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ABSTRACT

A three-layer model is used to study the effects of pure strain flow and simple shearing flow on isolated,
anticyclonic, baroclinic vortices such as Mediterranean salt lenses. Exact steady solutions are found representing
elliptical vortices with uniform interior vorticity. These solutions become increasingly elliptical with increasing
strain or shear, with the major axis always 45° clockwise from the principal (outflow) axis of the strain field.
This is shown to be necessary so that the mean flow not exchange energy with the lens. At some critical value
of strain or shear, these solutions cease to exist. The results suggest that for a lens of a given Rossby number,
there is a maximum large-scale strain beyond which the lens must undergo drastic changes in order to survive.

The geostrophic adjustment of an infinitely long strip aligned with a simple shearing flow is also investigated.
It is found that the shear modifies the distance of outward adjustment, but not the profile of the adjusted region.
The strong flow and vorticity near the edge, and the assumed infinite length, allow the strip to persist in envi-

ronmental shear as strong as f; the Coriolis parameter.

1. Introduction

Lenses of strongly anomalous water, isolated from
the sea surface and bottom and rotating anticycloni-
cally, have been observed in several locations of the
world’s oceans. McDowell and Rossby (1978) observed
a “Meddy,” a lens of Mediterranean Water, near the
Bahamas. Armi and Zenk (1985) report on three such
lenses discovered in the Canary Basin, nearer the pre-
sumed source. These lenses were 500-800 m thick in
the center and were roughly circular with a radius of
30-50 km, which is several baroclinic deformation ra-
dii. Their salinity anomaly is very strong—many stan-
dard deviations from the mean temperature-salinity
(T-S) curve. Because they are spawned in the eastern
Atlantic, and at least some manage to migrate to the
west, they may collectively play an important role in
the along-isopycnal transport of heat and salt. The
changes of a lens surviving various instabilities, dissi-
pative processes, and other interactions will, of course,
affect these transports.

During their migrations, these lenses are embedded
in the larger-scale mesoscale eddy field. The velocity
and vorticity of the eddy field will advect and rotate
the lens. The strain field attempts to distort the lens
from circular symmetry, and perhaps even tear it apart
if it is strong enough or if the lens is too large. As Rossby
(1982) says, ’

This strength (high velocity) and the small size of these
features may give us a clue as to why they are long-
lived: if the horizontal shear of the background flow
were strong enough, a large (lens) could be stretched
apart in a cascade to smaller and smaller scales. . . .
This may help to explain why no very large Mediter-
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ranean eddies have been observed: they suffer a violent
death!

In this paper, the effect of a large-scale strain or a
uniform shear on a lens is investigated using a three-
layer model. We find steady lenslike solutions with
uniform interior vorticity, valid for finite lens Rossby
number and finite mean flow strength. These solutions
cease to exist for strong environmental velocity gra-
dients.

There is little previous related work on the behavior
of isolated vortices in sheared or strained environments.
Moore and Saffman (1971) found an exact solution
for an inviscid, barotropic elliptical vortex in uniform
irrotational strain, «, in a nonrotating fluid. Their
findings are similar to ours, predicting a critical strain
beyond which the solution does not exist. In a fairly
comprehensive review of isolated lenses, McWilliams
(1985) showed that the potential vorticity gradients in
the neighborhood of a fluid parcel would tend not to
grow, and so allow the lens to remain coherent, when
the local lens vorticity is greater than the large-scale
strain. This condition also allows fluid parcels to be
trapped within the lens:

we’> a2, (1.1)
Nof (1985) investigated the ellipticity of isolated lenses
in a simple shearing flow, finding that they become
more elliptical as the strength of the shear increases.
We extend this work to finite Rossby number and to
pure straining motions and find that there are limits
to the magnitude of the environmental strain/shear that
allow steady solutions of the postulated form to exist,
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and that cyclonic and anticyclonic shear affect the lens
differently.

