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ABSTRACT

A depth-averaged barotropic model is used to investigate the steady response of the coastal ocean to alongshore
pressure gradients imposed by the deep ocean. Solutions indicate that the dimensionless continental margin
width 4 is the appropriate parameter determining the effectiveness of the transmission of the alongshore pressure
field from ocean to coast. For linear depth profiles having depth # = /4 + kX to the abyssal plape at x = /, &
= (fk/r)""(h, */2)'"* where fis the Coriolis parameter, r is the linear friction coefficient for alongshore flow and
k is the wavenumber of the alongshore pressure perturbation. For parabolic depth profiles having A = kg + A x?
tox =}, & = (3 /k/2)\P(h,1*/3)"". On narrow continental margins with & < 1, oceanic pressure fields are almost
completely transmitted to the coast causing substantial near-coastal currents, while on wide continental margins
with § » 1 the near coastal ocean is unaffected by the oceanic pressure field. In general, the oceanic pressure
field drives a strong circulation at the outer slope, and this circulation weakens toward the coast. This contrasts
with the coastal circulation resulting from an alongshore wind stress, which is strongest at the coast and weakens

with distance offshore.

1. Introduction

Wind stress and vertical density structure have long
been known to be important in driving nearshore and
shelf currents. The idea that the open ocean may also
play a significant role in driving “steady” continental
shelf circulation appears to have become more accepted
in recent years following the suggestion of Csanady
(1976). In a barotropic depth-averaged model, Csanady
(1978) found an analytical solution for coastal circu-
lation resulting from a constant alongshore pressure
gradient imposed by the open ocean at the outer edge
of a continental shelf. His solution indicates that the
pressure field is transmitted across the shelf, and this
pressure field results in an associated velocity field.

More recently, Wang (1982) argued that the steep
continental slope should also be included when inves-
tigating the effects of a constant open ocean pressure
gradient on shelf circulation, and he concluded from
a numerical study that a steep slope “insulates” the
shelf from the open ocean, with steeper slopes providing
more insulation. Taken to the limit of an infinitely
steep slope, extensions of Wang’s arguments suggest
the open ocean and shelf become entirely decoupled,
a result which is physically implausible. Wang con-
cluded that open ocean pressure effects are ineffective
at driving the circulation observed on the wide Mid-
Atlantic Bight. Hsueh and Peng (1978), Chase (1979),
Hopkins (1982) and Hopkins and Dieterle (1983) have
further discussed oceanic pressure gradient forcing as
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a contributor to shelf circulation on the Mid-Atlantic
Bight while Csanady and Shaw (1983) have argued that
it is the insulating effect of the steep continental slope
which is responsible for weak near bottom currents on
the slope of the Bight.

To determine the relative importance of wind stress
and open ocean influences on the narrow shelf of the
west coast of the United States, Hickey and Pola (1983)
used the long term mean steric height data of Reid and
Mantyla (1976), in conjunction with relative monthly-
mean adjusted sea level and wind stress. They con-
cluded from this study that deep ocean currents con-
tribute significantly toward the mean coastal elevation
gradient south of San Francisco in the summer and
fall, and that this gradient is effective in driving a coastal
and shelf flow.

The role of the alongshore oceanic pressure gradient
in driving coastal circulation therefore appears to be
important on narrow continental margins but less im-
portant on wide margins. Even for the case of barotro-
pic flow over idealised topography, the role of the width
and shape of the continental margin in determining
the transmission of the pressure field and the general
circulation remains to be quantitatively explained. In
this paper we answer some of these basic questions for
the barotropic case.

The paper is organised as follows. Section 2 describes
the formulation of the problem, while section 3 is con-
cerned with the coastal circulation induced by an
alongshore pressure gradient at the edge of a continental
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margin with linear depth profile. The case of a parabolic
depth profile for the continental margin is dealt with
in section 4 while section 5 discusses the results.

2. Formulation of the problem

In this section, we formulate the equations governing
steady coastal circulation induced by an alongshore
pressure gradient existing in the open ocean beyond
the continental margin.

