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ABSTRACT

The interaction of a longshore current with a longshore topographic feature is investigated in the barotropic
case. It is shown that near resonance, when a long-wave speed is close to zero (in a fixed reference frame), there
is enhanced generation of upstream and downstream coastally trapped waves. An evolution equation of the
KdV-type is derived to describe the resonant behavior, and numerical solutions are discussed for a range of
parameters describing the forcing terms, the detuning term and dissipation. The analogous situation of resonant
generation due to wind stress is developed in an appendix.

1. Introduction

It is now widely recognized that coastally trapped
waves are an important feature of the low-frequency
motion on the continental shelf and slope, and there
have been numerous theoretical and observational
studies of the properties of these waves, their generation
mechanisms, the scattering by longshore topographic
features, and their decay due to frictional processes.
However, relatively little attention has been given to
the enhanced generation that would occur when the
forcing mechanisms are resonant or near-resonant.
Examples of such resonant forcing occur when the
longshore wind stress has a component whose phase
speed is close to that of a free wave speed, or when a
longshore current encounters a longshore topographic
feature with the flow speed close to critical (i.e., the
speed of a free wave is close to zero in the fixed reference
frame).

The purpose of this paper is to develop a theory for
the resonant generation of barotropic coastally trapped
waves for the case when the resonance occurs at the
long-wave end of the spectrum. The main body of the
theory is developed for the case when the forcing is
due to the interaction of a longshore current with a
longshore topographic feature; the case when the forc-
ing is due to wind stress is similar and is developed in
an appendix. We shall show that near resonance a forc-
ing term of O(a) will produce a response of O(a'/?),
and that the dominant part of the response is a free
long wave, whose amplitude is described by an evo-
lution equation of the KdV-type (i.e., it contains a bal-
ance between time evolution, nonlinearities, wave dis-
persion, resonance detuning, dissipation and forcing).
Some numerical solutions will be presented which will
show the range of phenomena that can occur depending
on the various parameters of the system. Analogous
evolution equations of the KdV-type have been ob-
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tained by Akylas (1984) and Cole (1985) for the reso-
nant generation of water waves, by Grimshaw and
Smyth (1986) for the resonant generation of internal
waves, and by Patoine and Warn (1982) and Malan-
otte-Rizzoli (1984) for the resonant generation of
Rossby waves.

When considering resonance due to the interaction
of a longshore current with topography it is first nec-
essary to determine the properties of the free waves
which can exist in the coastal wave-guide in the pres-
ence of current shear. This topic, for the nondivergent
barotropic case, has recently been reviewed by Collings
and Grimshaw (1984), who demonstrated that both
subcritical and supercritical wave modes may occur,
thus indicating the possibility that there are near-crit-
ical, or near-resonant, wave modes (see also Collings
and Grimshaw, 1980). Recently Hughes (1985a,b;
1986a,b,c) has developed a comprehensive theory of
coastal hydraulics which has directly addressed the
question of when is a current near a critical, or reso-
nant, condition with respect to long wave modes. For
the barotropic case Hughes (1985a) has demonstrated
the existence of a critical current, adjoined in parameter
space by two conjugate currents; the wider current was
found to be subcritical, and the narrower current su-
percritical. Hughes (1985b, 1986a,c) has speculated that
a number of current systems such as the California,
Florida, Aguthas, East Australian, East Auckland cur-
rents and the East Cape Current off New Zealand may
be subject to hydraulic control, or, in the terminology
of this paper, candidates for resonant forcing. In a dif-
ferent context Whitehead et al. (1974), Gill (1977) and
Pratt (1983, 1984) have considered the hydraulic theory
of rotating-channel flows; this situation bears some re-
semblance to the hydraulics of coastal currents with
Kelvin waves playing the role of the coastally trapped
nondivergent waves that we will be concerned with.

In the remainder of this section we shall present the
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barotropic equations of motion. We shall use nondi-
mensional coordinates based on a horizontal length
scale L (typical of the shelf width), a time scale ||,
a velocity scale | f|L, and a vertical scale 4, (a typical
depth). The sea-surface elevation is scaled by u?A, where
u® = fiL*%(ghy)™! is the divergence parameter and is
assumed to be small in the sequel. The nondimensional
equations of motion are then

du

r
Z+fk><u+V§—;I (1.1)
u2.3—f+v-(Hu)=o, (1.2)

where
H=h+u? (1.3)

Here u is the fluid velocity, {is the sea-surface elevation,
h is the undisturbed depth,  is a combination of wind
stress and bottom stress, Kk is a unit vector in the vertical
direction, fis =1 according to whether the system is
set in the Northern or Southern hemispheres, and d/d¢
is the conventional convective derivative. In the next
section these equations will be expressed in curvilinear
coordinates for which x = 0 defines the coastline, and
x => oo defines the deep ocean (see Fig. 1). The bound-
ary condition at the coast is that

Hu-n=0, (1.4)

where n is a unit vector orthogonal to the contours on
which x is a constant. In the deep ocean we require
.that the waves be trapped and the appropriate condition
is

on x=0,

Hu-up)-n=0, as x—oco. (1.5)

Here uy is the basic longshore current and is not nec-
essarily required to vanish in the deep ocean. The stress
7 is given by

T=Tw—Tg, (1.6)
where

75=r(u— ). (1.7)

Here 1y is the applied wind stress and 7z is the bottom
stress. In (1.7) we have assumed that the friction op-
erates only on the waves, and that the basic longshore
current ug is maintained by an appropriate body force.
The friction coefficient is a function of depth, so that
r = r(h). An appropriate functional form could be
r oc A2, but we shall not need to specify the form o
r(h) in the sequel. :
In section 2 the equations of motion are formulated
in the curvilinear coordinates, and the nonresonant
interaction of a longshore current with a longshore to-
pographic feature is discussed. Then in section 3 we
consider the resonant case and derive the evolution
equation. In section 4 numerical solutions of the evo-
lution equation are described and discussed. The con-
cluding section 5 summarizes our results. In appendix
A we describe the general formulation of the equations
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FIG. 1. The coordinate system.

in curvilinear coordinates, and in appendix B we de-
velop the theory for resonant wind-stress forcing.