In section 2, the three-layer reduced-gravity model
for baroclinic lenses is set out, allowing for environ-
mental velocities. In section 3, some integral constraints
on the layer are deduced. In section 4 elliptical lenses
in a strain are studied, and in section 5 we study ellip-
tical lenses in simple shear. The geostrophic adjustment
of a long strip in simple shear is solved in section 6,
and the results are summarized and discussed in sec-
tion 7,

2. Formulation

We choose a three-layer model with velocities #;
= (u;, v;, w;), densities p;, and pressures p; in each layer.
We constrain the velocities in layers 1 (top) and 3 (bot-
tom) to both be equal to the prescribed mean flow (i,
7, 0), which can be either a pure strain field (sections
3 and 4) or a simple shear (sections 5 and 6). Prescribing
the external flow has the effect of assuming that the
top and bottom layers are infinitely deep compared to
the lens, so that the lens has no back effect on the mean
flow. Assuming equal velocities, and thus equal pres-
sure gradient forces, in these layers leads to the con-
dition

.1

where 7, and 7, are the displacements of the upper and
lower interfaces of the lens, as shown in Fig. 1. We
- define A(x, y, t) = n, + 72, the thickness of the lens.
Under the Boussinesq and hydrostatic assumptions,
and dropping the subscript 2, the equations of motlon
for the lens (layer 2) are

du Oh  (du
& po=—s5 +( ° v) 2.2)
gg+fu=-—gak ( + fi ) 2.3)
dt

dh ou v

Z + h(&x + 5}) 0 2.4)

Uy, Vi, P4

Ug, V3, A3

FiG. 1. Sketch of the lens model used, showing the three layers
i =1, 2, 3. The central layer is assumed here to be of finite horizontal
extent.
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where the reduced gravity is
g = g(” 378 ‘)(1 —a)a 2.5)
P3
_P2" P/
=P

For equal density jumps at the upper and lower inter-
faces, a = 4. The usual two-layer formulation used for
Gulf Stream rings is recovered by letting p; = 0.

The equations of motion for layers 1 and 3 show
that the bracketed terms in (2.2) and (2.3) are the pres-

_sure gradient forces of the mean flow. Thus, the cou-

pling between the central lens layer and the upper and
lower layers is only via pressure forces. Since these can
transmit no torques, an immediate conclusion is that
the potential vorticity of each fluid column of the lens
is conserved. [This can be demonstrated by cross-dif-
ferentiating (2.2) and (2.3) and using the equations of
motion for the upper layer.] This constraint can only
be broken if the layers are coupled via friction or
mixing.

3. Steady strain field—integral theorems

In this section we assume that the lens is of finite
horizontal extent, as shown in Fig. 1, and that the mean
velocity is a uniform steady strain, with principal axes
at 45° to the x-axis:

= ay 3.1

v=ax. (3.2)

The equations of motion for the lens (2.2)~(2.4) become
du ,0h

——fo=- - 33

Qi g5t (a®—af)x (3.3)

dv+fu— —-g /O +(a2+af)y (3.4)
dh du ov

. 3.5

dt+h( x+ay) 0 (3-5)

These are just the shallow water equations with forcing
terms proportional to x and y. In the following we as-
sume that the lens thickness goes to zero at finite radius.
Conservation of potential vorticity for the lens can
be demonstrated by dlfferentlatmg (3.3) by y, (3.4) by
X, subtracting, and using (3.5) to obtain
f+ dv/dx — Ou/dy
—|————————]=0. 3.6
dt( h (3.6)
Integrating (3.5) over the area of the lens and using
the divergence theorem gives

a
&J.f hdxdy =0,

which states that the volume of the lens remains con-
stant.

(3.7)
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To form an energy equation for the lens, we multiply
(3.3) by hu, (3.4) by hv, and after some manipulation
(see p. 67 of Pedlosky, 1979), we obtain

a%[h(u2 +02)/24 g'H*/2]+ V- {hulg'h+ (u*+v?)/2]}

=(a?~af uhx+(a?+af vhy. (3.8)

This is then integrated over the area of the lens, elim-
inating the second term to obtain

3
% ff {h(u?+v2)/2 + g'h*2}dxdy

= ff {(a®—af )xhu+ (a®+ of )yhv}dxdy. (3.9)

The left side is identified with the kinetic and potential
energies of the lens; the right side expresses the work
done on the lens by the mean flow in layers 1 and 3.

Since there is no dissipation in the model, steady
solutions can only be obtained if the rhs of (3.9) is zero.
One obvious way this can occur is if # = constant and
u = ay, v = ax, corresponding to a barotropic flow.
Even though the central layer is of infinite extent, there
is no energy exchange in this case.

