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Abstract. In this paper we develop some generalizations of classic al-
gebraic concepts systematically used in the applications to Physics and
Economics. This generalizations are located in the context of S-Linear
Algebra and this theory is assumed to be known. The paper begins with
the proof that the convolution of two distributions can be viewed as a par-
ticular case of superposition, this with a glimpse to Physical applications.
Then, the paper present several new concepts and results in S-Linear Alge-
bra. Section 7 is a wide reformulation, in the infinite-dimensional case, of
the classic finite-dimensional state preference model of Financial Analysis.
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§1. The convolution as superposition

As it is already remarked in other papers about S-Linear Algebra, the expansion
∫

Rn

uδ = u,

justifies completely the following formal expression of the physicists (see [6, p. 78])
∫

Rn

δ(x− p)δ(y − x)dx = δ(y − p).

In fact, for u = δp, we infer
∫

Rn

δpδ = δp.(1.1)

A correct mathematical interpretation of the formal equality (1.1) is the convolution
of δp with δ0, but this interpretation cannot enjoy thoroughly the physicists. In fact,
the operation of convolution involves only two distributions and not a family of distri-
butions. According to the physicists the expression (1.1) is one of the case belonging
to the large class of the continuous expansions of infinite-dimensional vectors.
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Well, now we shall see that the convolution is a particular case of superposition,
restoring a common vision on the expression (0). Obviously, not all the superpositions
can be viewed as convolutions, but only a particular class of them.

Note that, in the language of superpositions, if a ∈ S ′m and b ∈ S ′n are two
distributions, the tensor product a ⊗ b is defined, for every function f in Sm+n, by
the following numerical superposition

(a⊗ b)(f) :=
∫

Rm

a (b(f(p, ·)))p∈Rm .

Recall now that the convolution a ∗ b, with a ∈ E ′n and b ∈ S ′n, is defined, for every φ
in Dn, by

(a ∗ b)(φ) = (a⊗ b)(φ ◦+),

where + is the standard addition in Rn.

Theorem 1.1. Let a and b be two tempered distributions, a with compact support.
Then, the family (τpb)p∈Rn is a smooth family, and moreover,

a ∗ b =
∫

Rn

a(τpb)p∈Rn .

Proof. Put vp = τp(b), for every n-tuple p, we see that, for every test function φ,

v(φ)(p) = vp(φ) = τp(b)(φ) = b(τ−p(φ)).

Hence, setting f := φ ◦+, i.e.,

f(p, x) := τ−p(φ)(x) = φ(x + p),

for every pair (p, x) in Rn × Rn, we read

v(φ)(p) = b(f(p, ·)).

With standard techniques, it can be proved that v(φ) is a smooth function (in general
not of class S), then v is an E-family. Being a a compact support distribution, we
can consider the superposition of v with respect to a, obtaining

(∫

Rn

av

)
(φ) = a(v(φ)) =

∫

Rn

a(b(f(p, ·)))p∈Rn = (a⊗ b)(f) = (a ∗ b)(φ). ¥

So the correct interpretation of the above formal equality is the following one: the vec-
tor δp is the linear superposition of the infinite continuous family of vectors (δy)y∈ Rn

with respect to the system of coefficients δp.

Hence, for instance, we can (rigorously !) affirm that the most general state of a
quantum-particle in one dimension (i.e. a complex tempered distribution on R) is a
linear superposition of “eigenstates” of the position operator

Q : S ′(R,C) → S ′(R,C) : u 7→ IRu.
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We examine further an expansion which is not a convolution. The Fourier expansion
theorem justifies completely another formal expression used by physicists (see [6, p.
38, formula (10)])

δ(x− p) =
∫

R

1
2π

epiye−iyxdy.(1.2)

In fact, a classic result gives

(a, 1)F− (δp) =
a

2π

[
epi(·)

]
,

and thus, from the Fourier expansion theorem, set a = 1, one has

δp =
∫

R

1
2π

[
epi(·)

] ([
e−i(x|·)

])
x∈R

.

So we can read the expression (1.2) as follows: the vector δp is the linear superposition
of the infinite continuous family of vectors

([
e−i(p|·)])

p∈R with respect to the system of

coefficients (1/2π)[epi(·)]. Once more, we can affirm rigorously that the most general
state of a quantum-particle in one dimension (i.e. a complex tempered distribution
on R) is a linear superposition of “eigenstates” of the momentum operator

P : S ′(R,C) → S ′(R,C) : u 7→ −i~u′.

§2. Systems of coordinates in an S-linearly independent fam-
ily

It is simple to prove that, if v is an S-linearly independent family and if u ∈
Sspan (v), then there exists a unique a ∈ S ′m such that u =

∫
Rm av. So, we can give

the following

Definition 2.1 (system of coordinates). Let v ∈ S(Rm,S ′n) be an S-linearly
independent family and u ∈ Sspan(v). The only tempered distribution a ∈ S ′m such
that u =

∫
Rm av is denoted by [u|v] and is called the system of coordinates of u in v.

