and Kelly 1985; Welsh et al. 1987). However, the
dominant disturbances to the Stream are eastward
propagating meanders from which it is difficult to ra-
diate energy into Rossby wave motions which propa-
gate westward (Pedlosky 1977; Talley 1983). In fact,
such radiating motions must decay away from the
source and have eastward phase propagation to match
that of the assumed steady disturbance. The observed
Rossby wave motions propagate westward (Hogg 1981;
Price and Rossby 1982; Welsh et al. 1987) so this steady
forcing mechanism is inappropriate.

Recent work (Welsh et al. 1987) has uncovered
eastward moving disturbances in the deep Stream that
could couple more directly to the far field wave mo-
tions. However, it is not clear what causes these motions
or, indeed, whether they might be the response of the
Stream to external motions.

Meanders are not steadily moving frozen features—
they have a definite life cycle and, in their growth and
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decay periods, will force transient motions in the form
of Rossby waves as in the ring model of Louis and
Smith (1982). More recently, Malanotte-Rizzoli et al.
(1987) have shown that pulsating meanders are also
able to radiate Rossby wave energy provided that the
pulsation frequency is low enough.

This paper considers a statistical or stochastic ex-
tension of the transient meander model with the ob-
jective of computing the far-field response to compare
with the observed wave field. Although serious ap-
proximations must be made, in particular that motions
are linear and small amplitude, the conclusion is
reached that transient meanders are capable of pro-
ducing observed kinetic energy and Reynolds stress
distributions.

In the vicinity of the Gulf Stream downstream from
Cape Hatteras these distributions have characteristic
patterns which are very elongated in the downstream
direction (Richardson 1983; Schmitz 1984; and Che-
ney et al. 1982). Cross-stream structure at 55°W in
the North Atlantic is shown in Fig. 1. The meridional
decay scale (¢ ') of kinetic energy is of order 3° (~330
km) of latitude whereas the downstream scale com-
puted from Richardson’s (1983) surface eddy kinetic
energy measurements is closer to 10° of longitude
(~800 km). The Reynolds stress term is positive south
of the current and negative to the north reaching ex-
trema within two degrees of the current’s mean axis
and then falling to small absolute values over several
degrees much like the eddy kinetic energy. Webster
(1961) first reported the tendency for negative values
inshore of the Gulf Stream and noted that they implied
a transfer of momentum from the eddies to the
Stream—a kind of negative viscosity.

Probably the best examples of eddy-driven flows in
the ocean general circulation are the recirculation cells
found to the south (Worthington 1976) and north
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FIG. 1. Distributions of various covariance quantities from 55°W
in the North Atlantic at 4000 m depth. The upper curve gives the
mean zonal flow at 4000 m along with the predicted parabolic form
arising from the imposition of uniform potential vorticity and the
further requirement that it agree at moorings 10 and 11.

(Hogg 1983; Hogg et al. 1986) of the Gulf Stream (see
upper panel of Fig. 1). Not only are these pronounced
features of the real ocean but they result in most every
eddy resolving numerical model of the general circu-
lation, a particularly good example being the class of
quasi-geostrophic models studied by Holland and
Rhines (1980). There it was shown that the recircu-
lations resulted from eddy vorticity fluxes, principally
the so-called eddy thickness flux arising from rectifi-
cation of eddies generated by baroclinic instability of
the westward Sverdrup interior.

The influence of the eddies on the mean flow is best
understood in terms of the mean vorticity balance
which in its quasi-geostrophic form is

a-Vg=-V.u'¢ (1.1)
where g is the potential vorticity and u the horizontal
velocity. The overbar indicates a temporal average and
the prime a deviation from the average. The eddy vor-
ticity flux, w'q’, in general has two components, a rel-
ative vorticity flux and a thickness flux which is not
relevant to this barotropic analysis. The divergence of
the former can be written:
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Vu'(vy — u))
62 82 - 2
= (—z - _2) u'' -
ox dy dxdy
Consider the distribution of (%'v") of Fig. 1 and the
fact that meridional scales are much smaller than zonal.
The divergence of the relative vorticity flux then be-
comes approximately:
s o. 0% —— 2
Vi~ ayzuv + a3y
the last term not being estimable from present data.
However the curvature of #'v’ just to the north of the
Stream axis is positive. :

If the mean advection term is dominated by the me-
ridional advection of planetary vorticity and we use a
planetary vorticity gradient of 3.6 X 10" m™'s™! (as
enhanced by a positive bottom slope) then the Sver-
drup-like balance yields a meridional mean flow of 4.0
mm s~' from the curvature term for a maximum
|u'v’| of 30 cm? s 2 distributed over a meridional scale
of 150 km. Such a meridional flow, if spread over a
zonal distance of 2000 km and a depth of 5 km would
transport 40 X 10® m3 s~'—very similar to the amount
of water estimated by Richardson (1985) to be carried
in each of the two recirculations.

