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ABSTRACT

A number of general circulation models have recently been proposed that compute the steady-state structure
of the general circulation. Observations of 18°C water formation, on the other hand, suggest the need for a
study of the time-dependent large-scale structure of the oceans. In this paper, the planetary geostrophic equations
are used to compute the evolution of large-scale thermal anomalies with a view toward understanding the
variability in the general circulation caused by water mass formation events.

The evolution of a thermal anomaly is considered in the absence of wind forcing. In this case, the planetary
geostrophic equations can be reduced to a first-order equation, the Planetary Geostrophic Wave Equation
(PGWE). Arbitrary initial conditions governed by the PGWE tend to steepen and, under an assumed diffusive
closure, form shock waves, The evolution of an initially columnar eddy is obtained, and four different phases
of shock propagation are identified. The implications for heat transport, potential vorticity transport and ther-

mocline ventilation are discussed.

1. Introduction

The structure of the oceanic permanent thermocline
has been examined in a number of recent papers
(Rhines and Young, 1982a,b; Young and Rhines, 1982;
Luyten et al., 1983; Pedlosky and Young, 1983). Sub-
sequent data analysis (McDowell et al., 1982; Keffer,
1985) has tended to confirm many of the predictions
in these theories, suggesting that the models are illu-
minating with respect to ocean dynamics. The basic
ideas behind all the recent thermocline theories are 1)
that the net circulation transport is limited by the Sver-
drup constraint and 2) that away from lateral and ver-
tical boundaries the flow is very nearly conservative.
Rhines and Young (1982a), however, point out that
weak dissipation can have substantial effects in the
proper circumstances.

A common feature of all these models is that they
compute the steady state structure of the thermocline
subject to imposed time-independent boundary con-
ditions. It is well known, however, that the large-scale
oceanic forcing functions are variable. Observational
evidence continues to mount suggesting the existence
of important time dependence in thermocline struc-
ture. For example, Talley and Raymer (1982) discuss
variability in the properties of 18°C water, the sub-
tropical mode water of the North Atlantic. They point
out that while the T-S properties of 18°C water are
slow to change, the amounts of observed 18°C water,
its potential vorticity and the thermocline structure
about the 18°C sigma-theta surface are highly time
dependent. They suggest that 18°C water is formed by
late winter overturning in the northern part of the sub-
tropical gyre, and that advection by the Sverdrup flow

© 1987 American Meteorological Society

transports the 18°C “plugs” about the basin. Talley
and Raymer use data from the Panulirus station (lo-
cated in the general westward return flow of the North
Atlantic) to support these points by noting that the
arrival times of 18°C water (characterized by the joint
occurrence of a finite amplitude event in the g, = 26.5
surface and a minimum in potential vorticity) were
suggestive of late winter formation, and that during
certain several year periods no evidence for 18°C water
production could be found.

Although the dynamical role of subtropical mode
water is not yet clear, recent theoretical studies (Dewar,
1986; Cushman-Roisin, 1987) suggest strongly that it
is a feature of substantial importance to the wind-driven
gyre structure. There is thus a need for time-dependent
theories of the large-scale circulation to clarify the dy-
namics of 18°C water formation events, to indicate
what effects these events have on the time-averaged
fields, and to complement those steady state theories
that have proven to be so useful. In the present paper,
some simple models of the time-dependent response
of the large-scale are examined with a view toward un-
derstanding 18°C water evolution.