2. Nonresonant case

We shall consider here the generation of long coast-
ally trapped waves by the interaction of a longshore
current with longshore topographic variations. Thus,
in the equation of motion (1.1) we set the wind stress
w = 0 [see (1.6)]. Next let (x, y) be curvilinear coor-
dinates such that the coastline is given by x = 0, and
the deep ocean by x = oo (see Fig. 1). The equations
of motion (1.1) and (1.2) in the (x, y)-coordinate system
are described in appendix A. In the absence of any
longshore topographic variations the depth & = ho(x),
and u = 0, v = vp(x); here u, v are the velocity com-
ponents orthogonal to the coordinate curves Xx, y
= constant respectively. Here we shall assume that the
depth hy(x) is a monotonically increasing function of
x, such that Ag(x) = 1 exponentially fast as x = o0;
at the coastline we shall assume that either 4,(0) = 0,
hy,(0) # 0 or that hy(0) # 0. For the longshore current
we shall assume that vy(x) = ¥, exponentially fast as
x = oo, where ¥, is a constant. The case when V; is
nonzero is a simple model of a longshore current that
is not coastally trapped (i.e., the offshore scale of the
current may be larger than the width of the continental
shelf).

We propose to study long waves on this basic flow.
Hence we rescale the longshore coordinate y and the
time ¢ and introduce the new variables
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T=¢et 2.1

where ¢ is a small parameter. Consistently with this
rescaling we replace u with ey, the divergence parameter
u with eu, and the friction parameter r with €. The
longshore topographic variations are described in two
steps. First, we put

Y=¢y,

y'=y (2.2)

where (x’, y') are conventional Cartesian coordinates
(see Fig. 1). Here « is a small parameter measuring the
magnitude of the topographic variations; ¢ ' measures
the longshore length scale of the variability. The coast-
line is given by x = 0, or x’ = ag(0, ¢y'). Next, we shall
suppose that the depth 4 is given by

h = ho(x) + ak(x, Y). 2.3)

We shall suppose that g(x, Y) and k(x, Y) = 0 ex-
ponentially fast as x = oo, and also that they tend to
zero as | Y| =» co. The longshore topographic variations
are thus confined locally in both x and Y; essentially,
g(x, Y) describes the coastline variability and k(x, Y)
describes the depth variability. Note that a convenient
choice for g(x, Y) is g(0, Y){1 — ho(x)}/{1 — ho(0)}.
The equations of motion are (1.1) and (1.2), or, in
terms of the (x, y)-coordinate system, (A6) and (A7).
Using the definitions (2.1), (2.2) and (2.3) these become

—fo+ {x—afgw=0(é),

xX'=x+ag(x,Y),

Ju+ ¢y+vr+uv +vvy+ afgu + (v V(X))
=0(é?),
{(ho+ ak)(1 + ag)u},
+ {(ho+ ak)(1 + ag)v}y=0(). (2.4)

Here ry = r(hp). The omitted terms on the right-hand
side have not been displayed as they are not needed in
either the present nonresonant case or in the resonant
case discussed in the next section. The boundary con-
ditions at the coast (x = 0), or in the deep ocean (x —
), are that hgu = O(e?) [see (A9)]. Since the forcing
terms are O(a) we initially seek a solution in which the
response is also O(a). Thus we put

u=auy(x, Y, T)+ O(a? ae, é),
v—vo(x) = avi(x, Y, T)+ O(c?, ae, €),

§=S(xX)=adi(x, Y, T)+0O(c? ae, ), (2.5)
where o, = fio. It follows that
—fo1+ §1x = f8xVo,
(f+vodus + {1y + vir+ 001y =0,
(hour)x+ (hov1)y = —(k + hogy)yvo. (2.6)

From the third equation in (2.6) we can introduce a
streamfunction ¥, such that
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=Y1y, hovy +(k+hogdVo= —Yix-

Eliminating {; from the first two equations in (2.6) we
find that

(2.,
oT

holll (27)

BY) (‘/;:x) +Podiy=Fiy, (2.8)

where
Po=(f+vo)/ho.

The forcing term in (2.8) is independent of T and given
by

7o (2.9)

Equation (2.8) can be recognized as the O(a) vorticity
equation [see (A8)]. The boundary condition at the
coast is

k  (vo’k
F.—ﬁ’—°+( 20) +(06°8)x.

¥v1=0, at x=0. (2.10)
In the deep ocean an outer expansion is needed in
which the independent variables are X = ex, Y and 7,
and the dependent variables are V = ¢ !(v — V;), u and
= (¢ — o). We shall not give details here (but see
§3) as it follows immediately that the outer boundary
condition for ¢, is
Yix—>0 as x—>o0. (2.11)
We shall seek a solution of (2.8) in terms of the long-
wave modes. These are obtained by considering the
homogeneous form of (2.8) and seeking solutions with

. the separable form A(Y — c¢T)Y(x). It is readily shown

that

Vs +P 0 at x=0
(c— o) ( ho)x oY =

¥=0
Yx—>0 as x—>o0.
(2.12)

In general this equation has solutions for both real val-
ues of the speed c representing stable waves, and com-
plex values of ¢ representing unstable waves (see Coll-
ings and Grimshaw, 1980, 1984). Here, we shall sup-
pose for simplicity that there are no unstable waves; a
sufficient condition for this to occur is that Py, is one-
signed. For the stable waves ¢ < v, if f> 0, and ¢
> vy if £ < 0 where v, = minvy(x), v = maxvy(x); in
order for stable waves to exist it is necessary for fP,
< 0 somewhere. Note, in particular, that we are ex-
cluding the possibility of critical levels where ¢ = vy.
It will be useful in the sequel to have available an or-
thogonality condition between modes with different
speeds. For this purpose we put

¥=(c—vo)¢ (2.13)
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and then (2.12) becomes