The very existence of an eddy vorticity flux diver-
gence runs counter to various theoretical analyses
which conclude that there should be no interaction
between the eddy field and the mean flow (e.g., Boyd
1976). Thus, it is important to understand these dis-
tributions and how they arise.

Hogg and Stommel (1985) and, more recently, Ierley
and Young (1988 ) have presented models in which the
recirculation is determined by imposing the condition
of homogenized, mean potential vorticity. In this case
the ambient vorticity gradient vanishes and, ignoring
the weaker zonal derivatives,

12 442
(u v'e).

(1.2)

12 _ 4412
(W= —v')

(1.3)

iy, =8 (1.4)
where 3 is the planetary vorticity gradient (8 ~ 3.6
X 107" 57! at 40°N, 55°W as augmented by the bot-
tom slope). Double integration with the conditions that
u=0aty=0and y = Wgives

a0) = -y - ). (1.5)

If this parabolic form is fit to the mean zonal flows
at moorings 10 and 11 in Fig. 1 so as to determine the
width of the westward flow, ¥, we find that W = 147
km and the current has the shape shown by the dotted
lines. Integration over W and a depth of H = 5 km
gives a total recirculating transport of HSW?3/12 = 48
X 10°m?>s™!, again not far from the Richardson (1985)
value of 40 X 10°® m3 s™! for the Northern Recircula-
tion Gyre.
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Of course, if the recirculation gyres are truly ho-
mogenized in potential vorticity then Eq. (1.1) would
demand that the divergence of the eddy vorticity flux
vanish and the Sverdrup-like balance discussed above
would be inappropriate—the second term in the rhs
of Eq. (1.3) must offset the first.

Stochastic models of Rossby wave generation with
and without recirculations will be explored in the fol-
lowing sections and implications for the mean flow
discussed.

2. Formulation

Motions near the Gulf Stream are only weakly depth
dependent (Schmitz 1980; Hogg et al. 1986; Welsh et
al. 1987). Although the Stream, itself, is strongly
sheared its lateral movements appear to be quite baro-
tropic (Halkin and Rossby 1985; Hall 1986). We will
assume that motions exterior to the Stream are quasi-
geostrophic and barotropic. The potential vorticity
equation for small amplitude motions in a mean flow
is (e.g., see Pedlosky 1979): .

3 9
—+ iAW) = |V + (B - (IWx=0 (2.1
(5 +70) 3 )7 + B =TI =0 @)
where (X, t) is the perturbation streamfunction from
which the horizontal velocity components can be de-
rived:

u= _‘l’ya V=Y. (2.2)

In the conventional manner « and v are the east and
north components of the perturbed velocity, f is the
coriolis parameter, £ its meridional derivative and #(y)
is the mean flow which is taken to be zero or to satisfy
the homogenized potential vorticity condition of
Eq. (1.5).

We will assume that the motions are forced by the
movement of a rigid boundary at the southern extrem-
ity of the domain whose configuration is n(x, t) (see
Fig. 2 for a conceptual picture). With the usual small
amplitude assumption and a Taylor series expansion,
this can be written as

an
a

Integrated once with respect to x, the condition on the
streamfunction is

v=yY,=—aty=0 (#(0)=0). (2.3)

X
'/z=f @dxaty=0. 2.4)
ot
The assumption of small amplitude motion is hardly
justifiable but is a necessity to obtain a tractable math-
ematical problem. Effects of nonlinearities must await
further numerical work such as that begun by Malan-
otte-Rizzoli et al. (1987).
These equations will be nondimensionalized using
a lengthscale L = 400 km /27 ~ 64 km determined
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FIG. 2. A schematic view of the radiation problem showing two
meanders in the Stream and the Northern Recirculation Gyre.

by a meander wavelength. Appropriate time, T, ve-
locity, V, streamfunction, P, and displacement, N,
scales are given by

1

T=—
BL’

V=g6L? P=BL}® N=L.