Prior studies of the time-dependent response of the
large scale have considered the evolution of an initially
resting ocean, subject to an impulsively applied wind
stress. Anderson and Gill (1975) pointed out that the
ocean responds in this case by emitting a long, non-
dispersive baroclinic Rossby wave from the eastern
ocean boundary and that the Sverdrup balance is es-
tablished in its wake. Similar results in an ocean with
weak bottom topography were found by Anderson and
Killworth (1977). In a later paper, Anderson and Kill-
worth (1979) considered the effects of finite amplitude
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on the propagation of large-scale thermocline waves
and applied the results of that analysis to the spinup
problem. They found that the westward propagation
of the emitted baroclinic wave was accelerated from
that of the quasi-geostrophic wave, and that the rear
face of the wave tended to steepen. Both of these results
were confirmed by numerical experimentation with a
reduced gravity, shallow water model. Johnson and
Willmott (1981) noted similar results in their numerical
model, and Willmott (1985) suggested that steepening
and breaking might account for the lack Rossby wave
activity in the North Pacific. A basic result of these
studies is that the large-scale adjustment to variability
in forcing occurs in the time necessary for a baroclinic
wave to transit the basin.

A fully nonlinear, quasi-geostrophic spinup problem
was considered by Dewar et al. (1984). This study dif-
fered from previous work in that the baroclinic Rossby
wave propagated in the presence of the Sverdrup trans-
port. The steady Rhines and Young (1982b) theories
predicted the existence of closed circulation regions,
inside of which dissipation was important. Dewar et
al. (1984) demonstrated that inside these closed regions,
spinup involved the shear dispersion of potential vor-
ticity and that a so-called averaging time was necessary
to bring about a steady state. Eddy resolving spinup
calculations demonstrate essentially the same behavior.

The present study differs from previous studies in
that 1) the variability is assumed to occur in the buoy-
ancy forcing (rather than in the wind forcing), 2) no
quasi-geostrophic approximations are made, and 3) two
active layers are included. The system is weakly non-
conservative and the thermocline anomalies are as-
sumed to be finite in amplitude.

This paper is organized as follows. The model and
the governing equations are introduced in section 2.
After some algebra, the system is reduced to one equa-
tion in one unknown, including explicit time depen-
dence, buoyant forcing and wind forcing. This equation
is further reduced to a simple wave equation by choos-
ing special forms for the forcing functions. The char-
acteristics of this wave equation and some of its solu-
tions are discussed in section 3. It is shown that the
governing equation leads to a steepening of arbitrary
initial conditions. A simple parameterization of eddy
effects is then employed that both combats the steep-
ening and leads to the formation of shock waves. A
detailed solution of the system subject to an initial
condition representing a “plug” of newly formed 18°C
water is obtained. Accordingly, the solution breaks
neatly into four phases, divided in time by the prop-
agation tendencies of the shock waves. The results of
the analysis are reviewed and comparisons with data
are presented in the discussion section.

2. Model development

Consider the system in Fig. 1. The ocean will be
modeled as a rotating two-layer fluid with a flat bottom.
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FIG. 1. Two-layer system. Variables in the upper layer are denoted
with the subscript 1, those in the lower layer with the subscript 2.
The upper layer has a thickness /, and the total fluid depth is H. The
Coriolis parameter, f; is a function of latitude. A rigid lid is applied
and the bottom is assumed to be flat.

Upper layer quantities will be denoted by the subscript
1 and lower layer quantities by the subscript 2; ac-
cordingly, the upper layer dynamic pressure is P; and
the lower layer dynamic pressure is P,. The Coriolis
parameter is f, and its north-south gradient is 8. The
total fluid depth will be denoted as H and the upper
layer thickness as 4. The quantities «; and v; are east
and north velocities, respectively.

a. Equations of motion

The starting point for this analysis will be the plan-
etary geostrophic equations. These can be obtained
asymptotically from the full equations of motion if the
Rossby number is small and the motion is planetary
in scale (Pedlosky, 1979). Furthermore, it is assumed
that the fluid is Boussinesq. The dynamical equations
in each layer are thus geostrophy and heat conservation:

