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ABSTRACT

It is shown, by the integration of numerical initial-value problems, that modon-with-rider solutions to the
equivalent barotropic equation are unstable in the parametric range relevant to Gulf Stream rings. The fastest
growing mode is found to have azimuthal wavenumber 2.

1. Intreduction

Gulf Stream rings, when detached from the Guif
Stream, evolve very slowly, are nearly circular, and
transport fluid (Richardson, 1983). There is no evi-
dence of forcing on the time and length scales of rings,
which suggests that they maintain their coherence
through a balance between dispersion and nonlinearity,
as in the classical example of the Boussinesq solitary
wave. Only two of the many quasi-geostrophic solitary
wave models that have been proposed incorporate the
basic characteristics of rings: approximate radial sym-
metry and a region of trapped fluid. One of these (Flierl,
1979) has been shown to employ an invalid asymptotic
expansion (Swenson, 1986). The other, first suggested
by Flierl (1976), consists of a baroclinic monopole su-
perimposed upon a barotropic dipolar modon (Stern,
1975). Although the stability of the latter solution has
not been thoroughly investigated, it appears that it is
unstable (McWilliams and Flierl, 1979). Other modon-
with-rider solutions have been found (Flierl et al.,
1980), however, and the possibility that a one-mode
configuration is useful for modeling rings cannot be
ignored. In this paper, we examine numerical, initial-
value calculations of single-mode modon-with-rider
solutions and find them to be unstable. This demon-
stration, together with the result of Swenson (1986),
eliminates the known quasi-geostrophic solitary wave
models of rings and thereby directs attention to the
importance of either radiation and dissipation or non-
quasi-geostrophic effects in ring dynamics.

2. Theory

Modon-with-rider solutions for the equivalent-
barotropic equation have been calculated by Flierl et
al. (1980), but we present a brief derivation here in
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order to establish notation. The conservation of po-
tential vorticity is described by
D 1
Tt W
where the asterisks denote dimensional variables, ¥,
is the streamfunction,

D_d Ned Hed a’+6’
Dty oty 0y, ax. %y 39y’ x2  ay?’
B = constant northward gradient of the Coriolis fre-
quency, and 7; = internal deformation radius. We as-
sume that the motion is steady and that the eddy is
strong in the sense that it will have a closed streamline
region (as viewed from a reference frame attached to
the eddy). Together, these assumptions imply that the
eddy propagates only in the east-west direction.
Transforming (1) to a reference frame moving with the
eddy, we find that

LA
Jc(‘l’t +CoVus Vatat+ Bye— ';54’:) =0, )
where ¢, is the phase speed of the eddy and J (4, B)
=A4,B,.—A,B,,. For modons, (2) holds separately for
the two regions 7, = L. This implies that the curve r,
= L is a streamline so that

\0.=\I’.—C‘r, Sinﬂ at I‘,=L,

&)}

where ¥, is a constant. Introducmg the nondimen-
sionalization ry = r7, ¢ = Bric, Ve = BriY, and ¥,
= Br¥, we obtain

JW+cy, VY~ +y)=0, )
y=¥~—crsind at r=1, &)

where J is the dimensionless Jacobian operator and we
have chosen L = r, to correspond with the scaling in
Flier] et al. (1980). Alternatively, we may consider the
first integral of (4)
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FiG. 1. Radial profiles of streamfunction (solid), azimuthal velocity (long dashed), and vorticity (short dashed)
for (a) g = 0.1, (b) g = 1, (c) g = 10, (d) ¢ = 100. All have been normalized so that maximum vorticity is 1.

VY —y+y=PW+cy),
where P is the (arbitrary) potential-vorticity functional.

6

The modon problem consists of (6), (5) and the con-
dition that the tangential velocity be continuous at r

=1

For r > 1, P may be evaluated asymptotically for

r = oo to obtain

P(X)=%X, r>1.

Following Flierl et al. (1980), for r < 1 we posit

P(X)=N—(k*+1)X,

Introducing the notation

¥ =yr+ ¥y sinf = {

r<l1.

‘//R> -+ I//M> sinB,
YR+ Y~ sind,

r>1
r<l,

so that Y represents the rider and y,, sinf represents
the underlying modon, we may write the solution as

Ko(gr)
YR =V——=, (10)
Ko
K\(gr)
Y =—c ’ (11)
Ki(q)
(7) " .
Table 1. Summary of stability experiments.
Experiment c Rider strength Duration
(®) A -2 0 7.8
B 1 0 7.8
C -2 strong 39
D 1 strong 39
(9) E -2 moderate 7.8
F 1 moderate 39
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FIG. 4. As in Fig. 2 but for experiment C.
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V< =m¥ + (1~ m)¥ J":(k')), (12)
<_ q_2J|(kr)_ _q_z
TS RS
where
F=141, (14)
C
K@) k)
= K@ Rk’ (13
Kxq) _—Jak)
K@) k)’ (16)
V=m"k2)\, 17)

and ¢ < —1 or ¢ > 0. The addition of the rider imposes
a discontinuity in vorticity at the modon boundary:

HmVY|ite=[k*(1 —m)+¢*] V. (18)

0

This solution also has the important property that the
- integrated vorticity vanishes, i.e.,

2r oo
f f Virdrdd =0.
o Jo

Radial profiles of ¥ and V%J are displayed in Fig.
1 for four values of g. For small g, there is very little
vorticity outside of the modon boundary, while on the
inside there is a positive vortex core surrounded by a
negative vorticity ring. As g increases, the distribution
of vorticity changes appreciably. A band of positive
vorticity is observed just outside of the modon bound-
ary. This band becomes narrower and stronger as g
increases. In the limit g 4 oo the vorticity distribution
resembles a 6 function.