Definition 2.2 (definition of coordinate operator in an S-linearly inde-
pendent family). Let w ∈ S(Rm,S ′n) be an S-linearly independent family. The
coordinate operator in w is the following operator

[ · | w] : Sspan(w) → S ′m : u 7→ [u | w] . ¤

Example (on the Dirac family and the (a, b)-Fourier family). Let δ be the Dirac
family in S ′n. For all u ∈ S ′n, we have [u | δ] = u, and hence [· | δ] = (·)S′n . Let f

be the (a, b)-Fourier family in S ′n. For each u ∈ S ′n we have [u | f ] = F−(h,ω)(u), and
hence [· | f ] = F−(h,ω). 4

Theorem 2.1. Let w ∈ S(Rm,S ′n) be an S-linearly independent family. Then,

[ · | w] ∈ Hom(Sspan(w),S ′m).
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Proof. Let λ ∈ C and u, v ∈ Sspan(w), then we have

u + λv =
∫

Rm

[u | w] w + λ

∫

Rm

[v | w]w =
∫

Rm

([u | w] + λ[v | w]) w,

and thus, we infer

[u + λv | w] = [u | w] + λ [v | w] . ¥

Theorem 2.2. Let w ∈ S(Rm,S ′n) and let A : S ′n → S ′n be an invertible S-linear
operator. Then, the following assertions hold true

1) w is S-linearly independent if and only if the family Aw is S-linearly indepen-
dent;

2) Sspan(Aw) = A
(Sspan(w)

)
;

3) if w is S-linearly independent, then for each u ∈ A
(Sspan(w)

)
, we have

[u | Aw] = [A−1u | w].

Proof. 1) Let w be S-linearly independent and let a belong to S ′m such that
∫

Rm

aA(w) = 0S′n .

Applying A−1, we obtain

0S′n = A−10S′n = A−1

∫

Rm

aA(w) =
∫

Rm

aA−1A(w) =
∫

Rm

aw.

Since w is S-linearly independent we deduce a = 0S′n , and then Aw is S-linearly
independent too.

2) Let u ∈ A
(Sspan(w)

)
. Then, there exists an a ∈ S ′m such that u = A

∫
Rm aw.

Thus, we have

u =
∫

Rm

aAw,

so u ∈ Sspan(Aw), and hence A
(Sspan(w)

) ⊆ Sspan(Aw).
To prove the converse, let u ∈ Sspan(Aw). Then, there exists an a ∈ S ′m such

that u =
∫
Rm aAw, and hence,

u = A

∫

Rm

aw,

which yields u ∈ A
(Sspan(w)

)
, hence Sspan(Aw) ⊆ A

(Sspan(w)
)
. Concluding, we

get

Sspan(Aw) = A
(Sspan(λw)

)
.

3) For every u ∈ Sspan(A−1w) we have

u =
∫

Rm

[u | A−1w]A−1w,
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and applying A,

Au =
∫

Rm

[u | A−1w]AA−1w =
∫

Rm

[u | A−1w]w,

so, Au belongs to Sspan(w) and [Au | w] = [u | A−1w]. ¥
By the Dieudonné-Schwartz theorem we immediately deduce the following char-

acterization.

Theorem 2.3. Let v ∈ S (Rm,S ′n). Then the following assertions are equivalent:
1) v is S-linearly independent and Sspan (v) is σ(S ′n,Sn)-closed;
2)

∫
Rm(·, v) is an injective topological homomorphism for σ(S ′m,Sm) and σ(S ′n,Sn);

3) [· | v] is a topological isomorphism for the two weak topologies σ(S ′n,Sn) and
σ(S ′m,Sm)).

Proof. We have to prove only the equivalence between 2 and 3, but the opera-
tor

∫
Rm (·, v) is an injective weakly ∗-topological homomorphism if and only if (by

definition of topological homomorphisms) the inverse of its restriction to the pair
(S ′m,S span (v)), i.e., the application [· | v], is a topological isomorphism, with respect
to the topology induced by σ(S ′n,Sn) on Sspan (v) and to σ(Sm,S ′m), in and only if
Sspan (v) is σ(S ′n,Sn)-closed. ¥

§3. The S-linearity of the coordinate operator

Theorem 3.1. Let w ∈ S(Rm,S ′n) be an S-linearly independent family. Then
the following assertions are equivalent:

1) [ · | w] is an S-operator;
2) [ · | w] is an S-homomorphism;
3)

∫
Rm( · , w) is an S-homomorphism.

Proof. 1) implies 2). In fact, let v be a family in Sspan (w) such that [v | w] is of
class S, we have v =

∫
Rm [v | w]w and being

∫
Rm( · , w) an S-operator, v is of class

S.
2) implies 3). In fact, let a be a family in S ′m such that v :=

∫
Rm aw is a family

of class S, we have by S-linear independence that a = [v | w] and so, being [· | w] an
S-operator, a is necessarily of class S.

3) implies 1). In fact, let v be an S-family in Sspan (w), we have to prove that
[v | w] is of class S. But, v =

∫
Rm [v | w]w and so, being

∫
Rm( · , w) an S-

homomorphism, [v | w] is of class S. ¥
Theorem 3.2 (S-closedness of the Sspan(w)). Let w ∈ S(Rm,S ′n) be an S-

linearly independent family such that [ · | w] is an S-operator. Then, Sspan(w) is
S-closed in S ′n.