Another way that no energy exchange can occur is
if the central layer has a lenslike disturbance with axes
of symmetry along the x- and y-axes. In this case, 4 is
symmetric in both x and y, u is symmetric in x and
antisymmetric in y, and v is symmetric in y but anti-
symmetric in x. Each term on the rhs of (3.9) is anti-
symmetric in both x and y, so the integral is zero. One
class of lenses satisfying this symmetry property is an
elliptical lens with the major axis along either the x-
or y-axis (section 4), at 45° to the principal strain axis.
An example is sketched in Fig, 2.

For a barotropic vortex in a nonrotating strain field,

= g\:

™~

F1G. 2. Sketch of an elliptical lens in a pure strain field, oriented
so that there will be no energy exchange between the lens and the
flow in the layers above and below the lens.
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Moore and Saffman (1971) found that the steady so-
lution was elliptical, with the major axis at 45° to the
principal strain axis. They explain this result in terms
of the pressure at the rim, but a more appealing expla-
nation in terms of energy exchange, analogous to (3.9),
is possible, Tennekes and Lumley (1972, p. 63) show
that the work done on a turbulent velocity field by a
mean flow is given by the product of the Reynolds
stresses and the mean rate of strain, which for the pure
strain field (3.1), (3.2) becomes

—2a ff uvdxdy.

This is zero for any flow symmetric about the x- or y-
axis, as is the steady vortex described in Moore and
Saffman (1971).

What will be the energy exchange if we suppose that
an initially circular lens is subjected to a steady strain?
We would expect the lens to adjust to the steady form
found in section 4, such that it is elongated in the x-
direction. :

During the adjustment process, there will be a net
outflow along the x-axis, and net inflow along the y-
axis. The integrand on the right of (3.9) will thus be
negative, suggesting that the lens will lose energy to
the strain field during adjustment.

We thus speculate that, upon encountering strain,
an initially circular lens will distort with its long axis
along the outflow of the strain, due to the kinematic
effect of the mean velocity. It will then precess so that
its long axis is 45° to the principal axis of the strain,
as shown in Fig. 2, and the loss of energy will stop.

(3.10)

4. Elliptical lenses in a pure straining motion

We now look for lenslike solutions of (3.3)-(3.5) with
uniform rotation at angular rate € (vorticity 2Q), ex-
pected to be negative for an anticyclonic lens, and el-
lipse parameter ¢. The ellipse parameter e is related to
the ratio of major/minor axes r by

j2 _ [X-axis 2
y-axis| 1+4+e€
The major axis is aligned with the y-axis for e > 0. The
lens velocities and thickness will take the form

l—e¢

u=-Q(1 —ey “4.1)
v=4Q(1+ex 4.2)
h/Hy=1-BuR; % {(1+8)x*+(1-d8)y%}. (4.3)

Here, 6 is the ellipse parameter of the A-contours, and
Hj the central thickness of the lens. The internal radius
of deformation is R; = (g'Ho)?/f, and the Burger
number Bu, a measurement of lens radius, will be de-
termined. These solutions are similar in form to, and
were motivated by, the nonsteady solutions for anti-
cyclonic lenses in zero mean flow of Cushman-Roisin
(1984) and Cushman-Roisin et al. (1985).



744

Substituting (4.1)-(4.3) into (3.5) gives € = §, which
says that streamlines and height contours must coin-
cide, a consequence of the uniform vorticity and con-
servation of potential vorticity for all fluid elements in
the lens. Substitution into (3.3) and (3.4) gives

L(1—eD)+Qf(1 +¢)
+2fBu(l + &)+ a’—af=0 (4.4)
P -+ Q2f(1—¢)
+2f?Bu(l — )+ a?+ af=0. (4.5)
The sum and difference of these equations yield
Pl -eDetaf+a=0 (4.6)
2Bu=a/ef—Qff. 4.7)

The approach taken will be to regard Q and « as
fixed, and solve (4.6) as a cubic in e. Once ¢ is known,
we solve (4.7) for Bu. The three (i = 1 to 3) roots for
€ are given by

A+ B
€=9 _ (4.8)
A+Bi(_3)l/2u
2 2
where
A=(S2W? + v\@m
B= (S/ZW2 - Q)”3
0= (S/2W2)2 -1+ S2/W2)3/27
S =alf
W= Qf.
2 ] €
. I
\ ,”
\' ,,/
,’ 1
I/ !
o a/t
T + } { T ‘lr >
-3 -2 1 1 2 3 _
' L7 -
-1 -[' :I,
S
7 \
-2 4+

FIG. 3. Plot of Eq. (4.6) for a lens Rossby number (2Q/f) of 1. The
solid portion of the central curve has physical relevance to anticyclonic
lenses.
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FI1G. 4. Plot of Eq. (4.6) in more detail for three values
of the Rossby number.