Sui= —‘(%)Pi'*‘ [%T(y)] (1a)
J a3
ﬁ)i‘—'g;Pi_[Ef(x)] (1)
k Ay
(h,-),+( uidz) +( v.-dz) —C1s (1)
[ ) +(J o)

where (x, y, z) are Cartesian coordinates in the east,
north and vertical directions. Here 4, = h, h, = H — h,
and the vertical integrals are taken over the ith layer.
Frictional momentum transfers are denoted in the
horizontal momentum equations by the normalized
turbulent stress vector 7 = (7(y, 7(})), Where 7 is stress
divided by a reference density. The quantity S is a
buoyantly driven cross-interfacial flow, and S ~ F/g’
where F is the surface buoyancy flux from the ocean
to the atmosphere and g’ is reduced gravity. Positive
S denotes a heat loss from the ocean. A two-layer fluid
accommodates this heat loss by converting warm water
to cold, or equivalently by shrinking the upper layer
(h, < 0). A negative S value causes the upper layer to
thicken in response to the addition of heat.
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A rigid lid is applied at the ocean surface, which
insures that the barotropic adjustment of the fluid is
instantaneous. Wind stress and buoyancy flux bound-
ary conditions are also applied at the surface. (Note:

. Salinity is neglected, so the fluid buoyancy is propor-
tional to temperature.) Momentum flux, heat flux and
vertical velocity will all be assumed to vanish at the
ocean bottom.

b. Reduction to one equation in one unknown

Substituting with geostrophy for the velocities in the
upper layer heat equation (1c) yields

BhPlx

f?
T(x’ Vs _h))
= —curl +curll———|-§ (2
(f) ( f @
where J denotes the usual Jacobian operator: '
J(A4,B)=A.B,— A,B,,

7o denotes atmospheric stress, 7(x, y, —A) the frictional
stress occurring at the interface and “curl” denotes the
vertical component of the curl operator:

L xpy,my-

h'+f

curl(4i + Bf) = B, — 4,.

In Eq (2) 7(x, y, —h) represents that fraction of the

momentum forcing communicated to the lower layer

Only that part of the wind momentum remaining in

the upper layer can drive an upper layer divergence.
Adding the heat equations (1c) yields

0 —h —h
(f u,dz+f uzdz) +(f0 v,dz+f vzdz) =0Q.
~h H —h -H

x y
3)

If u; and v; are eliminated from (3), a nonlinear form
of the Sverdrup balance is obtained:

B (P, + g'hh,— g'HR,] =ci1r1(-’—°). 4)
f f

Equation (4) can be integrated westward from the east-
ern boundary x, where the upper layer thickness and
pressure are presumed to be known:

L2
HP1+521—g'Hh=¢(x,y) (5)
where
2 X
o(x, y? =.% {L curl(f—fo)dx} + HP(x,)
2,
yg X (2"") — g Hh(x,).

Equation (5) can then be used to eliminate P; from
(2). The result is
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h+ fHJ(¢, h)— 7 H Nz H(g Hh,— g'hh,)
= —curl(‘ro—_#:@2 —S+other. (6)

Equation (6) is the planetary geostrophic thermocline
equation. It relates changes in layer thickness to ad-
vection by the Sverdrup flow, planetary vortex stretch-
ing, B-driven westward propagation, wind-driven di-
vergence and buoyancy forcing. Other effects, such as
diffusion and smaller scale processes, are grouped in
the term labeled “other.” These are presumed to be
small, for the most part, as required by the scaling.
One could specify wind and buoyancy forcing func-
tions and solve (6) for the subsequent thermocline evo-
lution. Indeed, this would address the primary objective
of this paper, which is to consider the variability in-
duced in the large-scale by time-dependent forcing. For
the remainder of this paper, however, I will investigate
a simplified form of the thermocline equation obtained
by setting ¢, 1o, 7(x, y, —h) and S all to zero. The
rationale for studying this limit will be given shortly.
For now, it is sufficient to note that this corresponds
to the adiabatic, inviscid, unforced limit of the ther-
mocline equation. The resulting simplified equation,

gg’ hhy
h— 1B (hh H )= other, @)

will be called the Planetary Geostrophic Wave Equation
(PGWE). It governs the finite amplitude evolution of
thermal anomalies at planetary scales. Anderson and
Killworth (1979) considered a form of the PGWE ap-
propriate to a reduced gravity model. Their equation
is obtained from (7) by letting H become large, which
has the effect of dropping the dominant nonlinearity
in the PGWE from cubic to quadratic.