» 1
((C"vo)z%) +f(C—Uo)(h—0) =0, 2.14)
¢=0 at x=0 514
$x—>0 as x-—>o0. @19

Then, if [¢,(x), ¢,;] and [¢;(x), ¢;] are two distinct modes
(i.e., ¢ # ¢), it may be shown that

J; Poppsdx=0, r#s. (2.15)
It can be shown that this condition is related to the
conservation law for pssudomomentum (compare the
general analysis by Held (1985) for shear flows). Next,
if [¢,(x), ¢;], r = 1+ - + R denotes the set of all long-
wave modes, we put

Vi = 2AY, T (x). (2.16)

Here R may be infinite. It is not known, in general, if
the set of long-wave modes is complete, but we note
that if vy is constant (i.e., vg = V) then R is infinite
and the modes are complete (e.g., see Gill and Schu-
mann, 1974). Further, if fPy, < 0 everywhere it may
also be shown that the modes are again complete. Even
when the modes are not complete it may be shown by
solving (2.8) with a Fourier-Laplace transform in Y, T
respectively, that (2.16), together with Eq. (2.17) (see
below) for 4,, provides the asymptotic solution for ¢,
as T = oo0.

Substituting (2.16) into (2.8) and using the orthog-
onality condition (2.15) it may be shown that

04, 04, OF,

o =),

2.17
oT oY 9Y 217)

where

IrFr=f F1¢rdx
0

I,= f P0x¢,2dx.
0

The initial condition for (2.17) is that 4,(Y, 0) = 0,
and hence the solution is given by

cA,=F(Y)—F(Y— CrT)--

Equation (2.17) is a forced first-order wave equation
of a kind now familiar in the theory of coastally trapped
waves since the work of Gill and Schumann (1974).
The solution (2.18) describes a steady disturbance in
the region of the forcing, together with a freely prop-
agating wave with speed c¢,. Here the forcing function
F, is given in terms of the functions g(x, Y) and
k(x, Y), representing coastline and depth variability
respectively, by (2.9) and the second equation of (2.17).

(2.18)
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When ¢, = 0, (2.18) is replaced by

dF,
A, TaY(Y)' (2.19)
Thus the expansion (2.5) is secular for large times, and
a different scaling is required. This is the resonant case
and is discussed in the next section. We note that ¢,
= 0 implies that fog(x) > O for all x since we are as-
suming that there are no critical levels.

3. Resonant case, ¢, ~ 0

In this section we shall suppose that the nth mode
is resonant. It is well known that for resonant phenom-
ena an O(a) forcing produces an O(«'/?) response, and
that the appropriate time scale is O(a~'"/2). Hence we
introduce the long-time variable

r=a'’T. 3.1

At leading order the solution is described by the free
long-wave mode a'2A(Y, 7)¥.(x), whose speed c, is
O(a'?), and whose amplitude A is undetermined at
this stage. Assuming the balance o = ¢ we put

¥n

u= a”szh +au; + O(as/z)

v—vy(x) = —a'24 %’5+ av, +0(a*?)
0

F. (3.2)

£ to0) = a4 {M"

hO - Po%}

+at; +0(a??)

= aI/ZA J

Here A is a detuning parameter. It is useful to note
here that the offshore fluid particle displacement is
given by —a'/24¢,/h, to leading order.

On substituting the expressions (3.2) into the equa-

tions of motion (2.4) we find that
tﬁnx
ho .
(f+vodu, + §iy + 037+ Vol y
Ynx %(lﬁnx) ‘l’uxz)
A+ 2 )y gq f¥n(Ynx) _Frx)
( ho ) y(ho ho x hOZ x

(hoty)x+ (hovy)y = —(k + hogx)yvo. (3.3)

The third equation of (3.3) allows us to introduce a
streamfunction ¢, [see (2.7)), and then elimination of
¢, from the first two equations gives the following
equation:

—(%+ )(‘ﬁl‘o) +Pody=Firt N, (3

'_ﬁ’l + g_lx fngo
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where

N = (A +AAdy+—- A)—+AA,('P”( "") ——'p—'”ﬁ)
1= Y 2}

ho h0
Here we recall that F, is the forcing term defined by
(2.9). The boundary condition at the coast is again
(2.10). Equation (3.4) has a similar structure to (2.8).
However, it is not now convenient to seek a solution
on terms of long wave modes similar to (2.16) since
¥, does not now satisfy the outer boundary condition
(2.11). Instead ¥, {x = 0o0) must be determined from
an outer expansion which is described below.

First, however, we seek the solution of (3.4) subject
to the boundary condition (2.10). Since the right-hand
side is independent of T, we construct a solution for
which ¢, is also independent of 7. The left-hand side
of (3.4) is then an ordinary differential equation in x
for ¥, y. The solution which satisfies the boundary con-
dition (2.10) is

x B ' * Bi¥n
b= ittt [ Sy [Brge 35)
0o Vo 0 Up

where B; = F,y + N,,. Here A4, is an undetermined
function of Y and 7 and can be regarded as an
O(a'”?) correction to the amplitude A4; ¥,(x), x(x) are
two independent solutions of (2.12) with ¢ = 0 and are
normalized so that their Wronskian is given by

1
'ﬁ;(¢nXx —¥nx)= 1.

Note that v, satisfies the boundary conditions (2.10)
and (2.11), but x does not by virtue of (3.6). If we let
X = oo in (3.5) it may be shown that

J'oo Bl‘,’n dx+ [\bn‘l/lx}’] =0,
0 Yo x> c0

(3.6)

ho 3.7

Equation (3.7) is the compatibility condition which
must be satisfied in order that the solution for y; con-
tains no secular terms. It will eventually provide an
evolution equation for the amplitude 4. Substituting
for B, from (3.5), using (2.9) for F, and (3.4) for N,
we find that (3.7) becomes

A, +AAy+vA+ cAAv+ n¥s

‘pn‘//lx}'] _
Lihy ) oo

where

= P,
Lo= _f 2,3 X
n0 b Vo“Pn ( h vo)xdx’

Ly= f —Poxd),,zdx (3.8)
Here ¢, = —v¢, [see (2.13)] and I, and the forcing
function F, are defined in Eq. (2.17).