Proof. To prove that Sspan(w) is S-closed, let k be a natural number, v ∈
S (
Rk,S ′n

)
be a family in Sspan(w) and a ∈ S ′k. Then, v =

∫
Rm [v | w]w, in fact

vp =
∫

Rm

[vp | w]w =
∫

Rm

[v | w]p w =
(∫

Rm

[v | w]w
)

p

,
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for any p ∈ Rk. Thank to the S-linearity of the S-linear combinations, we have
∫

Rk

av =
∫

Rk

a

(∫

Rm

[v | w]w
)

=
∫

Rm

(∫

Rk

a [v | w]
)

w,

and thus
∫
Rk av ∈ Sspan(w). ¥

Open problem. We do not know if S-closedness of Sspan (w) implies that the
operator [ · | w] is an S-operator. However, note that, if Sspan (w) is σ∗n-closed, then
ŵ is surjective; then, for every S-family v in Sspan (w), holding v̂(g) = [v | w](ŵ(g)),
we have that [v | w] is an S-family, and so, [ · | w] is an S-operator.

Theorem 3.3 (the S-linearity of the coordinate operator). Let w ∈
S(Rm,S ′n) be an S-linearly independent family such that [ · | w] is an S-operator.
Then, one has

[ · | w] ∈ SHom(Sspan(w),S ′n).

Proof. The operator [ · | w] is of class S for assumption. For each natural k, for
any a ∈ S ′k and for every family v ∈ S(Rk,S ′n) in Sspan(w),

∫

Rk

av =
∫

Rk

a

(∫

Rm

[v | w]w
)

=
∫

Rm

(∫

Rk

a [v | w]
)

w,

and thus, by the definition of system of contravariant components one has

[ · | w]
(∫

Rk

av

)
=

[∫

Rk

av | w
]

=
∫

Rk

a [v | w] . ¥

Theorem 3.4. Let v be an S-linearly independent family in S ′n, let [· | v] be an S-
operator and let F be the collection of all the subset of S ′n containing v and S-closed.
Then Sspan(v) =

⋂
F.

Proof. Since Fi is S-closed and contains v, we have Sspan(v) ⊆ Fi, for every i ∈ I,
and consequently Sspan(v) ⊆ ⋂

F. Since [· | v] is an S-operator, Sspan(v) is S-closed,
moreover it contains v, thus Sspan(v) ∈ F, and hence

⋂
F ⊆ Sspan(v). ¥

§4. Change of basis

Notation (the set of the S-bases of a subspace). Let X ⊆ S ′n be a subspace.
In the following we shall use the notation

SB(Rm, X)

for the set of the families v ∈ S(Rm,S ′n) such that Im(v) ⊆ X and that are S-basis
for X.

Definition 4.1 (the family of change for two S-bases). Let v ∈ SB(Rn,S ′n)
and w ∈ SB(Rm,S ′n). We call family of change from v to w, the following family

[w | v] := ([wp | v])p∈Rm .
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Theorem 4.1 (on the change of basis). Let v ∈ SB(Rn,S ′n) and w ∈
SB(Rm,S ′n). Then

[v | w] ∈ SB(Rn,S ′m).

Moreover, for every u ∈ S ′n, we have

[u | w] =
∫

Rn

[u | v] [v | w].

Proof. Since

v =
∫

Rm

[v | w]w,

we have

v̂(φ) = [v | w] (ŵ(φ)) ,

for every test function φ ∈ S ′n; so, being ŵ surjective (w is an S-basis and thus it is
invertible), [v | w] is an S-family. Moreover, the same equality shows that

v̂ ◦ (ŵ)−1 = [v | w]∧ ,

and then [v | w] is invertible, that is an S-basis.
Now, applying the S-linearity of the S-linear combinations, we have

u =
∫

Rn

[u | v] v =
∫

Rn

[u | v]
(∫

Rm

[v | w] w
)

=
∫

Rm

(∫

Rn

[u | v] [v | w]
)

w,

and thus by definition of system of coordinates in an S-basis

[u | w] =
∫

Rn

[u | v] [v | w]. ¥

§5. S-connected and D-connected sets

It is interesting to note that every tempered distribution u in S ′n belongs to many
S-families and to many D-families.

Theorem 5.1. For every u in S ′n and for every not-identically zero test function
f in Sm (resp. Dm), there exists an S-family (resp. D-family) in S ′n containing u
and such that the associated operator v̂ is proportional to the operator 〈u, ·〉 f , where
〈·, ·〉 is the canonical bilinear form on S ′n × Sn.

Proof. Let f be an S-function (D-function) in Sm (resp. Dm) not identically 0,
and let p0 be an m-vector such that f(p0) 6= 0. The family defined by

vp =
f(p)
f(p0)

u,
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for every m-vector p, is an S-family (D-family) containing u. Indeed, we have vp0 = u,
and

v(φ)(p) = vp(φ) =
(

f(p)
f(p0)

u

)
(φ) =

f(p)
f(p0)

u(φ) =
(

u(φ)
f(p0)

f

)
(p),

thus v(φ) = (u(φ)/f(p0)) f , and so v(φ) is an S-function (D-function) in Sm (resp.
Dm). ¥

By the preceding result we immediately deduce a natural sufficient condition in
order that a set contains at least one D-family, or S-family, through every its point.

Recall that a subset S of a vector space V is said to be star-shaped in the origin
if it contains, for every s in S, the closed segment joining s with the origin of V . On
the other hand, if S contains, for every s, the segment joining s with the origin but
not the origin, S is said to be a blunt star-shaped set in the origin.

Theorem 5.2. Let S be a (blunt) star-shaped set in the origin of the space S ′n.
Then, for every u in S, there is a D-family (S-family) contained in S and passing
through u.