The displacement function n(x, ¢) i$ assumed to have
two scales, one the length scale determined by the
meanders and the other by their envelope which is more

like 600 km. The ratio of these scales

_ Meander envelope scale _ QQ_Q — 9.4

Meander length scale 64

will be assumed large with respect to unity. As the re-
circulation scale is zonally large and somehow related
to the average effect of the eddies the width will be
assumed to be of order 1 but change over a distance
~. Specificaily,

Wo(l — x%/v?),

<
W(x/v) = {0 <y

2.5)
, x| >~

where W, is the maximum width at x = 0. The non-
dimensional equations become

VY =0, @"=8, y<W(x/v)

2.6
-‘%V2¢+B¢X=O, 7=0, y>W(x/v) @0

with
X 377
¥ = f ] dx, y=0,
all quantities being nondimensional. The solution

for no recirculation can be obtained from the limit
Wy — 0.
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In principle, the variation in the width of the recir-
culation must be accompanied by both a zonal varia-
tion in the zonal velocity component and a mean me-
ridional velocity. However, both of these effects will
be O(1/+) and make no O(1) contribution to the vor-
ticity balance. In the following analysis, an implicit
two scaling procedure will be assumed in the x direc-
tion—a fast scale x and a slower one, x/+v. Only the
lowest order will be retained.

We define the double Fourier transform of a function
n(x, t) and its inverse as follows:

2k, w) = — ff n(x, t)e " kx=eD dxdy
- 2.7

= LY n ) i(kx—wt)
n(x,t) o ff n(k, w)e dkdw. ‘
Application to Egs. (2.6) yields the following boundary

value problem for a second-order ordinary differential
equation in y:

Wk, 0, y, x/v) = =Gk, 7, x/7) 7 ik, @) (2.8)
with -
Gk, y, x/v) — kK*G(k, y, x/v) =0
y<W(x/v) (2.9)
G,y +1’°G=0, y>W(x/y)
/= —k(k + %) , 2.10)
G(k,0,x/yv)=1 aty= 0. (2.11)
The solution is
G(k,y,x/v)
_ { Ao(x/7)e™ + Ai(x/v)e™, y< W(x/v)
Ay(x/v)e 1), y> W(x/v)
(2.12)

using the radiation condition for y > W to select the
solution with outward energy flux for / real (—1/w
< k < 0). If / is imaginary (i.e., k> 0ork < —1/w)
we set the imaginary part negative so that the solution
decays away from the forcing. Contours of / in the (w,
k) plane are shown in Fig. 3. There is a limited region,
~1/w < k < 0, in which / is real and free waves are
possible._

Three conditions are ,needed to determine the
Ai(x/v). Two are given by the condition (2.11) at y
= 0 and the matching of the streamfunction at y = W,
The third results from the matching of the tangential
velocity as determined from a Taylor series expansion
about y = W. It can be shown that
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(k+ il + k—"i)e"w

2w
4o = kW o
2k coshk W + ™ sinhkW + 2il sinhkW
A] =1- Ao
(k — il - k—W)e"‘W
2w
B kw . .
2k coshkW + v sinhkW + 2il sinhkW
Ay = — 2k
2k coshkW + — sinhkW + 2il sinhkW
In general,

G(k, y, x/v) = Ae"kr>Im (2.13)

where the amplitude and phase functions, A(k, y, x/v)
and ¢(k, y, x/+), can be determined from the 4; above.
For / imaginary the A4; and the function G(k, y, x/v)
are all real and ¢(k, y, x/+) is zero.