These are shown in Fig. 3, a plot of ¢ versus «/f for Q
= —f/2, a Rossby number of 1. [The curves were ac-
tually plotted by regarding (4.6) as a quadratic in a.]
Only the solid portion has direct physical relevance to
anticyclonic lenses, showing a circular lens that be-
comes more elliptical with increasing strain. For pos-
itive strain, the ellipse parameter is negative, so the
ellipse and strain are oriented as shown in Fig. 2a. Re-
versing the sign of the strain gives positive ellipse pa-
rameter, equivalent to Fig. 2a being rotated by 90°.

The physically relevant root is shown in more detail
in Fig. 4, for Rossby number Ro = 2Q/f= 0.3, 0.6 and
1. It is seen that the ellipse parameter increases with
increasing strain, but beyond some maximum strain,
given by Q = 0 above,

T wis? = w2+ 57 4.9)
there are no real solutions for ¢, and hence no steady
lenslike solutions of the form assumed. In the solid
curve of Fig. 5 this maximum strain is plotted as a
function of the lens rotation rate (half the Rossby
number), showing that no lens of the form assumed
can survive a strain rate exceeding 0.1f. The ellipse
parameter at this maximum strain is shown as the solid
curve in Fig. 6; the maximum ellipse parameter is al-
most independent of the lens vorticity.

For a barotropic vortex (f= 0) in strain, Moore and
Saffman (1971) found that the vortex became elliptical,
with the same orientation to the strain axis that we
found (for negative vorticity). In our notation, the
equivalent relation to (4.6) was found by Moore and
Saffman to be

a 1= 2

Q1+
This allows solutions up to a maximum strain of «
~ 0.075Q at a maximum ellipse parameter of about
0.49. These maxima are shown in Figs. 5 and 6, re-
spectively.

The changes in lens shape as the strain increases
from zero to the critical value are shown in Fig. 7, as

(4.10)
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RG. 5. Plot of the maximum strain or shear allowed in the solution
versus the lens rotation rate, for a lens in pure strain (solid curve),
simple shear (dashed curve), and a barotropic vortex in pure strain
(dotted line, from Moore and Saffman, 1971).

the deformation radius divided by the lens dimensions.
The inverse lens radius (Bu'/?) at zero strain is shown
as a function of Q/f by the dashed line. The maximum
corresponds to the smallest lens radius of V8 defor-
mation radii. The central solid line is the same quantity,
Bu'/?, at the maximum strain shown in Fig. 5. The
upper and lower solid curves are the corresponding
inverse semiminor and semimajor axes. Lenses with
even a moderate rate of spin have average radius less
than 5 deformation radii. The shape of a lens at max-
imum strain is shown in Fig. 2a.

5. Elliptical lenses in simple shear flow

For a simple shear, i = vy, the equations of motion
for the central layer (2.2)—(2.4) become

du oh
——Jo=—¢— (5.1
dt ox )
04
£ -
V5 b o e e e e o =+ Moore and Saffman
Cyclonic Shear
. Pure Strain
-08 ; . A . .
-04 -0.2 0

Qr/f

FIG. 6. Plot of the lens ellipse parameter at the maximum strain
for the three cases described in Fig. 5.
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0.4

R4/ Length

0.2

1 1 1
-0.2 0
a/f

FIG. 7. Inverse lens dimension, normalized by the deformation
radius, for the solutions of section 4. The solid curves are, top to
bottom, the minimum, average and maximum radii for a lens at the
maximum strain allowed for the lens versus the lens Rossby number.
The dashed curve is the radius of the lens at zero strain versus Rossby
number.

0.4

dv ,0h
-‘;;+fu——g ay+'yﬁ) (5.2)
dh ou v
E+h(gx+a—};)—0. (5.3)
The energy equation analogous to (3.8) is
56; (Energy) =~/ f f yhvdxdy. (5.9)

The elliptical lens solutions (4.1)-(4.3), when substi-
tuted into (5.1)-(5.3), give

Q1 —e)+Qf(1+6)+2/Bu(l+¢)=0 (5.5
QP —e)+Q (1 —e)+2f2Bu(l —e)+4f=0, (5.6)

and these can be solved to obtain the lens ellipse pa-
rameter and size in terms of the shear:

—g—{= —-2¢(1 —¢) (5.7)
2 Bu=—9Q/f—(Q%/fA)(1 +¢). (5.8)

Equation (5.7) is sketched in Fig, 8, showing that the
relation between strain and ellipse parameter (a parab-
ola) is not antisymmetric as we found for a pure strain.
Rather, cyclonic and anticyclonic shear affect the lens
differently.

