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ABSTRACT

Observed anomalies of sea-surface temperatures (SST) exhibit significant triple-correlations and bispectra.
Features of this type are not covered by the standard Ornstein Uhlenbeck (OU) concept of SST fluctuations.
The present paper derives the spectrum and the bispectrum for a simple non-Gaussian Markov process. It can
be shown by means of the inverse modeling technique that this process yields a satisfactory approximation to
the spectra and the real part of the bispectra of SST-anomaly data. Moreover, the analysis indicates that the
imaginary part of the bispectrum cannot be represented in terms of a single-variable model.

1. Introduction

Due to the pronounced difference in thermal inertia
between the upper ocean and the atmosphere, SST
anomalies have been successfully modeled in terms of
stochastic processes (Frankignoul and Hasselmann,
1977). In the major part of the literature, the deter-

_ ministic SST dynamics are considered to a first ap-
proximation as a stable linear system, while the at-
mospheric forcing is represented by a Gaussian white
noise. In this framework, SST fluctuations become a
Gaussian Markov process, or, in the frequency-domain,
an ensemble of statistically independent oscillators,
which is completely determined if the spectrum is
known.

Later, Blaauboer et al. (1982) emphasized that at-
mospheric variability also affects the linear feedback
of the SST dynamics. Moreover, it is well known from
mixed-layer theory that large-scale advection as well
as turbulent mixing and entrainment processes intro-
duce nonlinear feedbacks into the dynamics of the up-
per ocean temperature field. In response to Gaussian
noises, SST anomalies will hence be non-Gaussian, as
it is a matter of longstanding evidence for most geo-
physical processes (Tukey, 1961). In the frequency do-
main, this property emerges as an energy transfer
among oscillators, which is directly measured by the
bispectrum.

r(t wy, wy) = - dzTe«u'f'+”z'z)<x(t)X(t +7)x(t+ 1’2))

(1.1)

i.e., the (twofold) Fourier transform of the triple cor-
relation of the SST anomalies x (7).

In the present paper, the bispectrum of a simple non-
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Gaussian process will be calculated and compared to
observations. As a model the scalar, linear equation
will be taken with correlated multiplicative and additive
Gaussian white noises. This model is on the borderline
of linear and nonlinear systems: while the average dy-
namics are still linear, the evaluation of its stochastics
requires some expansion procedure. The following cal-
culations employ the white-noise limit of the Kubo
expansion, which is a time-ordered cumulant expan-
sion with respect to the Kubo number (van Kampen,
1981). General non-Gaussian aspects of the process
can then be discussed in the Fokker-Planck (FP) pic-
ture (section 2), while the observable correlations and
spectra will be derived from the Langevin picture.

For the stationary version of this process the cor-
relation and spectrum have been examined by Blaau-
boer et al. (1982) stating basically a close resemblance
to the corresponding results for the familiar OU-pro-
cess. In the following the condition of stationarity will
be dropped for the forcing noise and a particular non-
stationarity, the cyclostationary process will be consid-
ered in some detail. The genuine non-Gaussian features
of the process appear in the calculation of the triple
correlation, which will be performed for the nonsta-
tionary case. With specified time dependence of the
noise variances, the bispectrum can be obtained from
this expression according to (1.1). Here, this will be
done for the stationary process (section 3).

Bispectra of observed SST time series can be eval-
uated on a machine by means of a fast Fourier trans-
form, similar to the well-known computation of or-
dinary spectra. Data and model are most conveniently
compared according to the inverse-modeling tech-
nique, thus taking into account the inherent statistical
indeterminacy associated with finite datasets (sec-
tion 4).
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2. The model

For an ocean mixed layer of constant depth A, the
heat budget per unit horizontal area reads

cphTo=FAt, To) (2.0)

where p denotes the density of sea water and c its heat
capacity per unit mass. The total heat flux F, represents
exchanges of heat with the atmosphere, with the layer
beneath the mixed layer and finally the contributions
from large scale advection. Expanding the heat flux
with respect to temperature one obtains to first order:

2.1
p (2.1)
a linear relaxation equation for the deterministic dy-
namics of the mixed layer temperature 7;. In the fol-
lowing, the linear feedback coefficient

Ao = —07,F,(To=Ty)/pch=const>0

evaluated at an appropriate reference temperature T,
will be considered a positive constant, while the forcing

Fo(t)=F,(t, To=Ty)/pch

depends on time.