Proof. It is sufficient to choose a smooth function f defined on Rm, with compact
support, real, non-negative, with values lower or equal than 1, and such that f(0m) =
1. Then, for every u in S, the family of distributions indexed by Rm, defined by
vp = f(p)u, is a D-family contained in S (v describes the segment joining u with the
origin of S ′n) and containing u.

In the blunt case it is necessary to consider a function f of class S, real, non-
negative, with values lower or equal than 1, everywhere different from 0 and such
that f(0m) = 1. ¥

Remark. We can see more, let u0 and u1 two tempered distributions in S ′n and f0,
f1 two S-functions in S1, such that fi(j) = δij , for every i, j = 0, 1. Define a family
v in S ′n as follows

vp = f0(p)u0 + f1(p)u1,

for every real number p. We have

v0 = f0(0)u0 + f1(0)u1 = u0,

and, analogously, v1 = u1, hence v contains both u0 and u1. Moreover,

v(φ)(p) = vp(φ) =
= (f0(p)u0 + f1(p)u1) (φ) =
= f0(p)u0(φ) + f1(p)u1(φ) =
= (u0(φ)f0 + u1(φ)f1) (p),

so the function v(φ) is a linear combination of f0 and f1, and so v(φ) is in S1.
In general, every finite sequence u = (ui)k

i=1 of tempered distributions is a subfam-
ily of many S-families in S ′n. It is enough to consider a system (fi)k

i=1 of functions in
S1 such that fi(j) = δij for every i, j = 1, ..., k, and define a family v in S ′n as follows

vp =
k∑

i=1

fi(p)ui,
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for every real number p. The above discussion shows us that every finite linear
combinations of distributions can be always viewed as superposition of an S-family.

We can go beyond. But first we give the following
Definition 5.1 (of S-connected pair in a subset of S ′n and S-connected

subset of S ′n). Let X be a subset of S ′n and let x, y ∈ X. The pair (x, y) is said to be
an S-connected (D-connected) pair in X if and only if there is an S-family (D-family)
v indexed by Rm containing x and y and contained in X. X is said S-connected
(D-connected) if, for every x, y ∈ X, the pair (x, y) is an S-connected (D-connected)
pair in X.

Theorem 5.3. Let S be a star-shaped set in the origin of the space S ′n. Then, S
is D-connected and, consequently, S-connected.

Proof. Every finite sequence of tempered distributions (ui)n
i=1 is a subfamily of a

particular kind of D-family. Consider a system (fi)k
i=1 of functions in D1 such that

fi = τi(f0), for every i, with f0 a smooth function fulfilling the following properties:
1) f0(0) = 1; 2) f0(x) ∈ [0, 1], for every real x; 3) suppf0 = B(0, 1/2). Consequently
the functions fi fullfil the following: 1) fi(i) = 1, for every i; 2) fi(x) ∈ [0, 1], for
every real x; 3) suppfi = B(i, 1/2). Define the family v in S ′n as

vp =
k∑

i=1

fi(p)ui,

for every real number p. It is simple to see that v is a D-family contained in S and
passing through every ui. ¥

As a consequence, if we say S-closed a part F of S ′n such that every superposition
of each S-family of F lies in F , we conclude the following

Corollary. Every S-closed star-shaped subset of S ′n is a subspace of S ′n.

§6. DL1-closed sets and σ(S ′n,Sn)-closedness

Following Schwartz, if p ∈ [1, +∞], we shall denote by DLp the vector space of the
smooth complex functions defined on Rn whose derivatives belong to Lp(Rn,C). The
natural topology on this space is, by definition, the topology generated by the family
of seminorms (qk)k∈Nn

0
, where, for multi-index k, qk is defined on DLp by

qk (f) =
∥∥∥f (k)

∥∥∥
Lp

.

When DLp is endowed with its natural topology, the associated topological vector
space is denoted simply by (DLp). It is a complete locally convex topological vector
space with a denumerable fundamental system of neighborhood of the origin, it is
then metrizable and so a Fréchet space. A sequence f = (fi)i∈N converges to the
zero-function in (DLp) if and only if it converges to 0 in the topological vector space
(Lp) with all its derivatives.

Lemma. Let f be a C1-function defined on R≥ and of class L1 with its derivative.
Then, the series

∑
(f(k))∞k=1 is absolutely convergent, and moreover

∞∑

k=1

|f(k)| ≤ ‖f‖L1 + ‖f ′‖L1 .
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Proof. Let k be a positive integer, and let mk be the minimum point of |f | on the
interval [k − 1, k]. For every k, denoted by l the Lebesgue measure on R, we have

|f(mk)| l([k − 1, k]) ≤
∫ k

k−1

|f | dl.

Hence, for every n ≥ 1,

n∑

k=1

|f(mk)| ≤
n∑

k=1

∫ k

k−1

|f | dl =
∫ n

0

|f | dl.

This implies that the series
∑

(|f(mk)|)∞k=1

is convergent, and that

∞∑

k=1

|f(mk)| ≤ lim
n→∞

∫ n

0

|f | dl =
∫ +∞

0

|f | dl = ‖f‖L1 .