In terms of the transform of the forcing function the
horizontal velocity components are

u=—y,= % ff (g)ﬁ(k, w)Gyei(kx_“")dkdw

=gy = — = f f wn(k, ©)Ghe' ™ died
.14)

The ensemble averaged Reynolds stresses can be writ-

ten:

ary = [ [ [ [ Pk, o, 0, )60 G300

X el x=(o=e) gk dode  (2.15)

oy =05 [ [[[ e, o, $)GU)GHK)

X i lk=kNx=(w=a" gredkidiode’  (2.16)

T:&f”f F(k, K, ©, ') G,(k)G* (k')

X k'e!lk=k)x=(o=o dledic'dwde’  (2.17)

(uv*y =

with

F(k K, w, o) = (3(k, w)n*(k’ w)) % k" (2.18)

The asterisk indicates the complex conjugate while the
angled brackets denote the ensemble average.
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F1G. 3. Contours of the meridional wavenumber, /, in the (w, k) plane. Solid curves
in the shaded region are for the wave region, / real.

3. Stochastic forcing, F(k, k', w, ')

If a meander is considered to be a well defined event
the displacement of the Stream is the sum over all of
these events

N
WX, 1) = 2 (X — Xy, t — t:),

n=1

3.1

with N tending toward infinity. Each meander has a
different spatial and temporal origin (x,, t,). The dou-
ble Fourier transform of (3.1) can be manipulated to
show

Ciilk, w)a* (K, '))

N
= 2 <e—i[(k—k’)Xn_(w—w,)tn]ﬁ”(k’ w).ﬁ:(kl’ w’)> (3.2)

n=1

where the angled brackets indicate the stochastic av-
erage with respect to the various meander parameters
and we have assumed that different meanders are in-
dependent.

The simplest assumption to make about the joint
probability density function of the parameters is that
they are all independent. Taking the probability density
function for the temporal origin #, to be uniformly dis-
tributed over a time T which also is very large

o 1
{o—w M\ —
ety == |

—_ TN

0 .
el(w-w')l,,dtn

= @~iw=wNT/2) sin(w — ' )(Tn/2)
Tn(w — o)

which, for large Ty, becomes

lim
Ty

<ei(w—w')tn> = % w — o). (3.3)

The spatial origin, x,, is not uniformly distributed.
Surface eddy kinetic energy reaches a maximum near
65°W and one interpretation would be that meanders
are more likely near this location. Taking the proba-
bility density function for x, to be



1692

1 2902
A X, = e_xn /2y
P ( ) V—ZTI"Y
then
. : V2r (v
e—:(k—k’)x,, = o=V k=K 2 _ ——D(—- , k — k')
< )= y \V2
(3.49)
where .
D(g,x) = V—q; e~ (3.5)

defined so that in the limit of large g, D(q, x) = §(x).
Therefore,
V—

lim (e~ kM = —— §(k — k). -
. ¥+
As opposed to the large Ty hmlt, however, « is large
but finite and it is important to retain the form of (3.4)
so that,

F(k, k', w, ) = 4w%N8(w — &)
X D(% k- k’)(n(k, Wk, @) (.6)

with
fim e
N,Ty=>c0 V— TN7

Here N, can be thought of as the population density
of meanders. The ratio N/ T will become constant as
Ty increases and can be evaluated as the number in
existence at any one time, N,,,, divided by their average
lifetime. If we define the half lifetime to be 7 then

1 Nm
Ver Ty’
Discussion of the stochastic average with respect to
meander shape parameters in Eq. (3.6) will be contin-
ued in section 4 and the Appendix.

When (3.6) and (2.13) are substituted into the co-

variances of Eqs. (2.15) to (2.17) then we have, for
example, ,

(uv*y = iNdfff D(%,k—_k’)k’A(k’)[Ay(k)

+ iA(k)¢y(k)]eil(k-kvmw(k)—«k'm

Nyg= 3.7

Ny = (3.8)

X (n(w, k)n*(w, k')) k_k’ dwdkdk'.
For large v contributions to the integrand will come
from regions of (k, k' w) space where k =~ k'. There-
fore, we write

3.9

kK=k+e (3.10)

and expand the other functions of k' in Taylor series.
In particular,
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9¢

(k') = ¢lk) +— ¢ G.11)

and Eq. (3.9) becomes, to lowest order in ¢,
(uv*) |
~ iNy ff kS(w, k) A(k)[Ay,(k) + ipy(k)A(k)]

<[of

2
S(@, k) = (n(w, K7 (@, K)) 25

e)e""‘"*""’dedwdk (3.12)
where
(3.13)

is the power spectral density of the streamfunction
forcing function. The integral with respect to ¢ is easily
evaluated as a Fourier transform with the result:

(uv*) =~ iNy ff kS(w, k)A(k)[A4,(k)

+ iy (k)A(k))e~ 0 1 dudk.  (3.14)
Only the real part of this expression has physical
meaning: .