As a characteristic feature of the heat budget (2.0)
there are atmospheric processes and oceanic turbulence
involved with correlation times much smaller than the
system relaxation time 79 = 1/A¢. According to the
concept of stochastic climate models (Hasselmann,
1976) this separation in time scales is utilized by
embedding the deterministic dynamics (2.1) into a
noise ensemble. In particular, the correlation time of
the fast processes will be considered approximately zero
so that the noises are white. Moreover, they are chosen
to be Gaussian in view of the central limit theorem. In
the paper at hand the forcing process

KO)=Fy()+Y(@®)
with (¥ (#)) = 0 will be allowed to exhibit nonstationary

stochastics
YOY(t+7))=Qi()d(7)

so that the variance Q,(f) may be an arbitrary non-
negative function of time. The feedback process

A = ho+ yo(2)
with (ye(#)) = 0 will be assumed stationary:
Yo(B)yolt + 7)) = god(7)

with positive and constant variance g,. The two pro-
cesses may be correlated:

(Y (0ot + 7)) = Qoi(0)5(7)

where the noise variances are subject to the Cauchy-
Schwarz inequality

d0Q1(0) — Q3:(1)=0.

(’d‘ + Ao) To(t) = Fo(1),
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Thus the stochastic generalization of (2.1) becomes

d
[E + )\(l)]T(t) = F(1). 2.2)

Due to the presence of the noise ensemble, the mixed
layer temperature has now to be regarded as a sto-
chastic process T(¢) = T\(f) + x(¢) with mean T(¢)
= (T(¥)) and zero average anomaly x(z) = T(t) — T(f).

Formally the averaged steady-state solution of (2.2)
may be cast into the integral form

T\()= ﬁ: dr'{8@—tF(')y (2.2a)

where the Green function
t
—t)Y=60a—-1) exp[—f dsk(s)] (2.2b)
t'A

ensures causality by means of the unit-step function
0t — t'). Since (2.2b) involves the exponential of a
stochastic process, the averaging procedure in (2.2a)
has to invoke some appropriate expansion technique.
It is shown in Appendix A that the Kubo expansion
to second order yields for (2.2a)

T\()= fw dar'8,(t—t"YF\(t') (2.3a)

with -
St —t)=0(t—¢t)e M) (2.3b)

where A\; = Ao — ¢o/2 and
Fi(#)= Fo(5) = Qor(9)/2. (2.30)

It follows from (2.3a) that the average mixed layer
temperature satisfies the deterministic equation

d
(‘—1;+ xl)T.(z),_= Fi)
which in particular no longer coincides with the noise-
free limit (2.1) of the stochastic dynamics (2.2). As the
specific feature of multiplicative noise, the averaged
forcing and feedback are “renormalized” by the noise
variances according to (2.3b) and (2.3c). Physically the
“fluctuation-renormalization” increases the system’s
inertia, since now the average relaxation time r; = 1/
\; is larger than the noise-free relaxation time 7
= 1/Xo.

Subtracting now the average dynamics (2.3) from
the stochastic equation (2.2) yields the dynamics of the
SST anomalies

(2.3)

d
[E + )\(t)]x(t) = (1) 2.4)

where the effective forcing

S0y =/o(t) +y(1)

has-an average

Jo®) =1Q01(2) — goT1(D))/2



28 JOURNAL OF PHYSICAL OCEANOGRAPHY

superposed by a zero-average Gaussian white noise

y(©) = Y(0) = yo() T (). (2.42)
The autocorrelation of this noise is

@Oy +1)) = qi(0)d(r)

where its variance g;(f) is easily determined from the
original noises as

01(t) = QT %(0) = 20 T1()) + Qx(0),
and for its cross-correlation with the feedback noise

Oyt + 7)) = goi()d(7)
one obtains the covariance '

go1(1) = Qoi(8) — goT'1(2) = 2/o(2).

The effective noises satisfy the Cauchy-Schwarz in-
equality, since

90d1(t) — g5:1(0) = 20Q:(1) — Q3:(1) = 0.

In contrast to linear models with purely additive noise,
average dynamics and fluctuations no longer superpose;
while the noise stochastics renormalize the average dy-
namics, the average temperature enters the effective
noise (2.4a). This indicates a nonlinear feature of the
model at hand.