On the other hand, by the Torricelli-Barrow theorem, for every k,

f(k)− f(mk) =
∫ k

mk

f ′dl,

and so

|f(k)| =
∣∣∣∣∣f(mk) +

∫ k

mk

f ′dl

∣∣∣∣∣ ≤ |f(mk)|+
∣∣∣∣∣
∫ k

mk

f ′dl

∣∣∣∣∣ ≤ |f(mk)|+
∫ k

k−1

|f ′| dl,

by this inequality, the series
∑

(|f(k)|)∞k=1

converges, and moreover

∞∑

k=1

|f(k)| ≤
∞∑

k=1

|f(mk)|+
∞∑

k=1

∫ k

k−1

|f ′| dl ≤ ‖f‖L1 + ‖f ′‖L1 ,

that is the conclusion. ¥
Lemma. The distribution

∑∞
i=1 δi belongs to the space (DL1)′.

Proof. We have to prove that the distribution
∑∞

i=1 δi it is a continuous form on
the space (DL1). Let f = (fj)j∈J be a sequence convergent to the zero-function in
(DL1), then f converges to the zero-function in the topological vector space

(L1
)

with
all its derivatives. We have to prove that the sequence

(( ∞∑

i=1

δi

)
(fj)

)

j∈J
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is convergent to 0. By the above lemma we have
∞∑

k=1

|fj(k)| ≤ ‖fj‖L1 +
∥∥f ′j

∥∥
L1 ,

and, since f converges to the zero-function in (DL1), the right hand converges to 0,
implying the claim. ¥

Remark. Let us see an alternative proof of the second lemma. It is simple to
see that every delta-distribution belongs to (DL1), and thus every finite linear com-
bination of delta-distributions. So the distribution

∑∞
i=1 δi is the punctual limit of a

sequence of continuous linear forms on (DL1). Since (DL1) is barreled (it is a Fréchet
space) the Banach-Steinhaus theorem holds true, and we conclude, once more, that∑∞

i=1 δi is a continuous linear form on (DL1).
When p = +∞ the space DLp is denoted also by Bn. Since a continuous function

belonging to L∞ is bounded, Bn is the vector space of the smooth functions that
are bounded with all their derivatives. Moreover,

•
Bn denotes the subspace of Bn

containing the function vanishing at infinite with all their derivatives;
( •
Bn

)
shall be

the associated topological vector space endowed with the topology induced by (Bn).

It is clear that Sn is included in
•
Bn, and it is also evident that the topological vector

space (Sn) is continuously imbedded in the space
( •
Bn

)
, consequently

( •
Bn

)′
⊂ S ′n.

Let us see the sum of a convergent series of tempered distribution as a superposi-
tion.

Theorem 6.1. Let
∑

(uk)∞k=1 be a weakly∗ convergent series in S ′n. Then, there

is a
•
B1-family, more precisely, a DL1 -family, which contains the series as sub-family.
Proof. Let

∑
(uk)∞k=1 be such series and assume it is weakly∗ convergent to a

tempered distribution u∗. Consider a sequence f = (fi)∞i=1 of functions in D1 such
that fi = τi(f0), for every i, where f0 a smooth function in D1 with the following
properties: 1) f0(0) = 1, for every positive integer i; 2) f0(x) ∈ [0, 1], for every real
x; 3) suppf0 = B(0, 1/2). Define the family v in S ′n as follows

vp := σ(S′n,Sn)
∞∑

i=1

fi(p)ui,

for every real number p. Note that the sequence of partial sums of the series
∑

(fi(p)ui)
∞
i=1

is definitely constant, and then the series is σ(S ′n, Sn)-convergent. Moreover, vj = uj ,
for every natural j. We have to prove that, if g is a test function of class Sn, then
v(g) is of class

•
B. We have

v(g)(p) = vp(g) =
∞∑

i=1

fi(p)ui(g) =
{

uj(g)fj(p) if p ∈ B(j, 1/2) and j ∈ N
0 elsewhere

.

So the function

v(g) =
∞∑

i=1

ui(g)fi
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is smooth and vanishing at infinity with all its derivatives. In fact, being the numerical
series

∑
(ui(g))∞i=1 convergent, for every test function g, we have

lim
i→∞

|ui(g)| = 0,

hence

lim
p→∞

|v(g)(p)| = lim
j→∞

|uj(g)fj | ≤ max f0 · lim
i→∞

|ui(g)| = 0.

Analogously, for every natural k, we have

lim
p→∞

∣∣∣v(g)(k)(p)
∣∣∣ = lim

j→∞

∣∣∣uj(g)f (k)
j

∣∣∣ ≤ max f
(k)
0 · lim

i→∞
|ui(g)| = 0.

Hence v(g) belongs to
•
B1.

To prove that v is of class DL1 , note that, for every integer k ≥ 0,

∣∣∣∣
∫

R
v(g)(k)dl

∣∣∣∣ =

∣∣∣∣∣
∫

R

∞∑

i=1

ui(g)f (k)
i dl

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

i=1

ui(g)
∫

R
f

(k)
i dl

∣∣∣∣∣ =

=

∣∣∣∣∣
∞∑

i=1

ui(g)

∣∣∣∣∣
∣∣∣∣
∫

R
f

(k)
0 dl

∣∣∣∣ ,

thus v(g) is smooth and of class L1 with all its derivatives, then, following Schwartz,
v(g) belongs to the space DL1 . ¥

Corollary. Let
∑

(uk)∞k=1 be a weakly∗ convergent series in S ′n to a tempered
distribution u∗. Then u∗ is a DL1-superposition of v. As a consequence, each DL1

-closed subset of S ′n is sequentially weakly∗ closed.
Proof. Consider the series of distributions

∑
(δi)

∞
i=1 in (DL1)′; it is convergent in

(DL1)′. In fact, for every s in DL1 , the series
∑

(s(i))n
i=1 is convergent, and we have

∞∑

i=1

δi(s) =
∞∑

i=1

s(i).