Re{uv*) ~ =Ny ff kS(w, k)

X ¢,A2e™ 5002 dydk  (3.15)

with similar expressions for {uu* > and {vv* ):
(uu*) = Ny ff S(w, k)(4,% + ¢,24%)

X e+ 2 gl (3.16)

(w*) = N f f k2S(w, k) A2e™ 607127 g
(.17)

Just the Rossby wave portion of (w, k) space has ¢
# 0 and makes a contribution to the Reynolds stress
quantity in (3.15). The whole domain contributes to
the velocity variances but the trapped components,
with imaginary /, will decay rapidly away from the
forcing.

The quantity x + ¢, in the argument of the expo-
nential governs the spatial dependence of the covari-
ances. For the region exterior to the recirculation the

wave components have phase ¢ = —I(y — W) and

x+¢k—x—-—(y W)

=x+Z% - w). (3.18)
wy
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Each (w, k) component will propagate along group ve-
locity rays and, thereby, reflect the zonal distribution
of energy at y = W (and, therefore, y = 0) along the
meridians.

4. The meander forcing spectrum, S(w, k)

The most energetic Gulf Stream disturbances are
meanders which have typical wavelengths of 400 km,
peak to peak meridional displacements of 300 km and
propagate to the east at 0.08 m s~! (Cornillon, personal
communication). Such motions, if considered as
steadily propagating plane waves, cannot couple to the
Rossby wave field as they would have zero energy in
the appropriate part of frequency-~wavenumber space.
However, meanders are wavelike neither in space nor
in time and are best thought of as transients, Consider
the following form for the displacement n(x, ¢) (illus-
trated in Fig. 4):

2(x, t) = ap(x — ct)g(t) 4.1)

where a is the nondimensional amplitude (a ~ 150
km/64 km = 2.3), p(x — ct) gives the purely prop-
agating form and g(¢) its growth and decay function.
The propagation speed, ¢ = 0.54, in nondimensional

s b=
Meander shape
A function,
. p(x)
3
2
§
]
3
% 5 P 2 0 H H H : 10

Meander time function, g(t)

3 [ tanh (T, +0)/ T, + tanh (T,-/7,]

/ \_

——

T v T T T T T ]
- -4 -3 -2 - [ 1 2 3 [ 5
time

omplitude
l.. 0

FIG. 4. Functional forms of the meander shape function p(x)
and growth-lifetime function g(?).
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units. The double Fourier transform can be manipu-
lated to give:

n(k, w) = ap(k)§(kc — w). (4.2)
For p(x — ct) we choose the form with its Fourier
transform (Fig. 4):

2(x —ct) el-21x-atl/x
A

Bk = (3)”2

s

p(x—ct) =

4.3
8\2ek @.3)

(4 + N%k?)?
where A is the meander half-wavelength (nondimen-

sionally, A ~ 7). For time dependence we use the
function:

g(t) = % [tanh(z—;’—T’) - tanh(t—_i]l)] (4.9)

R w\!/2 T.o sing T}
&( 0') = 5 p PR
sinh (E T,a) .

g=w—kc,

4.5)

which has two parameters, a formation/decay (half)
time scale, T,, and a half lifetime scale, 7;. These are
both difficult to quantify but the meander lifetime is
surely an order of magnitude greater than its formation
time 27; ~ 107, which in turn is more likely to be
0(1), 2T, =~ 1, say.

As T; becomes very large g(o) = V2rd( 6), a line
spectrum at the frequencies and wavenumbers which
match the meander propagation rate, ¢. In this limit,
not unexpectedly, no propagating waves are able to
radiate into the recirculation. However, for finite 7
there is leakage into neighboring frequency-wave-
number bands and the transient response is not re-
stricted to those waves which match the forcing phase
speed.