Some general stochastic properties of the anomaly
model (2.4) can be immediately derived from the cor-
responding FP-equation

80 = Nd:xp) +58,(Qp) (2.5)

where
2, X) = gox? — 2go\(t)x + ¢4(?)

and p = p(ty, Xolt, x) denotes the conditional probability
density for the anomaly to have the value x at time ¢
given the value xp at time 7y < ¢. This equation may
be obtained from the Langevin-picture (2.4) either by
expanding the system’s Liouville equation with respect
to the Kubo-number or, in a more phenomenological
way, by means of the Stratonovich-calculus of sto-
chastic differential equations (van Kampen, 1981).

A first simple result from (2.5) is the steady-state
solution for the stationary process ¢; = const and ¢y,
= const.

p(x) = AQ™*(x) exp[—bo arctan(b; x— by)] (2.52)

with an appropriately chosen normalization constant
A and
r=A1+q0)/q0, bo=2\b2/qo,

b= qoba/dor, b2 = goi(doq — qd1) 2.

For vanishing feedback noise: go = 0 and g, = Q, this
density reduces to the familiar Gaussian

p(x) = (No/TQ1)"? exp(—Aox?/Q)).
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Inspection of Fig. 1 clearly shows that the distinctive
difference between the stationary anomaly (2.5a) and
a Gaussian model is loss of symmetry with respect to
the mean mixed layer temperature T:p(x) # p(—x).
Its most probable value

maxp(x) = p(X = go, /qoi)

is essentially determined by the cross-correlation of the
feedback noise and the effective forcing noise. If this
cross-correlation vanishes, which does not imply van-
ishing feedback noise, fluctuations become symmetric
with respect to the mean temperature

p()=(go/m)' *TWI )@@ ™(x), (2.5b)

since now
O(x) = g1 + gox* = Q(—x).

As for the above densities, the normalization of (2.5b)
has been chosen for xe(—co, o0), I denotes the Eulerian
Gamma function and v = u™" = \y/go. The non-Gaus-
sian feature of (2.5b) is its slower asymptotic decay,
i.e., Gaussian SST anomalies exhibit a higher concen-
tration toward the mean temperature.

Furthermore, the FP-equation immediately yields
the moment dynamics for 7,(¢) := (x"(t)). Integrating
by parts, one obtains from (2.5)

(£+ x,,)rno(t) = fiol0) 2.6)

dt
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FIG. 1. Probability densities in the stationary case. The symmetric
curve is the Gaussian, the asymmetric curve is the density (2.5a).
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where

n
A= n(ko - qu)

Siolt) = k(k— 1)[%41(0" o) — goi(Dr, jo(t)] )
i=k=2, j=k—1.
The integral version of (2.6) reads

o= | dtS.t—1)ftt)

with Green functions
Gt —1)=0(t—t")e M),

These Green functions increase exponentially in time
for n > 2M\¢/qo so that the dynamics of the higher mo-
ments becomes unstable. In fact, the multiplicative
noise will eventually drive the system into its unstable
regime, and these events dominate the time-develop-
ment of the higher moments. An extreme example of
this type of stochastics is known from the Wiener pro-
cess, which has been discussed in a geophysical context
by Hasselmann (1976). This process exhibits a stable
first moment, while its variance increases linearly in
time. In these cases the steady-state problem is not well
defined. An extensive study of the problem of stochastic
stability can be found in Arnold (1974).

In contrast to Gaussian SST anomalies, the present
model exhibits nonvanishing odd moments, as long as
goi(?) # 0. These are essentially associated with the
asymmetry of the anomalies with respect to 7). But
similar to the Gaussian case, the knowledge of the first
few moments, namely the first three, determines the
moment algebra completely. For later reference, the
variance

= [ dsut-tatey @7

and the third moment

ro0==6 [ drgst— oyt )

are explicitly written.

3. Correlations and spectra

Since correlation functions and spectra can be di-
rectly obtained from observed SST time series, they
provide the crucial link between data and model. In
particular they yield a far more sensitive representation
of the anomaly stochastics than histogram techniques.
In the following, these quantities shall be discussed for
the model under consideration.
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By definition, one has for the correlation

ra(t, ) = {x(t)x(t)) = f_ Z d* 'ty h)h(t2, 1))
(3.1a)

where

A, y=8@—t")') (3.1b)

and the short-hand notation 4%, has been used, al-
though the two integrations do not commute, but de-
pend on the relative order of t; and t,. For the stationary
process, (3.1a) has been calculated to second-order
Kubo-number by Blaauboer et al. (1982). Using (2.7)
and 7 = 1, — 1, a straightforward generalization yields
for the present nonstationary process

r(t, )= rzo(t+%‘r—-%|‘r|)91+(7) 3.1)

where
8 M) =8(1)+ Gy (—r)=e M= ¢, (—7)

denotes the symmetrized Green function of the average
dynamics of the mixed layer temperature (2.3) while
the argument of the variance selects the earlier of the
two times tand ¢ + 7

min(t,t+-r)=t+%'r—%|‘r|.