For a straight coastline, define axes such that x and
y are distances offshore and alongshore, respectively,
and assume that the depth 4 is a function of x only
(Fig. 1). Bottom friction is assumed to be proportional
to the depth-averaged velocity with friction coefficient
r. This approximation is adequate for mean flow over
much of the shelf (Csanady, 1976). As with the wind-
driven circulation problem (Csanady, 1978; Middleton
and Thomson, 1985), time dependent effects are un-
important in the alongshore momentum equation
provided the frequency of oscillation w < r/H where
H is a scale depth for the coastal ocean. In addition,
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FIG. 1. Profiles of depth over the continental margin with (a) linearly
increasing depth such that 4 = hy + A, x, and (b) parabolically in-
creasing depth such that & = kg + h,x2. The edge of the continental
margin is at x = /, and the maximum depth /4(/). The continental
margin includes the regions commonly known as the continental
shelf and the continental slope.
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time dependent and bottom friction terms may be ne-
glected in the across-shelf momentum equation pro-
vided the length scale of the alongshore structure greatly
exceeds the shelf width. With these assumptions the
depth-averaged, linearized equations of motion for
nondivergent flow on the continental margin may be
written in terms of the across-shelf and alongshore ve-
locities # and v, and the surface elevation ¢ as

So=g¢x (1)
Sfu=—g&,—roh™! )
(uh)x+ (vh),=0 (3)

where the subscripts x and y denote partial differentia-
tion and g is the acceleration due to gravity.

If variations in the Coriolis parameter fwith along-
shore distance y are small over distances comparable
to the length scale of the alongshore structure, then f
may be considered as a constant. Elimination of ¥ and
v from (1)-(3) results in a partial differential equation
for the surface elevation ¢

r(fhx)_lg'xx'}' g‘y:O, 4

an equation identical to that found by Csanady (1978)
for steady wind-driven circulation. One boundary
condition is obtained by assuming that the depth 2 —
hy at the coast where u = 0, and from (1) and (2)

Ec=—fhor'§,, x=0. (5)

If ho = O then (5) simplifies to ¢, = 0 implying zero
alongshore velocity at the coast, while nonzero values
of A, allow nonzero nearshore currents. The alongshore
pressure gradient at the outer edge of the continental
margin (x = /) enters the problem through the second
boundary condition

§N=F), 6

We seek solutions to (4), for which “initial” conditions
at y = 0 do not need specification, using the method
of separation of variables. Assuming

£=Re{Z(x)$(»)} M

the equation for the surface elevation structure becomes

x=1

—— —-=—==constant.

®

For imaginary values of the separation constant
(= —ik, k real), an alongshore structure, oscillatory in
y such that

¢ = G exp(iky), %)

allows matching to a sea level perturbation at the slope/
ocean boundary of form

K(y)= G cos(ky), (10)

provided the across-shelf structure function obeys Z(/)
= 1. For practical applications the depth A(/) is suffi-

x=1
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ciently large that the frictional term in (2) becomes
negligible and the flow is therefore essentially geo-
strophic over the outer slope. Assuming the flow is also
geostrophic in the ocean x > /, the matching condition
equating sea level at x = / implies continuity in the
across-shelf current (and across-shelf volume flux) at
x = [ through the geostrophic relation u = —gf ~'3¢/
dy. These are mandatory matching conditions required
by the continuity equation, and both conditions are
technically met by specifying Z(/) = 1.

Solutions for an arbitrary alongshore structure may
be found by considering (9) and (10) as Fourier coef-
ficients with amplitude Gy, then summing the contri-
butions from each alongshore wavenumber k. Sub-
stantial insight into the role that the oceanic sea level
plays in generating coastal circulation may therefore
be obtained by considering an arbitrary coefficient.

Under separation of variables the across-shelf struc-
ture obeys

Zo+ikfhr'Z=0 11
with boundary conditions
Z.+ikfhor'Z=0, x=0
Z=1, x=I1. (12)

The boundary conditions (12) are necessary and suf-
ficient to solve (11). Any other boundary conditions
(such as matching alongshore velocity components)
would either overdetermine the problem if used in ad-
dition to (12) or, if used in place of one of (12), would
render the solution physically unrealistic. For particular
depth profiles, solutions are relatively easy to find, and
particular cases are considered in the following sections.