To complete the analysis we must construct the outer
expansion in the deep ocean where s, = 1 and v, —>
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V,. The independent variables in the outer expansion
are X = ex, Y and T, and the dependent variables are
V=¢lv— 1), uand Z = ({ — {o). Since gand k -
0 in the deep ocean, the equations of motion (1.1) and
(1.2) become

e(uT+ Vouy) —fV+ ZX= 0(62)
(Vr+ VoVy) +fu+ Zy=0(&)
uzé(ZT+ VoZy‘l"fVou) +ux+ Vy= 0(62)

Here we recall that the divergence parameter u in (1.2)
has been replaced with ue. We seek a solution of these
equations of the form

u=a"?U;+0O()

(3.9)

V=0a"*V,+0O(a) (3.10)
Z=a"Z,+0(a)
Since we are maintaining the balance a = €, the ex-

pansion (3.10) describes a quasi-geostrophic solution
in the deep ocean, This is given by

fUi=—2Zy, fVi=Zx,

where

a
(3T+VO )(ZIXX+ZIYY) ¥ f?Zir=0. (3.11)

The solution (3.10) as X — 0 must be matched with
the solution (3.2) as x =+ oo. Hence it may be shown
that

Z(X > 0) = —fAY,(x—> o) } _ (3.12)

Zi (X = 0) = —f{1{x—> 0)

The matching conditions also confirm the boundary
condition (2.11) for ¢,. Since the first boundary con-
dition in (3.12) for Z, is independent of 7, we seek a
solution for Z; which is likewise independent of T.
This can be constructed using a Fourier transform in
Y, and the deep ocean outer boundary condition that
U, = 0 as X = oo0. The result is

Zifeor=—5- [ " explinY ~ )3, (3.1)

where F(4) = [% exp(—inY)A(Y, 7)dY. Here F(4) is
the Fourier transform of 4. The second boundary con-
dition in (3.12) now shows that

Yidx = 00) = ¥,(c0) B(4), (3.14)

where B(4) = —(1/27) [%2 |nl exp(inY)F(A)dn. Here
B(A) is a pseudodifferential operator and is equivalent
to the Hilbert transform which appears in the evolution
equation describing internal solitary waves in a deep
fluid (Benjamin, 1967, or Davis and Acrivos, 1967).
Note the curious fact that the divergence parameter u
plays no role in this solution.
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We are now in a position to complete the derivation
of the evolution equation by substituting (3.14) into
(3.8), with the result that

A+ AA}"" vA + GAAy+ A.B(Ay) = F,,y, ' (315)

where I\ = ¥,% (). The evolution equation (3.15)
contains a balance between time evolution, resonance
detuning, dissipation, nonlinearity, wave dispersion,
and forcing. Analogous equations of the KdV-type in
which the dispersive term B(4y) in (3.15) is replaced
by Ayyy have been obtained by Akylas (1984) and Cole
(1985) for the resonant generation of water waves, by
Grimshaw and Smyth (1986) for the resonant gener-
ation of internal waves, and by Patoine and Warn
(1982) and Malanotte-Rizzoli (1984) for the resonant
generation of Rossby waves. Equation (3.15) can be
recognized as a forced version of the equation which
in the absence of dissipation (v = 0) describes solitary
coastally trapped waves (for instance, see Smith, 1975,
or Grimshaw, 1977). Indeed, the unforced, nondissi-
pative equation is the deep-fluid internal solitary-wave
equation derived by Benjamin (1967) and Davis and
Acrivos (1967). Discussion of Eq. (3.15) is taken up in
the next section.

It remains to determine an initial condition for
(3.15). This is obtained by matching the expansion (3.2)
as 7 —> 0 with the expansion (2.5) as T = oo. The
result is

A(Y,00=0

oF, . 3.16
4,0=52 (3.16)

The first condition in (3.16) is the required initial con-
dition. The second condition is then automatically sat-
isfied by solutions of (3.15) and agrees with the resonant
solution (2.19) found in section 2.

4. Numerical solutions for resonant case

In this section we shall discuss numerical solutions
of the evolution equation (3.15). First let us rescale
Eq. (3.15) by putting

=\, Y*=(sign\)Y, 4* =61’\A,
wo_ T p A=l Y 4.1
F 6)2 ns xs 4 IA|. ( . )

The result is
A% + A* A%+ + v*4* + 6A4*4% + B(A}+)+ F-=0,
A¥Y*,0)=0. (4.2)

Henceforth we shall omit the asterisks in our discussion
of (4.2). We consider only localized forcing functions
K(Y), such that F - 0 as Y = *c0. The forcing func-
tion will be characterized by two parameters Fj and £
where we put
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R(Y)=FoF(£Y).

Here F = 0 for all Y and has a maximum value of |
at Y=0and —0as Y — *o0. Thus Fjis the maximum,
or minimum, of F according as F; is positive, or neg-
ative. The positive parameter £ measures the length-
scale of the forcing, i.e., £ is the half-width of the
forcing. Equation (4.2) was integrated numerically us-
ing a pseudospectral method analogous to that devel-
oped by Fornberg and Whitham (1978) for the Kor-
teweg-de Vries equation. The results are not sensitive
to the shape of F, and all the results shown are for the
forcing function

F(£Y) = sech¥(£Y). 4.4)

The results are shown in Figs. 2-7 and are discussed
in detail below. For computational convenience, in the
numerical solutions the forcing function was centered
at Y = 85. In general the numerical solutions are similar
to those obtained by Grimshaw and Smyth (1986) and
Smyth (1986) for the forced Korteweg—de Vries equa-
tion [i.e., the dispersive term B(Ay) in (4.2) is replaced
by Ayyy]. We refer the reader to these papers for a
comprehensive-analytical description of the numerical
solutions; a similar analytical description could also be
given here but for brevity will be omitted. Note that
to obtain the results of these papers, the transformation

(4.3)

- A = —A, Y= —Y must be made, as well as replacing

the dispersive term B(Ay) with Ayyy in (4.2).