The particular form of (3.1) is frequently referred to
as “fluctuation—dissipation relation” (Leith, 1975): the
correlation of anomalies is determined by their sto-
chastics at one instant (“fluctuation”), while its tem-
poral behavior with respect to the time-lag solely de-
pends on the dynamics of the mean temperature (*dis-
sipation”). The factorization of the correlation (3.1) is
basically due to the time-independent feedback sto-
chastics in the present model. For nonstationary feed-
back, the correlation function becomes a convolution-
type product. A Gaussian process of this kind with
application to SST anomalies has been discussed by
Elvira and Lemke (1982).
In the stationary case, (3.1) reduces to

ri7) = 11 (1) = (@ /N
displaying the symmetry
ror)=ro-7)

as necessary for a stationary process. For the spectrum,

one obtains

7'2(0)) = f dfei“”rz(f) = 2)\11‘20()\12 + wz)—' = rz(—w).
(3.1¢)

These are the results derived by Blaauboer et al. (1982).
The spectrum of the stationary non-Gaussian Markov
process is continuous and red, i.e., spectral energy con-
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centrates at low frequencies. As for the OU-process,
the present system develops long-term variability in
response to white noises. In distinction to the OU-case,
the meaning of the spectrum parameters has been
slightly changed by “fluctuation renormalization.” As
far as the spectrum is concerned the difference between
the two processes is thus of minor significance.

A nonstationary situation with relevance to SST
anomalies is that of seasonally varying forcing variance.
It is well known that the heat exchange of the mixed
layer with the atmosphere and the thermocline is sub-
Ject to much larger fluctuations in spring than in late
summer, for instance. This can be taken account of by
considering the forcing variance as a periodic function
that hence has a representation in terms of a Fourier

series ‘
qi(t)= 2 e g, (3.2a)

where wo = 2I1/T, for some characteristic period T,
1 year say, and the Fourier coefficients are conversely
given as

. 1 To .
ql”‘_'Fo R dte™ " qy(t).

Stochastic processes of this type are called “cyclosta-
tionary” and have originally been discussed in econo-
metrics (Parzen and Pagano, 1979). Their importance
in geophysics has been demonstrated by Hasselmann
and Barnett (1981).

Inserting (3.2a) into (2.7) one obtains for the variance
of the cyclostationary non-Gaussian Markov process

rao(t) = 2 €%y’ (3.2b)

with coefficients
20’ = gi"(\y — ivawo) .
With the variance (3.2b) the correlation (3.1) becomes
rt, 7)= 2 e, (1) 3.2)

v

where
r’(1) = ry’ CXD[—%I'VWO(T - |T|)]91+(T) :

exhibiting the symmetry
c.c. R (r)=r"%7).

As the characteristic nonstationary feature, this cor-
relation no longer depends on the time lag only. Rather,
it is represented by a Fourier-series with respect to the
seasonal time, while the lag dependence is completely
shifted to the expansion coefficients. For » = 0 the sta-
tionary case is recovered. The first few coefficients are
shown in Fig. 2.
The spectrum of the process

rft, w) = 2 e "' (w)

v

3.3)
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F1G. 2. The cyclostationary process: (a) Re(r2’(7)/r")
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with

r’(w) = 1o’ (2N — ivwo){(A; — iw)[A; + i(w — vwg)]} !

is seen to vary in the course of the seasons. Again, for
v = 0 the stationary spectrum (3.1c¢) is recovered from
(3.3). Instead of reading (3.3) as a time-dependent
spectrum, an additional Fourier transformation with
respect to the seasonal time

A2, w) = 28(Q — vwo)ry(w)

suggests a different interpretation. While r)’(w) is a
continuous function of frequency, the § function in-
troduces discrete lines into the spectrum. It may thus
be visualized as a band-spectrum with bands r,"(w)
centered at Q = vwy.