3. Circulation on a continental margin with linear depth
profile

For a continental margin having a constant gradient
but with nonzero depth at the coastal wall as indicated
in Fig. la, :

h=ho+h1x. (13)

Some simplification of the equations is achieved by
transforming to dimensionless variables X and Y, where

X=xL"', Y=ky. (149)
Writing 7o = ho(h, L)™! the depth may be written as
' h=h,L(no+ X). (15)

The structure equation resulting from imposed sea level
G cosY at X = § (=I/L™!) may then be expressed as

¢ =G exp(iY) (16)
d*zZ
-JF-F(XZZ:O (17)

where the across-shelf structure obeys the boundary
conditions
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d—Z+ 0Z=0, X=0 18
dX anL=y, - ( )
Z=1, X=a. (19)

-The definition of L and the coefficient o depend upon

the sign of fas follows

>0, L2=(j%), a=(14+i)  (20)
1 \
f <0, L2=(f_k—2h'1), a=1-i). Q1)

To interpret the role played by 8, we write (for f> 0)

r

where A = 1/%h, is the cross sectional area of flow from
the coast x = 0 to x = / below the depth 4. Thus 6 is
linearly proportional to the scale length 4'/2, For con-
stant continental margin width /, shelves with a larger
gradient have larger A'/? and so larger 8, while for con-
stant values of A(/) shelves with a smaller gradient have
larger A'/2 and so larger . An alternative interpretation,
pointed out by a reviewer, is found by writing

8 =2 ()] f )UK

so that 6% is a ratio of mean depth (/) to bottom
frictional length (r/ f) modified by the ratio of across-
shelf to alongshore scales (/k).

The solution to (17) subject to (18) and (19) is

cos(aX +8)
ZX)=——"0r 22
0 cos(ad + 8) (22)
where 6 is a complex angle satisfying
2
tang =21 = . 23)
a4

The circulation over the continental margin due to im-
posed alongshore sea level of form
{=GcosY at X=9§ (24)

thus has sea level, alongshore velocity and transport
streamfunction given by

=G Re{Z(X)eiY} (25)
v =j"7LG- Re{V(X)e™) 26)
¢=ngi‘L Re{P(X)e™) @7)

where we have defined ¢ by v = A~'0y/dx, u = —h~'ay/
dy. The function Z(X) is given by (22) while V(X) and
P(X) are given by
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_ —asin(aX+6) .
V= cos(ad + 6) (28)
_(mo+X) cos(eX +8)— o sin(aX +6)
Px)= cos(ad + 6) - @

For selected nonzero values of 7, and 8, and hence 4,
the solutions (25)-(27) may be easily calculated.

a. Coastal depth hy = 0

Here 7o = 0 and 6 = 0, and we first investigate the
role played by the continental margin width 4.

Some general conclusions may be drawn from (25)-
(27) near the coast where x — 0, and the leading order
terms give

- G cos(Y—¢) o gG 2Xsin(Y —¢)
|cos(ad)| IfIL  |cos(asd)|
v gGh L 3 X3sin(Y—¢)
Lf] |cos(ad)|

where
|cosad| = [cos?8 cosh?5 + sin?s sinh25]"/2

_ Im[cos(ad)]

tane = B elcos(ad)]”

N
o

0
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The magnitude of the sea level anomaly field at the
coast is reduced by a factor of |cos(ad)|™! compared
with that at X = . Relatively narrow continental mar-
gins with § < | transmit imposed alongshore oceanic
sea level fluctuations undiminished, while for wide
continental margins with 6 > 1 the sea level pertur-
bation is much reduced. The phase ¢ indicates that the
maximum coastal elevation occurs at dimensional dis-
tance ke alongshore compared with that at the shelf
break. The alongshore velocity field is zero at the coast
but increases linearly with distance offshore, and is
maximum when the sea level gradient is maximum.
The transport streamfunction increases with the cube
of distance offshore.