Let v be the family of class DL1 built in the proof of the above theorem, we obtain
(∫

R

∞∑

i=1

δiv

)
(g) =

( ∞∑

i=1

δi

)
(v(g)) =

∞∑

i=1

vi(g) =

=
∞∑

i=1

∞∑

j=1

uj(g)fj(i) =
∞∑

i=1

ui(g) = u∗(g).

Hence u∗ is a DL1 -superposition of v. Now, a set F is sequentially weakly∗ closed
if and only if contains the sum of every series in F sequentially weakly∗ convergent,
and this concludes the proof. ¥

§7. The state preference model
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We first recall the standard setting of the state preference model.

Economic model. We consider a market, and we observe it only two times,
called the initial time and the final time. Assume that in the market there are n
goods. For every j ∈ n, each unit of the j-th good can assume m-possible values at
the final time. These values depend on m states of the world. The value of a unit of
the j-th good, in the i-th state of the world, is the real number aij .

Definition. A state preference model is a system (G,S, a), where G is an ordered
set with n elements, called the set of the goods of the model, S is an ordered set
with m elements, called the set of the states of the world, and a is an (m, n)-matrix,
called the values-matrix of the model. For every positive integer j ≤ n, the vector
Cj(a) = (aij)i∈m (the j-th column of a) is called the values-vector of the j-th good.

Definition (of portfolio). We call portfolio of the considered market, every
n-tuple x ∈ Rn.

Economic interpretation. If j ∈ n, the j-th component of x is the quantity of
the j-th good, bought if it is positive, sold (at overdraft) if xj is negative.

If we consider a portfolio x and we have to calculate the value of the portfolio in
the i-th state of the world, we have simply to calculate the following number

vi(x) =
n∑

j=1

aijxj = Ri(a) · x.

Definition (of values-representation). The vector of Rm defined by

ax = (Ri(a) · x)m
i=1,

is called the a-representation of the portfolio x.

Economic interpretation. A portfolio x can be represented by the m-vector
ax, its a-representation, whose components are the values that the portfolio x takes
on the m states of the world. In these conditions, x is a vector of quantities, ax is a
vector of values.

The matrix a generates in a natural way a preference relation.

Definition (the preference relation generated by a). We say that a portfolio
x is preferred or indifferent to x′ with respect to a, and we write x ºa x′, if ax ≥ ax′

(i.e., a(x − x′) is a vector with non negative components). In other words, for every
state of the world s, the value of x in s is greater or equal to the value of x′ in s.

Definition (the price of a portfolio). Let p be an n-vector, the price of a
portfolio x relative to p is the product (p | x)n = p · x.

Definition (no-arbitrage price vectors) . An n-vector p such that, for every
n-portfolios x and x′, one has

x ºa x′ ⇒ px ≥ px′,

is said compatible with ºa or a no-arbitrage price vector.
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Definition (the a-representation of a system of prices). Let A be the linear
operator canonically associated to the matrix a. Let p be an n-vector. An m-tuple
q ∈ Rm, such that, for every portfolio x, we have

(p | x)Rn = (q | Ax)Rm ,

is called an a-representation of p in Rm.

Theorem (characterization of the representations of a price-vector). Let
(G,S, a) be a state preference model, and let A be the operator canonically associated
to a. Then, an m -vector q is a representation of p if and only if p = A∗u, where A∗

is the Euclidean-adjoint of A.
Proof. It is well known that, there exists an operator A∗ : Rm → Rn such that

(u | Ax)Rm = (A∗u | x)Rn ,

for every m-tuple u and every n-tuple x, A∗ is called the Euclidean-adjoint of A (A∗

is the operator canonically associated to ta). By definition q is a representation of p
if and only if

(p | x)Rn = (q | Ax)Rm ,

for every portfolio x, or equivalently,

(p | x)Rn = (A∗q | x)Rn .

The last equality holds if and only if p = A∗u, as desired. ¥
Economic interpretation. In the state preference model, every price vector

p ∈ imA∗, on the space of quantities Rn, can be represented by the m-vectors q
(price-vectors on the space of values Rm) such that p = A∗q. The price of x in p can
be viewed as the price of its a-representation ax in such q.

Now we can found the S-linear state preference model.

Economic model. We consider a situation in which there are n-goods and an
m-dimensional continuous infinity of states of the world. Without loss of generality,
we assume that, in our model, the set of the states of the world is Rm, and the set of
the goods is n = {k ∈ N : k ≤ n}.

In these conditions, we give the following
Definition (of S-linear state preference model). We define S-linear state

preference model a system (n,Rm, A), where A : Rn → S ′m is a linear operator. We
call A the values-operator of the model, every n-vector x a portfolio of the model and,
for every portfolio x, we call the tempered distribution A(x) the A-representation of
x.

Remark. Note that, if x is a portfolio, then it is a linear combination of the
canonical basis e of Rn, x =

∑
xe. Then, A(x) =

∑
xA(e), and consequently

dim A(Rn) ≤ n.