The streamfunction forcing spectrum is now given
by

2
SCk, 0) ~ (n(k, @)n*(k, w)>(%)

. 8\% sineT) o7, )
27,212
GO o n(Z7)

= w?(a’Si(k; N) S2(0; T)) S3(0; T,))  (4.6)

where the ensemble average is with respect to the
meander parameters @, A, T, and T;. Equation (4.6)
has been written as the product of three functions in
order to isolate this parametric dependence. Each
function attains a limiting maximum value as k or ¢
approach zero. The S;(g; 7)) has periodically displaced
zeros for higher o but an ensemble average can be ex-



-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
wavenumber
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wavenumber

FIG. 5. The streamfunction forcing spectrum log,S(w, k) for parameter values (a) ¢
= 0.54, T, = 1, T, = 3 appropriate to the Northern Recirculation Gyre and (b) ¢ = 0.54,
T, = 0.5 and T; = 6. Freely propagating waves are possible in the shaded region.
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pected to blur these zeros and make for a more mono-
tonic dependence. Inthe Appendix it is argued that
{a*) and the functions {S,(k; A)) and {S3(o; T}))
can be used as defined in Eq. (4.6) provided that the
average values of a, A ™! and 7, ! are substituted. {S>(o;
T;)) can be well approximated by:

1 + b({T})0)?
1+ b({(Ti)o)? + 2b({ T})0)*
@a.7)

with b = (4/72)(x% — 4)/(4 + =*) chosen to give the
proper value at the origin and the appropriate high
wavenumber/frequency dependence. It is interesting
to note that the function {S,(¢; T})) increases as { T;)*
for ¢ = 0 but is independent of { 7;) for large o, i.e.,
in the Rossby wave regime away from the meander
propagation speed line. In this limit the response will
go as { T;) ™" through the dependence of the population
density, N, [Eq. (3.8)].

The resulting frequency-wavenumber spectrum of
the forcing is shown in Fig. 5. There is a peak along
the line w = { ¢ )k corresponding to the meander prop-
agation rate. Although the spectral amplitude in the
region where free Rossby waves can exist (shaded part
of Fig. 5) is relatively insensitive to the meander lifetime
parameter { T;) it is quite sensitive to the rise time and
the meander propagation speed {¢). An example for
different values of these two parameters is given in
Fig. 5b.

(S2(a; T)) =~ (T1)*-

5. Energy and Reynolds stress distributions

The various meander and general circulation pa-
rameters are summarized in Table 1. The most uncer-
tain of these are the meander rise and lifetimes which
have been chosen to give reasonable covariance am-
plitudes. The lifetime, in particular, 2{ T;) = 6 or 30
days might seem short, but should be viewed as the
length of time a given meander travels without signif-
icant change of shape.

The covariances are computed by substituting Eq.
(4.6) into Egs. (3.15) to (3.17) and computing the
double integrals numerically for a grid of x and y values.
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These are then contoured and the resulting two di-
mensional distributions are given in Fig. 6 for situations
with and without a recirculation.

Even when integrated over the whole frequency-
wavenumber spectrum there is a strong tendency for
energy to move along group velocity lines. The max-
imum in the forcing at the boundary is carried to the
northwest along a sloping trajectory: this is the essential
ingredient which allows a meridional dependence to
the Reynolds stresses.

Response at low wavenumbers and low frequencies
is heavily favored (see Fig. 5). As these have much
higher meridional wavenumber component than zonal,
through geostrophy the zonal velocity component is
much more energetic than the meridional. Although
this is a feature of the observations away from the
Stream (Fig. 1) the model contrast seems too large. If
the meander wavenumber spectrum were broadened
toward higher wavenumbers [by Eq. (4.6) it goes as
k2 for streamfunction ] the ratio (uu* )/{vv* ) would
decrease. However, these higher wavenumbers prop-
agate more meridionally and would cause the merid-
ional decay in the covariances to be weaker. It seems
more likely that nonlinear and finite amplitude effects
or inclusion of some frictional damping and more re-
alistic geography are needed.

The effect of the recirculation is not substantial. Al-
though magnitudes near the origin in the model with
a recirculation are reduced by almost 50 percent over
the model with no recirculation, comparable values
are to be found in extrema displaced well to the north-
west. The Re{uv* ) covariance is the indicator of the
Rossby wave motions which, according to this model,
should be most intense to the northwest (and south-
west) of the maximum meandering in the Gulf Stream,
Contributions to {uu* ) and (vv* ) on the other hand
are dominated by the trapped components and, con-
sequently, reveal very little of the wave motions.