3. Numerical investigation of stability

A conventional analytical investigation of the sta-
bility of the modon-with-rider configuration appears
to be intractable. The proof of Laedke and Spatschek
(1986), which showed that westward-traveling, equiv-
alent-barotropic modons are spectrally stable, cannot
be extended to the modon-with-rider. The addition of
a non-zero rider introduces a discontinuity in vorticity
which implies that Eqgs. (73) and (74) of Laedke and
Spatschek (1986) no longer represent conserved quan-
tities. Swaters (1986) established sufficient conditions
for linear Liapunov stability of equivalent-barotropic
modons. Analogous conditions apply to the modon-
with-rider configuration, but the conditions do not
preclude the instability of the configuration for arbi-
trary linear perturbations. Therefore, we use numerical
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integrations of initial value problems in order to assess
the stability of these solutions.

a. The numerical model

We use a pseudospectral numerical method to obtain
solutions to
]
5;(V2— W =—JW, (V2= 1)) — ¥ (19)
for specified initial conditions and the periodicity con-
ditions
&(x,y,0) = p(x+2m,y, )= p(x, y+ 2m,1).  (20)

The Jacobian terms are evaluated using Orszag’s (1971)
alias-free, staggered-grid algorithm, which insures exact
conservation of energy and enstrophy, while the time
integration is accomplished by the centered-difference
approximation. In order to prevent instability of the
computational mode, the solution is averaged locally
in time every 30 time steps, as well as after the initial
forward-difference time step. Aside from errors due to
initial sampling, time stepping, and round off, the only
error of the alias-free scheme is that it disallows inter-
actions with wavenumbers higher than the cutoff,
which causes enstrophy to accumulate near the cutoff
wavenumber. To alleviate possible problems, we apply
a weak, wavenumber-dependent filter (Laplacian fric-
tion) at each time step to prevent enstrophy accumu-
lation; this leaves energy virtually unchanged. Except
for a slight smoothing of contours, the addition of this
friction does not change the results of the numerical
integrations.

b.” The simulations

The modon-with-rider solutions constitute a family
with two independent parameters, the phase speed ¢
and the rider amplitude ¥. Although rings are observed
to move westward about 5 cm s™! on average (Rich-
ardson, 1983), the extent to which this is due to self-
propulsion is unclear since rings may be advected by
large-scale mean flows, which are also characterized by
speeds of 5 cm s™!. We therefore examined several cases
of both eastward and westward travelling solutions, i.e.,
we examined ¢ € (—2, —1) and ¢ € (0, 2), where ¢ = 1
corresponds to a dimensional speed of 8r? ~ 5 cm
s!. The two cases ¢ = —2 and ¢ = 1 are representative
of our results and are discussed in detail in this section.
Rider amplitudes are chosen to correspond to a young,
energetic ring (U ~ 140 cm s™!, where U is the char-
acteristic swirl velocity) and an older, less energetic ring
(U ~ 50 cm s7*). (Lower rider amplitudes are of limited
physical interest. The formal possibility that the mo-
don-with-rider configuration is stable for rider ampli-
tudes below some threshold value cannot be adequately
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FG. 6. (Continued)

addressed by the method employed herein.) In addi-
tion, to provide a basis for comparison, we present
simulations when the riders are absent. The experi-
ments are summarized in Table 1.

The integrations are run for at least 3.9 nondimen-
sional time units, which corresponds to about 1 month.
For the integrations presented in this paper, which have
a cutoff wavenumber of 32, a corresponding low res-
olution (cutoff wavenumber 16) experiment also was
considered. The reduced resolution did not have sig-
nificant effects on the results of the integrations.

1) NO RIDER (EXPERIMENTS A AND B)
When the rider is absent, the numerical integration

provides a good representation of the modon evolution
(Figs. 2 and 3). The numerical phase speeds are about

93% of the analytical value, which compares favorably
with the results of McWilliams et al. (1981) for similar
resolution.