For positive v (anticyclonic shear), the ellipse pa-
rameter is negative, becoming —1 at a shear of 4Q%/f.
As shown in Fig. 9a, this represents a lens stretched
out parallel to the shear, becoming infinitely thin in
this limit.

For negative v (cyclonic shear), the ellipse parameter
is positive, representing a lens stretched out with its
long axis across the shear, as shown in Fig. 9b. As found
in section 4 for pure strain, there is 2 maximum allowed
cyclonic shear of Q2/(2f), at which € = 0.5, and beyond
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yt/Qe

I

FIG. 8. Eccentricity of a lens in simple shearing flow
versus the nondimensional rate of shear.

which solutions of the assumed form do not exist. This
maximum shear is the dashed curve in Fig. 5 and is
seen to be not very different from the maximum strain
found in section 4. The ellipse parameter at the max-
imum shear is shown in Fig. 6, for comparison with
the pure strain counterpart.

The principal axes of the pure strain component of
the shear flows are also shown as dashed lines in Fig.
9. It is seen that the lens is oriented with its major axis
45° clockwise from the strain axis, as found in section
4. Thus, it seems that the strain is the primary agent
causing the deformation of the lens. We expect that
the vorticity of the mean flow mostly affects the Burger
number of the lens. Assuming a mean flow consisting
of solid body rotation confirms this; the ellipse param-
eter is zero, and only the size of the lens is affected.

This solution for a lens in a simple shearing flow is
an extension to finite shear of the solution by Nof
(1985). Nof assumed v/Q < 1 and allowed for a mean
advection velocity in addition to the shearing flow. For
small v, (5.7) becomes ¢ = —yf/29Q?, and this agrees
with Nof’s result. The novel result here is the finding
that the solution does not exist beyond a certain value
of cyclonic shear, and that cyclonic and antlcyclomc
shear affect the lens differently.

6. Geostrophic adjustment in shear flow

In ‘this section we investigate the adjustment of a
long thin strip of fluid, initial thickness Hy and initial
width 2y, in a shear flow # = vy. The strip is oriented
parallel to the mean flow, along the x-axis. It is found
that the shear modifies the width, but not the shape of
the adjusted layer, and imposes no upper limit on the
strength of the shear, other than f.

For the simple shear flow described, Egs. (5.1)—(5.3)
describe the evolution of the layer. From section 3,
potential vorticity of the layer is conserved and is equal
to f/H,. Thus, assuming the adjusted layer to depend
only on y and have v = 0:

u
3y = f11 = h(»)/Ho). (6.1)
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Equation (5.1) becomes degenerate for the steady state
and is not used. Equations (6.1) and (5.2) give

& h
(Rd ——1)7{—0=}— 1,

and u may be obtained from # trivially via (5.2). The
solution, with boundary conditions 2 = 0 at y = =y,
and y, to be determined later, is

h
Hy(1=~/f) '
exp{—(y+ y1)/Ra} + exp{(y — »1)/Ra}
1+ exp{—2y/R4} )

Since the volume of the layer is conserved during ad-
justment, y; is determined by

6.2)

=1- (6.3)

Y1
R hdy = yoHo, (6.4)
which gives a transcendental equation for y;:
Y
— R, tanh(y;/R 6.5
l—y/f 4 tanh(y1/Ry). (6.5)
N\ 7/ |
AN 7/
AN / <—|
N /
7/ |
|
/ \ '
// AN |
N\ |
7/ N\ '
/ N
N
\ /
N /
AN /
AN . 4 ]
|
I
/ I
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i N
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FIG. 9. Sketch of a lens in simple shearing flow. (a) Anticyclonic,
for which the lens is aligned with the flow. (b) Cyclonic, for which
the lens is aligned across the flow.
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This relation is plotted in Fig. 10. Adjustment is
generally outward and is accentuated by anticyclonic
shear. Cyclonic shear inhibits outward adjustment and
can even force inward adjustment. The only apparent
limit to the shear is y = f for anticyclonic shear, at
which the adjusted size becomes infinite. The reason
for this behavior is related to the zones of strong an-
ticyclonic vorticity produced by vortex squashing at
the outer edges. At these points the vorticity approaches
—f, and the velocity approaches (g’Ho)"?, forming a
“buffer zone™ that resists the effects of shear flow.