The non-Gaussian nature of the present process
manifests itself essentially in the nonvanishing triple
correlation and bispectrum. These are associated with
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the skewness of the SST anomalies with respect to the
mean temperature T, as indicated for the stationary
case by (2.5a). Only in very extreme cases one may
expect to detect such an asymmetry from SST data by
visual inspection or histogram techniques and thus the
bispectrum is the most convenient measure for devia-
tions from Gaussian behavior.
For the triple correlation one has by definition

rs(ty, b2, t3) = (xe(t)x(22)x(23))

= [ drches, s, eahes, )y (4o
where A(t, 1) is given by (3.1b) and the abbreviation
d’t' has been used although the three integrations do
not commute. It is shown in appendix B that the triple
correlation of the present nonstationary, non-Gaussian
Markov process becomes to second-order Kubo num-
ber

nt <t <t;)=89,(t;— lz)[gzo(tz —t)rio(t)

—2r(t1) J; 2dt'920(t2 —1)84(t'— tl)‘]Ol(f')] . (34

The corresponding expressions for time orders other
than the one indicated can be immediately obtained
from (3.4). As for the correlation function (3.1), the
moments 750(f) and rio(¢) of the anomalies enter the
triple correlation only at the earliest time ¢,, while its
temporal behavior with respect to the time-lags now
depends on the Green functions &, of the mean tem-
perature and the Green function 5 of the anomaly
variance.

In the stationary case the triple correlation can be
largely simplified. Then, from (2.8)

r30=—6qo1720/\3

and the convolution integral in (3.4) can be performed,
yielding
<t <t)=ry8(t:—t)

which is in particular independent of the intermediate
time ¢,. Introducing the time-lags 7, = t, — ¢, and 7,
=t; — t; as well as

. 1

“(TI > 72) = max(tv) - mln(tv) = E(lfll + ITZI + |Tl - TZl)?
this may be written independent of chronology

ry71,72) = rye M

1 1 1
= "3091+(§7'|)91+(572)91+[5(71 - 1'2)] . (3.5)

As is well known (Hasselmann et al., 1963), the triple
correlation of a stationary process displays the sym-
metries

r(ry,T2) =ryr2, 7)) =131y — 72, —72),
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which are readily verified for (3.5). In addition, it is
found that (3.5) satisfies

r(ry,72) =r3(—71,—72). (3.52)

This “reversibility” is due to the lack of any memory
effects in the present model.

In the frequency domain the SST anomalies are vi-
sualized as an ensemble of oscillations and the bispec-
trum measures the transfer of energy among these os-
cillators. For independent oscillators (e.g., the Gaussian
case) the bispectrum trivially vanishes. In the present
case one obtains upon insertion of (3.5) into (1.1)

(w1, @2) = 2M2r30(3A 2 4 w? + w)? + w0y w2)/ D (wy, w2)

(3.6)

with denominator
D(w1,02) = A2+ @)+ @A+ (w1 + w2)).

In the frequency domain the stationarity of the process
is reflected by the symmetries (Hasselmann et al., 1963)

@i, w2) = ri(wz, wp) = r3fwy, —(w1 + w))].
As a consequence of (3.5a)
Imriy(w;, w2) =0;
i.e., for the present process the bispectrum is solely
real. Thus, the imaginary part of the bispectrum pro-

vides a measure for the presence of memory effects.
Figure 3 shows an isoline representation of (3.6).

{w,,i,)

594

FIG. 3. Model bispectrum of the stationary non-Gaussian process
with r3 = 0.1 K3 and A, = 10 y~'. The frequency scale of abscissa
and ordinate is given by (4.4).
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4. Inverse modeling of spectra and bispectra

The practical relevance of the above model is con-
veniently tested against data in the frequency domain.
The data provided by the British Meteorological Office
were time series of upper ocean temperature profiles
(¢, —275 m < z < 0 m), recorded at North Atlantic
weathership stations D, located at 44°N, 41°W, 1
(59°N, 19°W) and K (45°N, 16°W). Each of the pro-
files represented an average over DT = 5 days and the
total time series cover a period of about eight years.