One of the important distinctions which emerges
from our numerical solutions is that between positive
forcing (Fy > 0) and negative forcing (Fy < 0). Positive
(negative) forcing corresponds to the situation when
the forcing has the same (opposite) polarity to the sol-
itary wave solutions of the unforced nondissipative
equation [i.e., (4.2) with F = 0 and » = 0]. Through
the scaling (4.1) the criterion for positivé or negative

- forcing can be correlated with the physical features of

the coastal waveguide. Thus the forcing is positive or
negative according as (a1,)(F,[,) is negative or positive.
Here o, is given by (3.8) and F,I, by (2.17). To esti-
mate the sign of these two expressions we first observe
that —A¢,(x) is proportional to the offshore fluid par-
ticle displacement. Assuming that ¢,(x) is normalized
so that —¢, > 0 on average, it follows that when A4 is
positive (negative) fluid particles are displaced offshore
(onshore) on average. Note that this is likely to be a
valid interpretation for the first mode, but becomes
more difficult to interpret for the higher modes, and
the reader is cautioned that the discussion which follows
may not have any general validity, and in any particular
situation it is best to compute (2.17) and (3.8) directly.
Proceeding nevertheless, we shall assume that Py(x) is
dominated by the term f/hy and that gradients of A,
dominate those of vy. It then follows from (3.8) that
oI, has the sign of (h, 2).; thus we expect ol, to be
positive (negative) when the bottom topography is pre-
dominantly convex (concave). In obtaining this result
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we have used the fact that fi, > 0. With the same hy-
potheses F; (2.9) has the same sign as & for topographic
forcing (i.e., k # 0, g = 0), and the same sign as g, for
coastline forcing (i.e., k = 0, g # 0). Also, we note that
& Will be proportional to —g(0, Y)ho,, if we make the
canonical choice for g(x, Y). In general, we expect the
bottom curvature to be convex on average, and hence
we expect o, to be positive; it follows from (3.15) and
(4.1) that A* and A4 then have the same polarity. Fur-
ther, for topographic forcing we expect Fy to have the
same sign as k; for instance, a submarine canyon pro-
duces Fy > 0. For coastline forcing we expect Fy to
have the same sign as —g(0, Y); for instance, a headland
produces Fy < 0.

The two other important parameters are A and ».
The A measures the amount of resonance detuning
[see (3.2)]. If A > 0(<0) we shall say that the flow is
subcritical (supercritical). Here the terminology derives
from classical hydraulic theory. To demonstrate this
we first recall the definitions of 7, (2.17) and X (3.15),
and use the fact that fP,, is predominantly negative
(i.e., only stable waves occur) to infer that A has the
opposite sign to f. Then, since fiy > 0 (i.e., there are
no critical layers), it follows that subcritical (supercrit-
ical) flow corresponds to long waves of phase speed ¢,
propagating against (with) the longshore current v,.
Thus the classification agrees with that expected from
hydraulic theory (see also Hughes, 1985a, for a hy-
draulic theory of coastal currents). Consistent with this
classification we shall refer to ¥ > 0(<0) as the up-
stream (downstream) region. The friction parameter »
is defined in (3.8) and is always non-negative. In dis-
cussing our numerical results we shall consider both
positive and negative forcing for a range of values of
A, i.e., for a subcritical case (A > 0), a resonant case
(A = 0) and a supercritical case (A < 0). Each set of
results will be for a fixed value of », and three such sets
will be considered; these will be for » = 0 (nondissi-
pative), for a small value of » (weakly dissipative) and
for a moderately large value of v (strongly dissipative).
The numerical solutions are not sensitive to the value

20.04 =

16. 0

R. GRIMSHAW

59

of the remaining parameter £ and all our results are
shown for a fixed value of £ Generally, increasing £
increases the effects of dispersion vis-a-vis the effects
of nonlinearity. Also the numerical results are not very
sensitive to the value of |Fol, and hence we shall only
show results for a single representative value.

a. Positive forcing, nondissipative (Fop > 0, v = 0)

The numerical results are shown in Figs. 2, 3 and 4.
In Fig. 2 we show the resonant case A = 0. In the
forcing region the solution becomes locally steady as
T = 00, with a downstream depression and a rise in -
level over the obstacle. The downstream depression is
terminated by a modulated wavetrain, whose crests
scale with Y/r as 7 = oo, thus suggesting they can be
modeled by a similarity solution of the unforced, non-
dissipative equation (4.2). Note that the unforced
equation can be used upstream and downstream since
the forcing is effectively confined to a distance £~! on
each side of the maximum point. On the upstream side
of the forcing another modulated wavetrain is being
generated, with each wave being closely approximated
by the solitary-wave solutions of the unforced, non-
dissipative equation (4.2). These are given by (see Ben-
jamin 1967, and Davis and Acrivos, 1967)

A=a(1+ (Y —vr)»)™

where . 4.5)
3a
v—A > L

In general, the numerical solution is qualitatively sim-
ilar to that obtained by Grimshaw and Smyth (1986)
for the positive forcing of the Korteweg—de Vries equa-
tions, and much of the analysis developed by these
authors has its counterpart here. Thus the amplitude
and spacing of the solitary-like upstream waves can be
approximately predicted by regarding these waves as a
train of N solitary waves, with spacing /#, where N
~ vrh™!, and then applying the laws for conservation
of mass and energy. The result is

102.4 110.9 19,5 128.0

FIG. 2. The numerical solution for Fo = 0.5,» =0, A =0 and £ = 0.3.
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FIG. 3. The numerical solution for Fo = 1,» =0, A = 4 and £ = 0.3.
24.(A+44.) zone features a weakening of the upstream waves and
OO Sl e 4 a corresponding intensification of the downstream
(A+34,) , (4.6) Wwaves. A similar transition zone occurs here but we
27 ((A+34.)2+ 34,2 shall not give any further details.
=3 A(D+34,) In Fig. 3 we show a subcritical case, A > A,. The

where A4, is the mean level just upstream of the forcing
region. Further if 4_ is the level of the depression
downstream of the forcing, then it is readily shown
from the steady, nondissipative form of (4.2) that