What are the differences between the adjustment
model in this section and the elliptical lens of section
5? The assumption of constant potential vorticity in
this model leads to a different velocity profile, vorticity
at the edge equal to —f(generally larger than for section
5), and vorticity at the center equal to —f sech(R./y1)
(generally smaller than the same size lens in section
5). The assumption of infinite length is very unrealistic,
so the implications of this model are far from clear.

Discussion
a. Summary

We have examined the behavior and the survival of
an isolated anticyclonic lens in large-scale straining and
shearing flows. By means of a three-layer model in
which we allow one baroclinic mode (the lens) and a
barotropic large-scale flow, we studied a particular ex-
act, nonlinear solution representing a steady elliptical
lens with uniform interior vorticity. This lens becomes
increasingly elliptical in response to increasing strain
or shear. In pure strain, the major axis of the lens is
45° clockwise from the principal strain axis, as shown
in Fig. 2a. In a simple shear flow, the lens lies with its
major axis parallel to anticyclonic shear and perpen-
dicular to cyclonic shear, as shown in Fig. 9. When the
simple shear is decomposed into strain plus rotation,
the major axis lies 45° clockwise from the principal
strain axis, as for pure straining motion. This orien-

1 1
0 1 2

Yo
Rs(1-v /1)

F1G. 10. Solution of the transcendental equation (6.5), giving the
adjusted lens width, y,, as a function of the initial lens width, y,.

BARRY R. RUDDICK

747

tation is one in which there is no energy exchange be-
tween the lens and the mean flow, thus allowing a
steady state.

As the strain increases to the value given in (4.9),
the ellipse parameter increases t0 a maximum value
(about 1/2). No steady solutions of the form assumed
exist for strain larger than this value. Cyclonic shear
causes similar behavior (section 5), with a maximum
shear beyond which solutions do not exist. Anticyclonic
shear does not cause this maximum. As the shear in-
creases, the lens becomes more and more elliptical,
becoming infinitely long and thin as the shear ap-
proaches —/. In this case the alignment of the lens with
the shear flow reduces the importance of the advective
terms, allowing the lens to persist in stronger shear.

b. Model shortcomings

The rather simple model used here has several un-
realistic facets, some more serious than others. Neglect
of friction and mixing is not likely to be serious, since
these effects occur on time scales of at least several
months, compared to the time scale of several days for
adjustment of the lens to a change in the strain field.
As discussed in McWilliams (1985), ambient potential
vorticity gradients can have subtle effects. Unless the
lens has zero net angular momentum (which seems
unlikely considering the probable generation by col-
lapse and geostrophic adjustment), the lens must ra-
diate momentum and energy in the form of Rossby
waves. The effects of this radiation are, however, felt
on rather long time scales, allowing their neglect here.

The more serious deficiencies of the model have to
do with the reduced number of degrees of freedom in
the vertical and horizontal description of the lens. The
three-layer model only allows one baroclinic and one
barotropic mode and thus neglects any back effects that
the lens has on the mean flow. The extreme vortex
squashing at the lens edge where the thickness ap-
proaches zero requires that either the vorticity approach
—f or the potential vorticity approach infinity at the
rim. Neither possibility seems very realistic; the model
used here assumes the latter. Another simplification of
the model is the assumption of uniform vorticity, which
implies a particular radial distribution of velocity, vor-
ticity and potential vorticity. The radial degrees of
freedom are, in effect, reduced from infinity to one,
and the lens Burger number is constrained to be a
function of the Rossby number. This shape can be de-
fended only by noting that observed lenses have a cen-
tral region of uniform vorticity and that observed lens
thicknesses fall off as r? (Armi and Zenk, 1985).

An alternate three-layer model would be to assume
(in the spirit of Csanady, 1979, and Flierl, 1979) that
the water within the lens has uniform potential vorticity
f/Hy, as if the lens had adjusted geostrophically to a
steady state from an initial thickness H,. The set of
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equations to solve would then be the two momentum
equations (3.3) and (3.4), together with the first integral
of the expression of conservation of potential vorticity,
(3.6):

u__ f1-hyHy).