2) STRONG RIDER (EXPERIMENTS C AND D)

We now consider modon-with-rider solutions where
the rider amplitude has been chosen so that typical
swirl velocities are about 140 cm s~! (Figs. 4 and 5).
This leads to initial conditions that are dominated by
the rider. Although the radial profile of the rider
changes considerably over the range of interest (eg.,
g % oo as ¢ 0; see Fig. 1), the evolution of the modon-
with-rider for strong riders is similar for all of the cases
examined, and differs markedly from the analytically
predicted behavior. Instead of propagating uniformly
with the appropriate phase speed, the eddy immediately
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begins to distort owing to the growth of a disturbance
with azimuthal wavenumber 2. (See Gent and Mc-
Williams, 1986, for other examples of wavenumber-
two barotropic instabilities in vortices.) The result is a
characteristic low-high-low vorticity pattern that is
reminiscent of the instability of concentric, uniform
potential-vorticity patches on the fplane (Flier],
1984b). We have conducted numerical experiments
that show the similarity between the instability of the
rider (alone) on the f-plane and the evolution in ex-
periments C and D. This indicates that, initially, the
underlying modon and the g-effect act as perturbations
to the rider, which is unstable on the f-plane. After the
initial unstable mode growth, the vortices undergo a
complicated interaction which differs in detail from
case to case.

3) MODERATE RIDER (EXPERIMENTS E AND F)

When the rider is scaled so that typical swirl velocities
are about 50 cm s™!, the rider no longer dominates the
initial conditions in those cases for which the magni-
tude of the phase speed is greater than approximately
3/2. For these cases, the swirl velocity of the underlying
modon is relatively large (U ~ 20-30 cm s™), so that
the strength of the rider is about equal to the strength
of the modon (Experiment E, Fig. 6). Again, we find
that the modon-with-rider evolves very differently from
the analytically predicted behavior (section 2). Here,
the B-effect and the underlying modon influence the
evolution even for small times. The mutual advection
of the two vortices dominates the evolution initially.
Although the low begins to orbit the high immediately,
the high propagates in the analytically predicted man-
ner (section 2) for at least a week. Subsequently, the
low is sheared apart and weakens steadily as it circulates
around the high, which, after the initial westward ad-
vection, moves westward at a reduced rate (¢ = —1) in
a manner similar to a Gaussian vortex (McWilliams
and Flierl, 1979).

In experiment F (¢ = 1), the rider dominates the
underlying modon even for a rider of moderate am-
plitude. The evolution (Fig. 7) is qualitatively similar
to that for a strong rider (experiment D), except that
the two emerging low vortices do not grow to equal
size, which indicates that the g-effect and the modon
affect the evolution at an earlier stage for moderate
riders.

¢. Summary

Modon-with-rider solutions are equilibrium solu-
tions of the equivalent-barotropic equation (in a uni-
formly-translating reference frame). We have shown
them to be unstable in the parametric range relevant
to Gulf Stream rings. The instability is analogous to
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an azimuthal wavenumber 2 instability of concentric
potential-vorticity patches on the f-plane (Flierl,
1984b). This is apparent in the calculations with strong
riders (Figs. 4 and 5), but the instability is masked by
complicated interactions of the dipolar modon, Rossby
waves, and the rider and its instabilities when the rider
strength and modon strength are commensurate.

4. Comments

The similarity of the instability in the strong rider
runs (Figs. 4 and 5) to the instability of two concentric,
uniform potential-vorticity patches (Flierl, 1984b)
suggests that a detailed analogy wouid be helpful in
understanding the rider instability. In particular, the
integrated potential vorticity of riders is zero so that
the corresponding theory for concentric patches on the
Jf-plane is very simple. The main result of Flier]’s theory
for this special case is that the concentric patches are
stable if the zero crossing (i.e., radius of inner patch)
is less than %2 of the radius of the entire eddy. The zero
crossing for riders occurs at r < % for ¢ < 0.0048, or
g 2 14.5. For q = 10, however, the rider is no longer
similar to a two patch configuration because a third
band of vorticity exists just outside of the modon radius
(Fig. 1). Numerical experiments indicate that this con-
figuration is unstable to an azimuthal wavenumber 2
mode that is similar to the one observed in Figs. 4
and 5.

During the course of investigating the instability of
riders (alone) on the f-plane, we observed that the rider
for ¢ = 10 evolved into two nearly equal vortex pairs
(Experiment G, Fig. 8). (We have added a small am-
plitude, white-noise perturbation field to the initial
streamfunction field for this experiment. This speeds
up the development of the instability, but does not
affect the nature of the evolution.) This adds to the
growing evidence that vortex pairs can be generated
by unstable vortex flows (Basdevant et al. 1984*; Flierl
1984a, 1985). This example differs from previous ones
in its initial condition, which has three bands of alter-
nating vorticity rather than two.

The numerical results presented in this paper elim-
inate the possibility that known, quasi-geostrophic sol-
itary wave solutions are good models for ring dynamics.
Although numerical calculations indicate that the
equivalent-barotropic equation admits solutions that
are very similar to rings (McWilliams and Flierl,
1979), recent attempts to model ring behavior analyt-
ically incorporate non-quasi-geostrophic processes
(Flierl 1984a, Charney and Flierl 1981, Matsuma and
Yamagata 1982). As theorists begin to grapple with the

* The Batchelor couples referred to by Basdevant, et al. (1984)
were obtained by Lamb (1932).
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FIG. 8. As in Fig. 2 but for experiment G.
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