The general features of the circulation are shown in
Fig. 2 which shows contours of sea level and stream-
function for é = 1. The sea level perturbation is trans-
mitted to the coast with some reduction, and the max-
imum sea level perturbation is offset in the alongshore
direction. The streamfunction contours show the flow
to be stagnant at the coast, but more energetic toward
the outer slope. This is a characteristic feature of the
flows considered here and occurs as a result of the larger
effect of bottom friction on the depth averaged flow in
shallower waters. By contrast, steady wind-driven cur-
rents are much stronger near the coast but become
weaker in deeper water because a greater mass of water

) FiG. 2 Contours of sea level perturbation ¢ and transport streamfunction  calculated for a
dimensionless continental margin width of 4 = 1, and for zero coastal depth, for the linear depth

profile.
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is acted upon by the wind in deeper water (Csanady,
1978).

b. Coastal depth hy #+ 0

In the case no > 0 and @ is nonzero. Given a value
of 8, a measure of the transmission of the sea level field
across the shelf is the value of Z at the coast, i.e., | Z(0)|.
Figure 3a shows a plot of the coastal sea level | Z(0)| as
a function of 5y and 8. For any value of ng, increasing
& reduces the value of | Z(0)| indicating a poorer trans-
mission of the pressure field. For any given value of 6,
transmission of the pressure field is substantially re-
duced as 7 is increased.

The value of the streamfunction at X = § is the total
integrated alongshore transport from X = § to the coast.
The across-shelf component of the streamfunction
| P(8)| is plotted as a function of é in Fig. 3b. The trans-
port is larger for greater 4, and is also larger for larger
values of the coastal depth 7,. Thus, even though the
pressure field is more poorly transmitted for larger val-
ues of ng, the total alongshore coastal transport is in-
creased for larger values of 7.

To illustrate the effects of the continental margin

3.0

2.0~

IP(5)I

1.0

0.0

0 1 2 3
)

FiG. 3. Magnitudes of (a) coastal elevation |Z(0)] and (b) total
transport |P(3)| plotted as a function of the dimensionless continental
margin width 8 for the linear depth profile with selected values of
the dimensionless coastal depth 7,.
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FIG. 4. The magnitude of the alongshore velocity structure function
|V(X)| plotted as a function of the dimensionless across-shelf position
X for selected values of the dimensionless continental margin width
8. The continental shelf has a linear depth profile of form 4 o 7
+ X with (a) 7o = 0.0 and (b) 5, = 0.2.

width § and coastal depth 7, on the velocity structure
Fig. 4 shows the magnitude of the alongshore velocity
|V(X)] as a function of location X on the shelf for se-
lected values of 8 and ng. Figure 4a has been calculated
with o = 0, i.e., zero coastal depth, and shows that the
velocity structure increases linearly with distance from
the coast at small values of X, with narrower continental
margins (small §) having substantially larger currents
than wider continental margins (large 6). For the coastal
depth no = 0.2, Fig. 4b shows that coastal currents at
X = 0 are larger for narrower continental margins, al-
though as for Fig. 4a, it remains true that velocities
increase monotonically with distance from the shore
in all cases. For values of § greater than about 1, the
shelf edge currents at X = § become smaller with in-
creasing 6.

4. Circulation on a continental margin with parabolic
depth profile
A parabolic depth profile has the form (Fig. 2b)
h= ho + hzxz. (30)

Transforming to dimensionless variables X and Y as
in (14), the depth may be written in terms of 7

= ho(hz LZ)"1 as
h=hy L3 (no+ X?). 31

The structure equations resulting from imposed sea
level G cosY at X = § are then

¢ =G exp(iY) (32)
2
%Zz+2a2XZ=O 33)
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where the across-shelf structure obeys the boundary
conditions

dz
d-TY+anOZ 0, X=0

Z=1, X=o. (34)

The definition of L and the coefficient « depend on
the sign of fas follows

>0, L3=(f—%2—), a=1+i (35)
2

f<0, L3—(ﬂjl’) a=1+i (36)
2

For this scaling the dimensionless continental margin
width is (for /> 0)

s\ 12 _ (3117
=) =)

where 4 = 1 h,1* is the cross sectional area of the coastal
ocean from x = 0 to x = I below the depth hy. For
constant continental margin width /, a steeper gradient
implies a larger A and hence larger §; while for conti-
nental margins with a constant value of A(/), a shallower
gradient implies a larger 4 and hence larger 6.