SST in the narrow sense, i.e., profile values 71(¢,
z = 0 m), will generally be affected by local influences
as well as by large scale horizontal advection. In view
of the physical limitations of the model considered, it
can hardly be expected to give a proper representation
of advective effects. According to Gill and Turner
(1976) a certain elimination of these can be achieved
with

XO=Tt,z=0m)—T(,z=-275m) (4.1)

thus subtracting variations that extend homogeneously
over the whole column. From the series X(7) the average
seasonal cycle Ti(#) = (X(#)) can now be determined
such that the anomaly

x(O=X@®)— T\

has zero average. The data spectrum is then obtained
from the blockwise Fourier transform x(w) of the SST
anomaly x(¢) according to

KCH
Xo(@)wmin = (KCH)™ 2 xw)xk(w) (4.2)
k=1
while the bispectrum becomes
X: 3(“)1 s wZ)wminz
KCH
=(KCH)"' 2 xi(w)xdw)xi (@ +wy). (4.3)

k=1

Here, KCH denotes the number of blocks of length
LCH and

Wmin = 27/LCH < 0 < wpox = 7/ DT. (4.4)
A careful discussion of the normalization conditions
these data spectra and bispectra satisfy can be found
in Hasselmann et al. (1963). The real and imaginary
part of the bispectra, thus obtained for weatherships
D, I and K, are shown in Figs. 4. Note that all three
cases clearly exhibit a nontrivial imaginary part.

The comparison of data spectra and bispectra with
the present model in the framework of the inverse
modeling technique employs an “optimal-model” al-
gorithm and the concepts of statistical inference. The
optimal-model algorithm is taken to be the standard
least-square fit in the following and provides numerical
values P, for the parameter vector p,. The statistical
concepts yield confidence intervals for the parameters
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HIG. 4a. Real and imaginary part of data bispectrum
at weathership D. Scales as in Fig. 3.

p, = P, £ AP, as well as an estimate of the model
significance. To this end the data are considered as
only one realization out of an ensemble of datasets. In
principle the statistics of this ensemble are not available
and have to be estimated from the known data. As a
consequence of the introduction of the data ensemble,
all quantities of the optimal model algorithm become
statistics.

In case of the spectrum (3.1c) the parameter vector

is
pn = (2x1r209 >‘1)
and the optimal model is defined by
é(p, = P,) = W™¢,e, = min
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FIG. 4b. As in Fig. 4a but at weathership 1.

where the summation convention is implied and
€= XZ(wn) - rZ(wn;pp.)

is the error function, while the weight matrix is chosen
as the inverse of the data-covariance matrix

Wonn = <<X2(wm)X2(wn)>>—l-
An estimate for this matrix can be obtained from (4.2),

using the occurrence of only positive frequencies and
the statistical independence of blocks

<<X2(wm)X2(wn)>> =r 22(wm)6mn /KCH.
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Furthermore, it is assumed that € is x?-distributed with
<€2> =N-M

degrees of freedom, where N denotes the dimension of
the data vector and M that of the parameter vector.
With an a priori specified significance level, 95% say,
a critical ¢.2 can now be determined for the known x-
distribution, such that ¢> > €2 occurs at a frequency
of 5%, while all € < ¢? occur at a frequency of 95%.
The data are then said to falsify the model, if ¢
(p = P) > ¢2, while the model has not to be rejected,
if € (p = P) < ¢2. Thus the significance level provides
a statistical measure of the degree of detail, the model
is required to reproduce with respect to the data.

)
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F1G. 4c. As in Fig. 4a but at weathership K.
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For the SST anomaly spectrum at weathership D
this procedure yields

2,=[(37.9£4.8)k}y™ (11.1+2.0)y7'], €/e2=0.48
and at weathership I

P.=[(6.7£0.9k%y™1,(16.5£2.5)y7"], €*/e2=0.38
and finally at weathership K
2, =[(10.3+1.2k%y™,(12.2+1.9)y7"], €/e?=0.82.

It is seen from these figures that for none of the weath-
erships the model has to be rejected at the 95% signif-
icance level. This reflects essentially the fact that the
non-Gaussian features of the present model do not af-
fect the continuous and red nature of the spectrum,
which is widely observed for SST anomalies. On the
other hand, the above feedbacks, varying around A,
= 13.3y7! are about five times larger than the value A
= 2.7y"", observed by Frankignoul and Hasselmann
(1977) at weathership 1. This discrepancy is not asso-
ciated with their Gaussian and the present non-Gauss-
ian model. In fact, on the mere basis of spectra there
is no way to discriminate statistically meaningful be-
tween the two models. Rather, their calculations refer
to SST in the narrow sense, while the above figures
have been obtained from SST, defined by (4.1). This
smoothing of the data by elimination of a certain
amount of variability leads to a decrease of the observed
relaxation time 7 = 1/\;. As a check, the spectrum of
weathership I has been recalculated, also using SST in
the narrow sense. Now the inverse modeling procedure
yields a value X\; = 3.1y7! in satisfactory agreement
with A = 2.7y, For bispectra the above formalism
needs a slight generalization. The optimal model is now
determined from

eX(p,=P,)= W*™¢¢,,., = min
- with an error matrix
€mn = X3(Wm, Wn) — F3(Wpy, Wy ;Py)
and a weight tensor
Wictmn = {{X3(@m, wn)X3(wp, wp) )y~

Along the same arguments as in the spectrum case and
additionally employing the symmetries of (4.3) it is
found that

<<X 3(wr, @) X3(Wpm,s wn)>> =5r 32(wma @n)Okmbin /[KCH.