3 ax (7.1

The conservation of lens volume, (3.7), would enter in
as an a posteriori constraint to determine the position
of the lens edge. The most unrealistic feature of the
solution to this problem (not found in observed lenses)
is the strong vorticity and velocity near the rim, where
the thickness vanishes. This “high-speed buffer zone”
may artificially protect the interior of the lens from the
effects of a strong strain field, allowing it to persist in
a much larger strain than predicted by the model in
section 4. This seems to be the case for the “infinite
strip” model in section 6. The most unrealistic feature
of this kind of model is the infinitely large gradient of
potential vorticity at the lens edge, which continuous
stratification and diffusion would smooth out.

It appears that the major problem with the model is
the choice of a particular, possibly unrealistic, radial
distribution of velocity. In real lenses this distribution
is determined by the generation mechanism of the lens,
the lateral stirring of fluid columns within the lens
(which homogenizes potential vorticity), and any fric-
tion effects, which act to diffuse velocity gradients and
so promote solid body rotation. The stirring and mixing
effects would certainly prevent the infinite radial gra-
dients found in the earlier models. Even given a realistic
model of the radial structure of a lens, there is no guar-
antee it will allow analytic solutions, as has the uniform
vorticity model.

¢. Some speculations

What happens to a lens if the external flow field is
increased beyond the point that allows steady solutions?
There are at least three possibilities.

1) The lens may readjust (in a manner consistent
with potential vorticity conservation) to a steady ve-
locity distribution and shape other than the one as-
sumed.

2) The lens may remain a coherent entity, but with
unsteady form. Examples of such unsteady finite-am-
plitude solutions for the case of zero-external flow are
the oscillatory modes of a solitary vortex discovered
by Cushman-Roisin (1984) and Cushman-Roisin et al.
(1985).

3) The lens may break up.

The limited horizontal description of the lens profile
in the present model seems to preclude analytic inves-
tigation of the first possibility. The second possibility,
and to a limited extent, the third, is being studied by

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 17

a generalization of the nonlinear, time-dependent
model of Cushman-Roisin et al. (1985). Finally, the
stability of these profiles to lens breakup is being ad-
dressed by perturbation analysis. In what follows, we
speculate that the lens breaks up in response to large
shear or strain fields.

The various models imply that a lens with a given
central vorticity (or Rossby number) should only be
able to withstand a certain environmental strain before
something drastic occurs. The value of this strain de-
pends on the detailed velocity profile of the lens, but
should be close to one of the curves in Fig. 5. If this
strain is exceeded, the lens is likely to be torn apart by
the strain, losing material from its edge. The remaining
core of the lens will now be much smaller in radius;
the lens Burger number is larger, but the Rossby num-
ber is the same. The lens will now collapse, becoming
a little thinner and larger in diameter and spinning a
little faster. The Burger number will become smaller
and the Rossby number larger. With a larger Rossby
number the lens should now be more resistant to being
torn apart by the strain field. The net result is that one
should only tend to see lenses strong enough to survive
a strain rate they are likely to encounter. Such en-
counters only make the lenses smaller and more in-
tense. During these encounters, the maximum ellipse
paramete’r should be 0.58 (a 2:1 major/minor axis ra-
tio). Between such encounters, the effects of friction
and Rossby wave radiation would weaken the lenses.

From Fig. 2 of Colin de Verdiere et al. (1985), a
typical rate of strain due to the mesoscale eddy field
in the eastern North Atlantic is in the range a/f
= (0.013-0.04. From Fig. 5, this translates to a Rossby
number in the range 0.3-0.7. This implies that we
should not expect to see many lenses with Rossby
number less than this. The lenses described by Armi
and Zenk (1985) have a velocity maximum of about
30 cm s™! at a radius of about 30 km, corresponding
to a Rossby number of about 0.3. The few lenses that
migrate to the western basin have virtually no chance
of surviving the return trip via the Gulf Stream, since
the shear in the Stream is quite strong: v/f ~ o(1). In
their survey of intrathermocline lenses, Dugan et al.
(1982) found no lenses in the Gulf Stream outflow re-
gion between 40° and 42°N. The effects of large-scale
strain on lenses would suggest that they should become
progressively smaller and fewer from east to west and
that none should survive the return trip in the Gulf
Stream.
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