Solutions to (33) are Airy functions of complex ar-
gument, or equivalently, Bessel functions of order Y3
of complex argument (Abramowitz and Stegun, 1956,
Ch. 10). However, these functions and their derivatives
are not available on most computer systems and for
the purposes of this application it is convenient to use
the power series method for solution (Kreyszig, 1967,
Ch. 3).

The general form of (33) for parabolic profiles is

2z
+ a¥(y +2mX)Z=0

I 37
and we seek solutions to (37) of form
Z= 3 C,X™. (38)
m=0

Substituting (38) info (37) and equating coefficients of
equal powers of X gives

1
C=—= aZmCo

2 (39)

and the general recursion relation

=0?(01Cpni1 + 212C.r)
(m+3)(m+2)

The boundary condition at the coast gives
Cl = _(Xz'l]oCO (41)
so that all coefficients may be found in terms of Cp,

Cni3= (40)
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which is itself determined by the second boundary
condition (34), i.e.,

Z(0)= % Cnd"=1.

m=0

(42)

Solutions for the sea level, alongshore velocity and
transport streamfunction are

{=GRe{Z(X)e'"} (43)
_& =—Re{V(X)e'"} (44)
fL

Y= Qg}j’f—LzRe{P(X)e‘Y}. (45)

In terms of the power series, the across-shelf struc-
tures are given by

Z(X)= % CnX™

m=0

(46)

V(X)= 2 mCnX™!

m=1

(47

1
P(X)=7,C,\ X+ (n0C2 +§7I1C1)X2

@

+ 2> (noCm+2 + 771

m
Cm+1 no— Cm)X’"+2-
(48)

Surface elevation and streamfunction contours for
the parabolic depth profile with 79 =0, 9, = 0, 5, = 1
and 4 = 1 shown in Fig. 5. In comparison with transport
over the linear depth profile (Fig. 2), transport over the
parabolic profile is somewhat reduced, except at the
outer edge of the slope. The sea level perturbation is -
transmitted across the continental margin slightly more
effectively, with the 0.8 contour now intercepting the
coast. Quantitatively, however, there is little difference
despite the different profile shape and different scaling.

Values of the coastal elevation |Z(0)| and the total
alongshore transport |P(8)| are plotted in Fig. 6a, b as
a function of é for selected vaues of 79. The depth profile
is parabolic such that

h= ho + h2x2 = thz(Y)o +X2).

As in section 3, the coastal amplitude | Z(0)| shows little
reduction for small values of §, implying that the pres-
sure field is readily transmitted from the shelf edge to
the coast. For larger values of 6 the transmission be-
comes increasingly reduced. Increased values of the
dimensionless coastal depth nq result in reduced values
of |Z(0)|. The alongshore transport |P(5)] shows in-
creased transport as 6 increases with transport increas-
ing also as a function of coastal depth z,.

The principal features displayed in Fig. 6 are thus
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FiG. 5. Contours of sea level perturbation ¢ and transport streamfunction ¢ calculated for a
dimensionless continental margin width of & = 1, and for zero coastal depth for the parabolic

depth profile.

qualitatively similar to those of Fig. 3, despite the dif-
ferent scaling, although for the parabolic depth profile
the coastal sea level |Z(0)| generally decreases more
rapidly with 6 and the transport P(8) generally increases
more rapidly with é than for the linear depth profile.
The across-shelf velocity structure |V(X)| is plotted
as a function of across-shelf location X in Fig. 7 for
selected values of § and for 9 = 0, and 7o = 0.2. In
both cases currents increase monotonically with dis-
tance offshore, with stronger currents at X = 6 occurring
for larger & in all cases. For midshelf locations, along-
shore currents are, in general, larger for smaller values
of 8. Thus oceanic sea level perturbations may generally
be said to drive faster currents on narrower continental
margins. Figure 7b shows the effect on currents of a
non-zero coastal depth, with coastal currents being
substantially stronger on narrower shelves.