Definition (of regular portfolio). If x is an n-portfolio, we call x as being
A-regular, if its representation A(x) is a regular distribution. If s is a state of the
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world (in our model s is a real m-vector) and A(x) is a regular tempered distribution
generated by a continuous function fx, we say that fx(s) is the value of the portfolio
x in the state s.

Economic interpretation. The first goal is the presence, in our model, of the
analogous of the Arrow-Debreu “contingent claims”. Using the canonical S-basis δ, we
have A(x) =

∫
A(x)δ. So we can argue that, for every portfolio x, the A-representation

of x is an S-linear combination of the “elementary securities” represented by the
elements of the canonical S-basis. This prove that the Dirac S-basis represents the
analogous of the family of the Arrow-Debreu contingent claims. In particular, for
every state of the world s, the delta centered at s, δs, represents the elementary
security whose value is 1 in the state of the world s and 0 in every other state of the
world.

Example. Assume that the state of a portfolio x is the tempered distribution
generated by sin: A(x) = [sin] then x has value 0 in every state s = kπ, with k an
integer.

Example. Let the values of a portfolio x be 3, 7.5 and 4.8 in three distinct states
of the world s, t and u, and let the value of x be 0 in every other state of the world.
Then the values-representation of x is 3δs + 7.5δt + 4.8δu.

Definition (of system of prices). A system of prices in the space Rn is an
n-tuple. A system of prices in S ′m is a smooth function of class S defined on the set
of the state of the world. If p is a system of prices in Rn, then we define the price of a
portfolio x in p, as usual, as the product (p | x)Rn =

∑
xp. If q is a system of prices

in S ′m, we define the price of a tempered distribution y as the following product

(q | y)S′m := y(q).

Remark (the price of a tempered distribution as superposition). Concerning the
preceding definition, note that y(q) =

∫
Rm qydlm. In fact, applying, first the definition

of integral of an integrable distribution and then the definition of the product by a
smooth function of a distribution we have

∫

Rm

qydlm = (qy)(1Rn) = y(1Rnq) = y(q).

But the value y(q) can be interpreted in a more impressive way: it is the superposition
of the family q under the system of coefficients y, as defined by Carf̀i:

∫

Rm

yq := y(q).

Remark (the system of prices as S-linear functional). Classically the price-
systems in an infinite-dimensional vector space X are the linear functionals on X.
Our definition of price-vector in S ′m, although more adherent to the finite dimensional
case, returns in the classical definition of system of prices. In fact, let q be a price-
system, in our acceptation, we can associate the functional (q | ·)S′m , it is linear by
definition of addition and multiplication by scalar for tempered distributions. But we
can say more: it is S-linear. In the sense of the following
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Definition (of S-linear functional). Let L : S ′m → R be a functional. We
say that L is an S-linear functional if, for every tempered distribution a on Rk and
for every family v of tempered distributions on Rm indexed by Rk, we have that the
family L(v) = (L(vi))i∈Rk is of class S (that is the function Rk → R : i 7→ L(vi) is of
class S) and moreover

L(
∫

Rk

av) =
∫

Rk

aL(v).

Theorem. Let q ∈ Sm. Then the functional (q | ·)S′m is an S -linear functional.
Proof. We have to prove that, for every family v of tempered distributions on Rm

indexed by Rk, the family

(q | v)S′m := ((q | vi)S′m)i∈Rk

is a of class S and moreover that

(q |
∫

Rk

av)S′m =
∫

Rk

a(q | v)S′m .

Concerning the first point, the function

Rk → R : i 7→ (q | vi)S′m = vi(q),

is the function v(q), that is of class S since v is of class S (and q is of class S).
For the second point, we have

(q |
∫

Rk

av)S′m =
(∫

Rk

av

)
(q) = a(v̂(q)) =

∫

Rk

a(vi(q))i∈Rk =

=
∫

Rk

a((q | vi)S′m)i∈ Rk =
∫

Rk

a(q | v)S′m . ¥

We are searching for a system of prices in the space of values-representations, such
that, in this system of prices, the price of the A-representation of x is the price

∑
xp.

More precisely, we give the following

Definition (the A-representation of a system of prices). Let (n,Rm, A) be
an S-linear state preference model a system. Let p be an n-vector. A smooth function
of class S on Rm q, such that, for every portfolio x, we have

(p | x)Rn = (q | Ax)S′m ,

is called an A-representation of p in S ′m.

We shall prove a characterization of the representation of a system of prices anal-
ogous to that presented in the case of the classical state preference model. To this
end, we have to examine more deeply the S-linear functionals on S ′m.

First of all, we shall prove that our model covers totally the standard infinite
dimensional state preference model (in the case presented in the paper). As it is
shown in the following remark.
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Remark (confrontation with the classic infinite dimensional state preference model).
Let q be an A-representation of a system of prices p. Denote by Lq the S-linear func-
tional (q | ·)S′m . We have

Lq(A(x)) = (q | A(x))S′m = (p | x)Rn ,

and then

Lq ◦A = (p | ·)Rn .

We desire to prove a more deep circumstance, first of all it is possible to consider
the transpose of A. In fact, A is continuous because it is linear and defined on a
finite dimensional vector space. So, it is transposable and his transpose is from S ′′m
to (Rm)∗ (actually, in order that L ◦ A be in (Rm)∗, is enough the linearity of A).
Concluding A is transposable. The transpose of A is defined as follows tA(L) = L◦A,
for every strongly-continuous functional on S ′m.