For the parameter vector p, = (73, A;) inverse modeling
of the real part of the bispectra then yields for weath-
ership D

P, =[(0.06£0.01)k3(7.7£2.0)y7"], é/e?=0.87
and for weathership I

p,=[(0.05+£0.01)k3 (11.6 £3.2)y7'], €/e2=0.91
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and finally for weathership K
P.=[(0.12£0.02)k3,(10.3+2.9)y™'], €%/e2=0.83.

These figures indicate that the model is significant at
the 95% level, although it may be mentioned that this
was not the case for similar computations for a time
series from weathership C. In view of higher-order
spectra, the present data base should thus be considered
only sufficient for qualitative conclusions and the given
numbers just represent rough estimates.

For the above cases the third moment r3 is always
positive, which implies a negative cross-correlation gy,
between the feedback and the effective forcing. Hence
the most probable value of the anomalies is smaller
than their average. In the time-domain, this may be
visualized as a dominantly Gaussian fluctuation, which
in addition exhibits occasionally larger amplitude ex-
cursions preferably into the positive direction. This is
reminiscent of the phenomenon of intermittency,
frequently observed in time series from turbulent
systems.

The above values of the feedback parameter A, ex-
hibit reasonable coincidence with the corresponding
values, determined from the spectra. Finally, the imag-
inary part of the bispectra, observed for all weather-
ships, clearly shows that memory effects do play a role
in the dynamics of SST anomalies. These are not cov-
ered by the present model.

5. Conclusions

Beside the familiar spectra, weathership data of SST
anomalies yield bispectra, exhibiting a significant real
and imaginary part. This clearly demonstrates the
presence of non-Gaussian effects in the stochastics of
these anomalies. A closer empirical examination of
non-Gaussian fluctuations requires essentially the
evaluation of higher-order spectra from SST data and
thus much larger time series of observations.

As a simple theoretical approach the linear relaxation
equation with multiplicative and additive noise is con-
sidered. The resulting process has the advantage that
its non-Gaussian properties do not affect the well-es-
tablished continuous and red behavior of the spectrum.
Moreover, its characteristic skewness is relevant for
observed SST-anomalies, as indicated by the real part
of data bispectra. On the other hand, the model fails
to reproduce a nontrivial imaginary bispectrum due to
the lack of memory effects. A generalization that merely
introduces memory effects (e.g., a red noise) into the
present model would hardly improve the situation. In -
this case the model anomaly would cease to be Mar-
kovian, and processes of this type are theoretically
poorly understood. However, memory effects can be
modeled in the framework of Markovian processes in
terms of coupled, multivariable systems, embedded in
a white noise ensemble. Deterministic “‘skeletons” of
this type of model are provided by oceanography in
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the form of mixed layer models, including the dynamics
of the mixed layer depth and the advecting velocity
fields. More realistic models of non-Gaussian features
of SST anomalies can thus be expected from the in-
vestigation of the stochastic properties of existing mixed
layer models.
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APPENDIX A
The Kubo Expansion

The Kubo expansion is extensively discussed by van
Kampen (1981) and its application to the derivation
of the correlation function can be found in Blaauboer
et al. (1982). Since this expansion technique is not a
standard concept in geophysics, its basic ingredients
are reviewed in the following derivation of the model
dynamics of the mean mixed layer temperature.

The expansion of the exponential of a statistic (2.2b)
in terms of cumulants avoids the divergence problem
of a moment expansion in steady-state problems. Cu-
mulants will be denoted by double brackets and are
defined as

In{ety =: %} %((A"}}.