A+3(4,+A4)=0. 4.7

It remains to find a suitable estimate for A, . Grimshaw
and Smyth (1986) show that for wide forcing regions
(i.e., £ < 1) hydraulic theory may be used to estimate
A.. This is obtained by omitting the dispersive term
[i.e., B(Ay) in (4.2)] and solving the resulting equation
in the vicinity of the forcing region. The result is

64, =+(12Fp)'? - A. 4.8)

Substitution of (4.8) into (4.6) then gives the required
approximate expressions for a and A, which are found
to be in good agreement with the numerical results.
Similar solutions to that shown in Fig. 2 are found
when A lies in the resonant band A_ < A < A;. Here
A, are =0 and are determined in part by the require-
ment that 4, = 0. Using the approximate expression
(4.8) for A, valid for wide forcing regions we estimate
that ’

A =%(12Fp)' 2. 4.9)

For the forced Korteweg—de Vries equation Grimshaw
and Smyth (1986) identified a parameter range A,
< A < A, in which there was a transition from the
resonant behavior shown in Fig. 2 to the completely
subcritical behavior shown in Fig. 3. The transition

most prominent feature here is the downstream sta-
tionary lee-waves, the local depression in the forcing
region, and the generation of a finite number of up-
stream solitary waves (just one appears in Fig. 3) to
compensate for the depression. As A = oo, with F,
fixed, the solution reduces to a classical lee-wave con- ’
figuration (see, for instance, Patoine and Warn, 1982).
In Fig. 4 we show a supercritical case, A < A_. The
most prominent features are the locally stationary ele-
vation over the forcing region and the downstream
modulated wavetrain. Note that whereas the compen-
sation for a depression is a positive displacement re-
sulting in upstream solitary waves (the subcritical case,
Fig. 3), the compensation for an elevation is a negative
displacement resulting in downstream modulated
waves (the supercritical case, Fig. 4).

b. Positive forcing, weakly dissipative (Fy> 0,v=0.1)

In Fig. 5 we show the resonant case A = 0. It is
generally similar to the corresponding nondissipative
case shown in Fig. 2. The most noticeable effect of the
weak dissipation is the reduced amplitude of the waves,
both upstream and downstream. In particular, whereas
in the nondissipative case the leading wave is the largest,
the opposite is now the case. This is presumably because
it is the first to be generated, and hence it has had a
longer time to be affected by dissipation. The subcritical
and supercritical cases are also generally similar to the
corresponding nondissipative cases shown in Figs. 3
and 4, respectively, with the upstream and downstream
waves substantially reduced in amplitude.
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8.8 ‘.—’I,//// —/___/ =

/
=
N %'/;///
9.8
. T ; : - . " . . 5
2’2 s8's 17.1 25.6 34.1 42.7 51.2 59.7 68.3 76.8 85.3 93.9 182.4 118.3 118.5 128.0

FIG. 4. The numerical solution for Fo = 1,» =0, A= —4and ¢ = 0.3.
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FIG. 5. The numerical solution for Fo = 0.5, » = 0.1, A=0and £ = 0.3.

¢. Positive forcing, strongly dissipative (Fy > 0, v
= 1.0)

In Fig. 6 we show the resonant case A = 0. The
dissipation is now so strong that no waves are gener-
ated, and the solution is a stationary state in the forcing
region, for which the primary balance is between the
dissipative term and the forcing. The subcritical and
supercritical cases are also dominated by the stationary
state in the forcing region, since the dissipation is suf-
ficiently strong to obliterate the upstream and down-
stream waves. For the subcritical (supercritical) case
the stationary state is one of depression (elevation) over
the forcing region.

d. Negative forcing, nondissipative (Fy < 0, v = 0)

The numerical results for the resonant case, A = 0,
are shown in Fig. 7. The major differences between this
case, and the corresponding case for positive forcing
shown in Fig. 2, are the nonstationary character of the
solution in the forcing region, and the absence of any
pronounced upstream or downstream waves. If the
forcing is sufficiently strong, eventually the disturbance
in the forcing region builds up to a sufficient level for

20. 0

one or more solitary waves to be emitted upstream,
with the simultaneous production of some radiation
downstream. Some very small-scale downstream ra-
diation can be seen in Fig. 7 associated with a rise in
amplitude of the transient disturbance in the forcing
region. Unfortunately it is not possible to show this
more clearly with our present numerical scheme as the
large amplitudes needed for the transient solution in
the forcing region are associated with high curvature
leading to a breakdown of the numerical scheme.
However, the general nature of the response can be
inferred from the corresponding solutions obtained by
Grimshaw and Smyth (1986) for the forced Korteweg-
de Vries equation, for which these numerical problems
are not so acute. The subcritical case (A < 0) will not
be displayed as it can be described in terms of the cor-
responding case for positive forcing shown in Fig. 3,
in that the dominant feature is again the downstream
lee-wave train. However, in contrast to Fig. 3, the local
depression over the forcing region is replaced by a local,
transient elevation, and the compensating upstrearm
solitary waves are replaced by a compensating upstream
modulated wavetrain. The supercritical case (A < 0)
will also not be displayed as it can be described in terms

m
= -—-—- -
B ———
M/\

1.0 = -
A ———— -
2.0 = - - > -

FIG. 6. The numerical solution for Fy = 0.5, » = 1.0, A = 0 and { = 0.3.
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FiG. 7. The numerical solution for

of the corresponding case for positive forcing shown
in Fig. 4. Thus, in contrast to Fig. 4, a local depression
is formed over the forcing region and to compensate
a finite number of upstream solitary waves are formed.

e. Negative forcing, weakly dissipative (Fy < 0, v
=0.1)

No numerical results will be shown as they generally
show the same features as the nondissipative case (d)
except that where waves are formed they are reduced
in amplitude. .