A direct comparison with the measured covariances
at 55°W is made in Fig. 7. The computations of Fig.
6 were designed to simulate conditions for the Northern
Recirculation Gyre. To the south of the Stream (at
55°W) the bottom becomes quite flat in the Sohm

TABLE 1. Model parameters (Bracketed values for southern recirculation).

Nondimensional

Symbol Meaning Dimensional value value
f Coriolis parameter 93X 107557} —
B Effective planetary vorticity gradient 36 X 107 571 (1.8 X 107! s7Y) -
Wo Maximum width of westward recirculation 147 km 2.3
% e-folding distance of meander energy 600 km 9.4
a Maximum meander amplitude 150 km 2.3
A Meander half wavelength 200 km ™
¢ Meander propagation speed 0.08 ms™ 0.54 (1.08)
T, Meander half growth time 5 days 1 (0.5)
7 Meander half life time 15 days 3(1.5)
Np Number of meanders 6 —_—
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FIG. 6. Spatial distributions of velocity covariances for parameters appropriate to the Northern Recirculation Gyre.
(a) With a recirculation; (b) without a recirculation.
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Abyssal Plain so the value of 8 should be just that from
the planetary gradient. Using a value one half that for
the Northern Gyre decreases the velocity and increases
time scales a factor of two so that the parameters ¢, 7,
and T, must be adjusted (bracketed values in Table 1).

The observations are from a longitude 600 km east
of the maximum of the surface eddy kinetic energy but
near where the maximum deep values are observed.
In Fig. 7 computed meridional distributions from both
longitudes are given. There is not much difference.
Considering the simplified dynamics of the model the
correspondence is encouraging.

6. Eddy-mean flow interactions

In the limit of ¥ — oo both the recirculation and
the meander forcing function will be independent of
X, the spatial variations illustrated in Figs. 6 and 7 will
disappear, and there will be no divergence of the eddy
vorticity flux [Eq. (1.2)]. However, for 4 finite the
covariances have scales of variation of order v and the
eddy vorticity flux, being a second derivative quantity,
is of order y 2.

In the region exterior to the recirculation the ambient
potential vorticity gradient is 8 so the forced mean flow
vorticity equation (1.1) becomes, in dimensional terms

9? 9% \—;
5)‘}—2 - (—9)?) u'v' +

2
dxdy
y>Wix/v) (6.1)

a modified Sverdrup balance. The wave vorticity flux
terms can be obtained from differentiation of Eq.
(3.15) to (3.17) and then integrated once with respect
to x to obtain an integral expression for ¥ which will
be O(1/7). ~ |

Inside the recirculation the mean flow is specified

(ul2 _ 0:2) ,

o = 67 =

by the homogeneous assumption and is given by Eq.

(1.5)or

B

¥=- O~ W) (2y+ W), y<W(x/v).

(6.2)

Because #'? is discontinuous at y = W(x/¥) in order
1o satisfy the matching condition there, the right-hand
side of (6.1) is singular, However, the ambient potential
vorticity gradient is also singular on this curve and one

" presumes that the mean vorticity equation remains in
balance without singularities in the velocity field.
Properly matching y across y = W will necessitate the
calculation of ¥ in the recirculation to O(1/+) through
investigation of the higher order vorticity balance. We
have not done this but show, instead, in Fig. 8 the total
transport streamfunction for the forced mean flow
when there is no recirculation. The wave induced
transport is on the order of a few Sverdrups mostly
contained in a cyclonic gyre.
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7. Summary and conclusions

We have shown that it is possible to reproduce me-
ridional distributions of eddy kinetic energy and
Reynolds stresses similar to those observed near the
Gulf Stream through use of a rather simple, linear,
stochastic model of wave forcing by a specified time
dependent boundary. There are two important and re-
quired ingredients.

First, the boundary forcing must vary in intensity
in the downstream direction. Waves propagate away
along their ray paths and reflect the zonal distribution
in the meridional direction.

Second, the forcing considered here comes from the

. meanders which dominate the Gulf Stream lateral dis-

placements but generally travel eastward and, consid-
ered as steadily traveling features, cannot couple to
westward moving Rossby waves. However, if their be-
havior is enriched to include growth and decay periods
and a stochastic average is made with respect to their
lifetimes spectral energy from the forcing “leaks” into
the Rossby wave portion of the spectrum. For long
lifetimes the forcing energy in this regime is actually
independent of the lifetime parameter but strongly de-
pendent on the meander propagation speed, growth /
decay timescale, and amplitude.
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FIG. 7. A comparison between observed and computed
covariance #'v’ and eddy kinetic energy.
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FIG. 8. The total transport streamfunction (in units of 10¢ m® s~ assuming a depth of 5 km) for the case
of no recirculation as forced by the wave generated vorticity flux divergence.