- It can be shown that they are certain algebraic com-
binations of the moments, which vanish to all orders
higher than the second for a Gaussian variable. Cu-
mulants are thus particularly designed to measure de-
viations from Gaussian behavior. For (2.2b) with

Si¢—1t)={8@-1))

this yields
Si(t—t")=6(t—1") exp[—((A}) +%((A2>> LR ]
(A1)
where
(= [ asr@)y=naa=r)
! (A2)

(A%)= f’ t d%s(yols1)yo(s2))

If the process yy(f) were not a white noise, but had a
finite autocorrelation time 7. and an amplitude «, the
integral (A2) is of order o(t — t')7.. Thus, the Kubo
number a7, emerges as the relevant expansion param-
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eter in (A1). In the white-noise limit: 7. = 0, which is
formally balanced by a = co such that a’r, remains
finite. The Kubo number will be suppressed in the fol-
lowing.

To evaluate (A2) introduce the unit indicator

1, if s;€(,1)
1
u(s.)=fds26(s1—s2)= 05, if s,=t or s =t
p
0, otherwise
(A3)

indicating whether its argument s, lies within the in-
terval (¢, ¢), on its boundaries or outside. With the help
of the indicator, (A2) becomes

A%))=4o f, dsyu(s1)=qo(t—1')

and thus (A1) assumes the form (2.3b).
Along the same arguments the complete integrand

CH(E, 6y ={8@t—tF('))
of (2.2a) is obtained from
CH(t', 1)) =0t — ') expleF(t') — A(t', D] )e=0
as

(Ad)

CH(t, 1)) =8\t —t")F\(t')
where Fy(¢) is given by (2.3c).

APPENDIX B
Triple-Correlation Expansion

To expand the triple-correlation (3.4a), consider the
averaged product of the Green functions

Ga(th, + + -+, 13)=(8(t, — 1)) (- 12)8 (13— 13))
first. Analogous to appendix A one obtains
Ga(th, « +  ,t3) =81ty —t1)S1(t2— 12)§1(t3— 15)
Xexplgo(ti2+ 713+ 723)] (Bl)

where 7,, measures the length of the intersection of the
time intervals (¢},, ¢,) and (¢,, ¢,). Equation (B1) is not
a unique expression, unless the time order of all of its
six time-parameters has been defined. If all three in-
tervals coincide

St =t=t5t1 =t,=t3)= G3(t, — 1})
while

Os(th, + -+, 3)=8,(t; —11)S(t2— 12)8:(t: — 13)

for completely disjoint intervals. To expand the com-
plete integrand of (3.4a) it is rewritten as a single ex-
ponential of the form (A4) which then yields to second-
order Kubo number

Cht, t)h(ty, )h(ts, 1)y = 851, « + + 1) f3(th, 15, 15)
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with
3
[ 1,05 = 2 K0, 15, 8)
k=1

S, 15, 15) = —goi(th)an (o (£:)o(ti — 1))

where i, j, k denote each a different number out of
(1,2, 3)and : .
(k) = wit) + wit) (B2)
is made up by unit indicators of the form of (A3). To
perform now the three integrations of (3.4a), it is nec-

essary to specify the chronology completely. Consider
the procedure in detail for k = 3

o0
it <h<t)= f d}9(th, -+ + - )Y, 1, 15).
—Q0

In this case (B2) becomes

U12(85) = wa(23) + wx(253),
and hence

rP=r <t th<ty<t,<ts)
+r (<t <t<H<np <),

The time order in the first term is not yet sufficient to
perform the 6 integration. Hence it is split into

=l <t <t <t <hb <t)
+r <ty <uy<ti<L<t),
and after the é integration one has
r?=2rd (<t <ti<t<h<t)
+r2(h<ti<su<ti<t<h).

(B3)

This determines the chronology so that the Green
function can be cast into a definite form. For the first
term of (B3) one has

— ! i ’ —_— !
TR=4LH—t, T=L—l3, Ti=hL—I;.

Thus

Gi(th<t\ <3<t <t <h)

= §1(t3— 1)920(t2 — 11)F 30(t1 — 13)G20(t5 — 11)
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while for the second term

p— ! p— — ’
Tie=4—t, T13=0, T=6L—1

which yields
Gi(thsti<t <3St <h)

=81(t3 — 1)G20(t2 — 12)9 (13 — 1) F20(t1 — 1}).
After the final two integrations one arrives at

P <t,<t3)=8(ts— lz)[% Ga0(t2 — t1)rso(ts) — taoltr)

1 ) .
x f dts8elts— 13)9 (8 — 1don(25) |
1

Similarly, one derives for k = 2:
rit<h<n)=r (<L <),

and fork = 1:
B (h<th<t)= %91(13 = 12)S20(t2 — t)r3o(ty).

The sum of these three expressions yields the triple
correlation (3.4). :
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