[ Negative forcing, strongly dissipative (Fy < 0, v
= 1.0)

No numerical results will be shown as they can be
described in terms of the corresponding case for positive
forcing shown in Fig. 6. The dissipation is so strong
that no waves are generated, and the solution is a sta-
tionary state in the forcing region. In the resonant case
A = 0 the primary balance is between the dissipative
term and the forcing, and the solution is analogous to
that shown in Fig. 6 but with the opposite polarity.
For the subcritical (supercritical) case the stationary
state over the forcing region is one of elevation (depres-
sion). .

5. Summary

In this paper we have described the resonant gen-
eration of coastally trapped waves when a longshore
current interacts with a longshore topographic feature.
The analogous theory when wind stress provides the
forcing is developed in an appendix. The most signif-
icant predictions of the theory are the generation of
disturbances trapped in the forcing region defined by
the topographic feature, and the simultaneous gener-
ation of upstream and downstream nonlinear waves.
" The precise nature of the response depends primarily
on the polarity of the forcing and the strength of the
dissipation. Although the conditions for resonance have
been precisely defined we have not directly addressed

93.9  182.4

' i i y 18.9 1185 128.0

Fo=-02,v=0,A=0and £ =0.3.

the question as to which current systems are the more
likely candidates for applications of the theory devel-
oped here. However, we note that Hughes (1985,
1986a,b) has speculated that a number of coastal cur-
rents are potential candidates for critical, or resonant,
flow, and has commented that the stationary and tran-
sient eddies often observed in these currents may be
forced by longshore topographic features. A notable
example here is the California Current whose eddy field
is extremely complicated and strongly affected by the
horizontal shear of the current and the bottom topog-
raphy (e.g., see Hickey, 1979). Clearly, further work is
needed to establish the viability of the resonant mech-
anism proposed in this paper. However, it is pertinent
to note that resonant forcing needs only a topographic
feature of O(a) to produce a response of O(a!/2), and
that exact resonance is not required. Indeed, the theory
described in section 4(a) can be used to deduce that
the bandwidth for resonant forcing is given by

lc,l < 120a(max|F,|)|"? (5.1

where ¢, is the long-wave phase speed of the resonant
mode, F, is related to the forcing by (2.17), and ¢ is
defined by (3.8). Finally, we note that although this
theory has been restricted to barotropic waves, we ex-
pect a similar theory could be developed which in-
cluded the effects of stratification, although this would
be considerably more complicated.
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APPENDIX A
Curvilinear Coordinates

Let (x, ) be curvilinear coordinates such that the
coastline is given by x = 0, and the deep ocean by
x = o0. We shall suppose that they are related to con-
ventional Cartesian coordinates (x’, y') (see Fig. 1) by

x'=x"(x,y), ¥Y=yxy). (A1)>
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In these coordinates the element of distance dfs is given
by

ds*= Edx®+ 2Fdxdy + Gdy? . (A2)

where E = a+a, F = a'b, G = b-b. Here a, b are
vectors in the x, y directions respectively given by

a=(x%yx), b=(x},»)). (A3)
Also we let
J=k-aXb=(EG—-F*', (A4)

which is the Jacobian of the transformation (A1).
Next we define velocity components #, v by

u=ua+vb, (AS)

where u = dx/dt, v = dy/dt. Here u, v are components
of u in directions orthogonal to the coordinate curves
X = constant, y = constant, respectively (i.e., # =u-Vx,
v = u- Vy). Then it may be shown that the momentum
equation (1.1) becomes

du _adv 1 2 .
Ed +Fd +2E W+ Euv+(F, G0+ £ Jfv
=r-a/H,
du |
dt+G_+(F y)u2+Gxuv+§Gyv + 8+ Jfu
=7-b/H, (A6)

where d/dt = 3/dt + ud/dx + vd/dy. The equation for
conservation of mass (1.2) becomes

W2+ (HJw),+ (HJv), =0 (A7)

The vorticity equation may be obtained by eliminating
¢ from (A6).

d(f+n 1 T'b\ 0 [r-a
W5 -malm) 57 @
where Jn = (Fu + Gv), — (Eu + Fv),. The boundary

conditions (1.4) at the coast and (1.5) in the deep ocean,
become, respectively

Hu=0, (A9)

The coordinate system used in the main body of this
paper is (2.2), or

at x=0, andas x— oo.

xX'=x+ag(xY), Y=y, (A10)

where Y = ¢p. For this transformation it is readily
shown that -

a=(1 +agx’0)’ b=(eagY’ 1)5 (All)
and that
E=1+42ag.+d’g?
F=cagy(l + ag,
gy 8x) (A12)

G=1+ &a’gy
J=1+ag,

R. GRIMSHAW 63

APPENDIX B
Resonant Forcing by Wind Stress

In this appendix we complement the analysis of
sections 2 and 3 by considering the generation of long
coastally trapped waves by wind stress. Thus in the
equations of motion (1.1) we-retain the term 75, but,
in order to be consistent with the long-wave scaling
(2.1) we replace Ty with eary. Here the factor a is
introduced as it is the parameter measuring the mag-
nitude of the forcing terms. Further, we shall assume
that 7y has a large scale relative to the offshore topo-
graphic scale and hence 7y is a function of X = ex, Y
and T. The equations of motion (2.4) are then modified
by the inclusion of the term ar3°X(0, Y, T)h™" on the
right-hand side of the second equation in (2.4). Here

w denotes the component of wind stress in the y'-
direction (see Fig. 1).