Moreover, an S-linear functional l is a strongly-continuous linear functional. In
fact, for every S-family v, the image l(v) is of class S. Moreover, considering the
function

fl : Rm → R : fl(i) = l(δi),

we have that fl is of class S, since l is of class S. Moreover, for every w ∈ S ′m, we
have

l(w) = l(
∫

wδ) =
∫

wl(δ) =
∫

flwdµm = w(fl) = (fl)∗∗(w),

where by (·)∗∗ we denoted the canonical injection of Sm in its bidual. Then l =
(fl)∗∗ ∈ S ′′m, so we can write

tA(Lq) = (p | ·)Rn .

Concluding, if q is an A-representation in our model of a system of prices p, then
Lq is an A-representation of p in the sense of the classic infinite dimensional state
preference model. The converse is wholly analogous.

Economic interpretation. The system of prices q, on the space of the A-
representations, is an A-representation of the system of prices p if and only if satisfies
the following transformation rule

tA(Lq) = Lq ◦A = (p | ·)Rn .

Note that, we can also write, in a more impressive way
∑

n

xp = (p | x)Rn = Lq(A(x)) =
∫

Rm

A(x)Lq(δ) = (A(x) | Lq(δ))S′m .

Remark. Note that Sn is a reflexive space, and then, for every L ∈ S ′′m, there is an
S -function f such that f∗∗ = L. Then, every element of the bidual is an S-linear
functional and then, it is an A-representation of the system p if and only if we have

∑
n

xp =
∫

Rm

A(x)L(δ).
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Theorem (on the existence of the Euclidean adjoint). Let A be a linear
operator. Then, there exists a unique operator A∗ : Sm → Rn such that

(q | Ax)S′m = (A∗q | x)Rn .

Proof. Let q be in Sm, the functional on Rn, defined by x 7→ (q | A(x))S′m is a
linear functional and then, by the representation theorem, there is a n -vector q∗ such
that (q | A(x))S′m = (q∗ | x)Rn for every n-tuple x. Moreover, q∗ is unique, putting
A∗(q) = q∗ we conclude.

Definition (of the Euclidean adjoint). Let A be a linear operator. The unique
operator A∗ : Sm → Rn such that

(f | Ax)S′m = (A∗f | x)Rn ,

is called the Euclidean-adjoint of A.
In this way we obtain, in the infinite-dimensional case, the same result, of the

finite dimensional one, concerning the representation of a price-system, as show the
below considerations.

Let p be a system of prices in Rn, p is said A-representable if and only if there is
a system of prices q on S ′m such that (q | Ax)S′m = (p | x)Rn for every portfolio x.

We have proved as well the following
Theorem. A price-system p is A -representable if and only if p ∈ imA∗, i.e., if

there exists at least a smooth function q of class S, such that p = A∗(q).

Concerning the preference relation of a state preference model we have the follow-
ing.

Definition . Let A : Rn → S ′m be a linear operator. We define preference relation
generated by A, the relation on Rn defined by

x ºA x′ ⇔ A (x− x′) ≥ 0S′m ,

where, we recall that, a tempered distribution u is said non-negative if and only, for
every non-negative φ ∈ Sm, we have u (φ) ≥ 0.

Remark. If v is a linear functional on Rn, there exists only a p ∈ Rn such that
v = (p | ·)Rn . Analogously, if L is an S-linear functional on S ′m, by reflexivity of Sm,
there exists only a q ∈ Sm such that L = (q | ·)S′m .

Definition. We say that a functional v on Rn preserves ºA if and only if

x ºA x′ ⇔ v (x) ≥ v (x′) .

Proposition. Let v be a linear functional on Rn. Then v preserves ºA if and
only if

x ºA 0Rm ⇔ v (x) ≥ 0.

Proof. (⇒) Obvious. (⇐) Let x ºA y this implies x − y ºA 0Rm , (note that, by
definition, x ºA y if and only if A (x− y − 0Rn) ≥ 0S′m ,and this is , once more by
definition, equivalent to x− y ºA 0Rm), and thus v (x− y) ≥ 0, that is v (x) ≥ v(y).
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Theorem. Let p ∈ Rn be such that p ∈ im (A∗). Then, (p | ·)Rn preserves ºA if
and only if q ∈ Sm and p = A∗ (q) implies q ≥ 0 on the subspace im(A).

Proof. (⇒). If (p | ·)Rn preserves ºA then, for every x ∈ Rn such that x ºA 0Rm

we have (p | x)Rn ≥ 0. Since p ∈ im (A∗), there is a smooth function q such that
p = A∗(q), hence (A∗q | x)Rn ≥ 0. By definition of Euclidean adjoint, we have
(q | Ax)S′m ≥ 0; and then, we have q ≥ 0 on im(A), in the sense that (q | y)S′m ≥ 0,
for every y ∈ im(A). The converse is wholly analogous.
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[6] J. Dieudonné L. Schwartz, La dualité dans les espaces F and LF , Annales de
l’institut Fourier 1 (1949), 61 - 101, http://www.numdam.org

[7] P. A. M. Dirac, The principles of Quantum Mechanics, Oxford Claredon Press,
1930.

[8] J. Horvath, Topological Vector Spaces and Distributions (Vol.I), Addison-Wesley
Publishing Company, 1966.
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