Although the intensity of low frequency motions is
reproduced by this model, the rectification effects of
these motions appears to be an order of magnitude too
weak to force the recirculations found near the Gulf
Stream.

There are a number of limitations of this theoretical
study, some of which can be easily improved upon
such as the inclusion of stratification and more general
variations in the bottom topography (especially easy
if they are just in the y direction). The real limitation,
though, comes from the use of a linear model. In this
region particle and phase velocities are similar in mag-
nitude, and it is surprising that a linear model can do
as well as it appears to do. -
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APPENDIX
Stochastic Forcing

For this study the meanders are specified by a small
number of parameters, in particular; wavelength A,
amplitude a, growth/decay time T, lifetime 7}, and
propagation speed c¢. Taking them to be statistically
independent the ensemble average becomes a product
of ensemble averages with respect to the individual pa-
rameters. For example, the average with respect to am-
plitudes is

lf(a)-}-e

a®) =—

¢ ) 2¢ J(ad-e
= (@) +3é

~ {(a)? (A1)

for small e. The meander lifetime parameter occurs in
the function S,(¢; T}) of equation (4.6):

a’da

] 1+b(w<T,>)?
. * 1+b(w< Ty >)2+2b(w< Ty >)*
) R
]
01 1
3 2
S o | <T> TyomTy
] =3
a3
D ]
5 1
W 4 [sinm<Tl>]2
"‘D_ “’<Tl>
% T3, Tp2=3
'?E—
2x107 10" 10°

Frequency

F1G. Al. Dependence of the stochastic average of the function
Sy(e; T)) on ¢ with the constant b = (4/x2)(x? — 4) /(%% + 4). The
polynomial approximation was used.
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(T)+e H 2
(Sln0’7[> 'T[
TH—e o

1
<Sz(0'§ 1)) = Zf(

sin2o€ cos20( T})

20¢

=#[l ] (A2)

which takes the value (7;)? + ¢?/3 at ¢ = 0 and falls
as 0.5¢ 72 for large o. Figure Al shows this depend-
ence for ( ;) = 3 and ¢ = 1.5 along with the polynomial
curve

(Sa2eo; Tiy =~ (T1)?

A\

1 + b(o(T}))?
1+ b(o(T))? + 2b(a(T)))*
(A3)

where

2
b= (zr2__4> :
T\r°+ 4
This agrees with (A2) at ¢ = O (for small ¢) and large
a. It is noteworthy that, even though S:;(a; T;) ap-
proaches a delta function for large 7; the amount of
energy leaking into the ¢ # O region does not go to
zero for the stochastic average and, in fact, becomes
independent of { T;).

The functions S;(k; A) and S3(o; T,) are somewhat
more straightforward as they are monotonic in k or o.
However, the variable ¢ = w — ck contains the addi-
tional stochastic parameter ¢. In Fig. A2 are shown
numerically determined averages for the product
(82(0; T7)S3(0; T;)) (as a function of w and k) with
respect to ¢, T3, and T, for independent uniform vari-

T
0.0 0.5 1.0 1.5 2.0
wavenumber

y
-8.5

FIG. A2. The (w, k) dependence of the stochastic average of { Sz( s}
T))Ss(o; T,)) over values of ¢, T;, and T; which are uniformly dis-
tributed over a range of £50 percent (i.e.,0.54 < ¢ <0.81,05< T,
< 1.5, 1.5 <T;<4)5).
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FIG. A3. As in Fig. A2 but with the expected values of ¢ and
T, used ({c) = 0.54, (T,™') = 0.75).

ations of =50 percent in each parameter. In Fig. A3
the expected values of c and 7,~! are used along with
Eq. (A3). Although the average with respect to ¢ leads
to some spread of the contours near the line w = (c)k
in Fig. A2 there is little dramatic change, especially in
the wave regime and we shall use this form in sec-
tion 4. ’
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