First let us follow the development of section 2 and
seek a solution of the form (2.5). Equations (2.6) are
then modified by the inclusion of the term 74%)(0, Y,
T)h™! on the right-hand side of the second equation,
and Eq. (2.8) contains an extra forcing term G on the
right-hand side where

Gy =20, Y, T)(,ll) (B1)

X

The boundary condition at the coast is again (2.10).
However, the outer boundary condition (2.11) must
now be modified. To determine the replacement for
(2.11) we consider the outer expansion for which the
independent variables are X = ex, Y and T, and the
dependent are ¥V = ¢ }(v — vg), vand Z = ({ — &). The
equations of motion in the outer region are then (3.9)
with the modification that terms a7 and ar® must
be included in the first and second equations, respec-
tively. To leading order the solution of these equations
is given by

du=—aZy+0(a?, ae,
1y+O( ) ’ B2)
' V=0aZ x+0(? ae, )
where
d
—t Vo (Z1xx+ Zi)— v *Zir
oT
_ ot W(y) 3 or W(x)
ax Y

This, of course, is just the quasi-geostrophic solution
being forced by wind-stress curl. The solution (B2) as
X — 0 must be matched with the solution (2.5) as
X = oo. Hence it may be shown that

Z,(X—=>0)=0 )
ZixX—>0) = fo,(x > 0) }

(B3)
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Equations (B2) are then solved subject to the first con-
dition in (B3) and the deep ocean outer boundary con-
dition that Z,y — 0 as X = oo, where we are assuming
that 7 also vanishes as X = co0. The result, combined
with the second condition in (B3) and (2.7), determines
the replacement for the outer boundary condition
(2.11). This is :
Yix=> — VY, T). -(B4)

Here, Vy = f~'Z, (X = 0) and is the longshore current
generated at the outer boundary of the continental shelf
by the action of wind-stress curl in the deep ocean. The
necessity to include this forcing term has been shown
by Allen (1976).

The solution of the modified form of equation (2.8)
is now obtained by putting

vi=¢— VWJ; hodx'
and (BS)

Y= Z ALY, T (%)

Here ,(x) are the same long wave modes defined in
section 2. We find that, in place of (2.17),

dA4 04, OF, oV
=T — 7 I ) —
8T+C'BY 3Y+TW ©,Y,T)J,+ 3y K,, (B6)
where
© /1
i=[ofl) as
o h/.
LK, = y,(c0)

while F, and I, are defined in (2.17). In the absence of
the topographic term F, and the mean current vy(x),
Eq. (B6) is the forced first-order wave equation derived
by Gill and Schumann (1974) for wind stress forcing
and modified by Allen (1976) to include the effects of
wind-stress curl forcing in the deep ocean. With the
initial condition 4,(Y, 0) = 0, Eq. (B6) can be solved
by standard methods. Resonance will occur whenever
either 7, or Vy become functions of the single vari-
able Y — ¢,T as T —> oo, for some long-wave speed c,.
For the resonant case we now suppose that

™w?0,Y, T)~G(Y—cyT) as T->o

» (B7)

VY, TY~H(Y—cwT) as T—> o0

where ¢, — cw = a'?A. Here A is a detuning parameter,
the counterpart of the corresponding parameter in sec-
tion 3 [see (3.2)]. The analysis now proceeds in a man-
ner similar to that described in section 3. Thus we again
introduce the long-time variable 7(3.1), and the ex-
pansion (3.2) for u, v, { where in the expression for ¢,
vy is replaced with vy — cy.. Also now the amplitude 4
= A(Y, 1) where

Y=Y-cuT. (B8)
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We again obtain Eq. (3.4) where now an extra term G,
(B1) appears on the right-hand side. Unless ¢y = 0 the
topographic forcing term F; does not produce a reso-
nance, and can be omitted in the subsequent discus-
sion; the modifications necessary if ¢y = 0 are obvious
and left to the reader. Hence we seek a solution for
which y; is a function of x, Y and 7, and then (3.4)
reduces to an ordinary differential equation in x for
¥17. The solution is given by (3.5) where Y replaces Y,
v — cw replaces vy, and G(Y)(1/h), replaces F,yin B, .
Similarly the compatibility condition (3.7) again holds
with vy — ¢y replacing vy. The outer expansion is de-
scribed by (3.9) with terms a7 and a7y added to
the first and second equations, respectively. With the
balance a = ¢* we again seek a solution of the form
(3.10) and find that Z, now satisfies equation (B2)
rather than (3.11). Matching with the interior solution
produces the conditions (3.12). The solution for Z, is
now split into two parts. One part, Z,V satisfies the
homogeneous equation (B2) [i.e., (3.11)] with the
boundary condition ZV(x = 0) = —f4,¥(x = o). It
is given by

ZOUe) = 5= | explin? =y X)), (B9)

where

- n2+l~l2szW 12
Coew— Vo)

The other part Z,*® is the response to the wind-stress
curl and produces the longshore current Vy (i.e., Vi
= f~1Z,¥9, X = 0). Finally, we obtain the evolution
equation, which replaces (3.15). This is -

A, + Ads+vA+ 6AAp+ ABP(A4y)

=1,G(Y)+ K.H«Y), (B10)

where B¥(A4) = —(1/27) [ v exp(inY)F(A)dn. When
the divergence parameter u = 0, the pseudodifferential
operator B*(A) reduces to B(4) [see (3.14)]. Since f (cw
— Vo) < 0 for stable waves, we would normally expect
cwlew — Vo) > 0 and v is then always real-valued and
positive; this is certainly the case when ¥y = 0. The
operator B*Y(A4) for p nonzero can then be expected
to behave similarly to B(4). On the other hand,

v = WS *ewlew— Vo) {1 + (cw— Vo 2cun’f %},
as u—>oo, (B11)

and then B*)(A) reduces to a term proportional to 4
plus a term proportional to Ayy. Equation (B10) then
becomes a forced, dissipative Korteweg-de Vries
equation. The exceptional case when cu{cw — Vp) <0
leads to a range of values of n for which v is pure
imaginary, with Vpn Imy < 0; these values of 5 cor-
respond to radiating Poincaré waves, and their effect
in the operator B%*)(4) is to induce a form of radiation
damping.

We shall not describe any numerical solutions for
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(B10) as, in general, we expect the solutions to be sim-
ilar to those obtained for (3.15) {in scaled form, (4.2)].
Indeed, in the limit u — 0, (B10) reduces to (3.15) with
a different forcing term. On the other hand, in the limit
u —> 00, (B10) reduces to a forced Korteweg—de Vries
equation [assuming that cy{cw — Vp) > 0], whose nu-
merical solutions have been comprehensively discussed
by Grimshaw and Smyth (1986) and Smyth (1986).
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