5. Discussion

For barotropic flows on continental margins having
linear or parabolic profiles, the effects of alongshore
oceanic sea level perturbations on coastal circulation
have been determined for both linear (b = Ay + 7, x)
and parabolic (A = hy + h,x?) depth profiles.

A key parameter is the dimensionless continental
margin width 8, obtained by scaling the actual conti-
nental margin width / with the wavenumber k of the

alongshore variability, the Coriolis parameter f, the
linear friction coefficient r, and the shape constants 4,
and A, according to

172 1/2
6=(f—:—€) [%hllz] , linear

1/3 1/3
B=(—3§—Zc) [%h;ﬁ] , parabolic.

In each case the quantity in the square brackets relates
to the geometry of the shelf, and is equal to the cross-
sectional area A of the alongshore current below the
level Ay, between x = 0 and x = /. Thus 6 increases or
decreases accordingly as A increases or decreases. For
the linear depth profile, a scale length L = (2r/fkh,)?
can be defined such that 8 = I/L. This scale length is
identical with that found by Csanady (1978) in his study
of steady wind-driven circulation caused by an along-
shore wind stress having wavenumber k. In general for
a fixed continental margin width /, § increases as the
depth A(]) increases, while for a fixed ocean depth A(/),
b increases as / increases.

Calculations for both linear and parabolic depth
profiles show that an alongshore open ocean pressure
gradient caused through a sea level perturbation is most
easily transmitted across narrow continental margins -
(small 8) with small coastal depths. The resulting
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alongshore coastal currents are largest on narrow con-
tinental margins with larger coastal depths while the
total alongshore coastal transport is larger for both
wider continental margins and larger coastal depths.

The phenomenon known as the “insulating effect of
a steep continental slope” may now be put in perspec-
tive, since it is not the steepness of the slope which acts
to insulate the shelf from the ocean, but the cross-sec-
tional area A4 of flow over the continental margin. An
appropriate measure of “insulation” is the dimension-
less continental margin width 4.

As an idealised application to the west and east coasts
of the United States, we choose / = 40 km, A(/) = 2000
m for the west coast, and / = 200 km, A(/) = 2000 m
for the east coast, with i,y = 0 in each case for the
parabolic depth profile. Choosing k = 10 m™! and r
=5X10"*m s gives § ~ 2 (west coast) and § ~ 3.5
(east coast). Reference to Figs. 6 and 7 indicates the
coastal sea level perturbation and alongshore coastal
current to be practically non-existent for § = 3.5, while
~20% the pressure gradient is transferred to the coast
for 6 = 2. Over the inner shelf, substantially greater

I
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FIG. 6. Magnitudes of (a) coastal elevation |Z(0)| and (b) total
transport |P(8)| plotted as a function of the dimensionless continental
margin width é for the parabolic depth profile with selected values
of the dimensionless coastal depth ng.
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FIG. 7. The magnitude of the alongshore velocity structure function
|V(X)| plotted as a function of the dimensionless across-shelf position
X for selected values of the dimensionless continental margin width
8. The continental shelf has a parabolic depth profile of form A « 7,
+ X? with (a) 7o = 0.0 and (b) 7, = 0.2.

currents are to be expected for 6 = 2 than & = 3.5.
These results are consistent with the observations.

The present model is clearly quite restrictive in that
it only considers depth-averaged, horizontal currents
in a barotropic ocean. Calculations are only made here
for linear and parabolic depth profiles, but the exten-
sion to profiles of higher polynomial form for actual
applications is straightforward with the present method.
Other numerical methods may also prove appropriate
to calculate across-shelf structures if actual profiles are
to be used. Another limitation is the neglect of any
baroclinic effects. While it is often true that shallow
coastal regions are well mixed, the open ocean is always
stratified. In this context, the resuilts presented here
describe an upperbound for the strength of induced
coastal circulation.

Within its scope, the present model appears to clearly
elucidate the role that oceanic pressure gradients play
in generating coastal circulation.
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