A number of simplifications were employed in going
from the thermocline equation to the PGWE. I would
nonetheless like to argue that the PGWE is a viable
model equation to apply to 18°C water. The reasons
for this are best explained via a simple thought problem
(see Fig. 2). Consider an initially warm layer that is
subjected to a limited extraction of heat over a limited
area. Because this is a two-layer fluid, a thermocline
builds up from the bottom of the ocean, as indicated
by the dashed lines in Fig. 2. Fast barotropic waves are
emitted during this process, but if the heat is withdrawn
quickly enough, the fluid is unable to respond baro-
clinically. Thus, the thermocline builds almost pas-
sively (balanced, of course, by a geostrophic flow) until
the cooling is shut off.

This scenario is in ways crudely reminiscent of the
creation of 18°C water. Cornillon (personal commu-

‘nication, 1986) suggests on the basis of satellite SST

observations in the North Atlantic that 18°C water is
formed for only a few weeks during the year, and then
at preferred locations within the subtropical gyre. Once
the convective overturning halts, however, a thin, in-
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FIG. 2. Thermocline set-up. The ocean is assumed to be initially
homogeneous and warm. Heat is subsequently extracted over a limited
region, as indicated by the wavy arrows. If the heat is extracted rapidly
enough, the fluid is unable to adjust baroclinically, and the ther-
mocline builds upward from the bottom. Thermocline depths at later
times are indicated by the dashed lines. Once the thermocline has
broken the surface, the cooling is assumed to shut off.

sulating surface layer builds on top of the 18°C plug,
and the diabatic modification of the subsurface waters
stops. One can thus argue from the vantage point of
baroclinic evolution that 18°C water formation is an
instantaneous event, that all of the required buoyant
flux to the atmosphere is associated with its formation,
and that the baroclinic evolution of 18°C water pro-
ceeds in the absence of diabatic effects. This is the ra-
tionale for ignoring S in (6) and considering 18°C water
evolution in the realm of initial value problems. The
reason for ignoring wind forcing in (6) is to focus as
much as possible on the dynamic evolution of the ther-
mal anomaly.

3. Properties and solutions of the PGWE

Under the assumption that the right-hand side of
(7) is small, the PGWE is roughly a nonlinear, first
order partial differential equation and can be solved
using the method of characteristics. Introducing s as
the coordinate along the characteristics and r as the
coordinate across the characteristics, (7) can be reduced
to the coupled set of equations:

3

Py ®
8. P, _F\_

= () =< ©
dh

a—S—O (10)

with the initial conditions
s=0, h=hy(r) at t=0.

Note the definition of c(4) in (9). The implicit solution
of (8)-(10) is
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2

hh[ %@—9] (11)
Note that the dependence of the solution on y can be
carried parametrically. Equation (11) states that con-
stant values of upper layer thickness stream westward
from their initial positions. The rates of westward
propagation of A, however, are strongly dependent on
h. For example, (11) predicts a zero westward propa-
gation rate if either 2 = 0 or & = H. In between these
two limits, i.e., when the fluid is somewhere stratified,
nonzero westward propagation rates are predicted. The
maximum propagation speed occurs for 7 = H/2.

The mechanism responsible for the westward motion
is essentially that discussed by Rhines (1977) in the
context of quasi-geostrophy. Large-scale north-south
flows on a beta plane are horizontally divergent. Fluid
column heights are drawn up and down by meridional
flow in a manner that shifts the pressure distribution
to the west. The quasi-geostrophic version of the PGWE
may be extracted from (7) by considering small devia-
tions of the interface about a resting value, which leads
to nondispersive waves. The variation of propagation
inherent in c(h) [see (9)] is amplitude dependent and
can be understood by rewriting the PGWE using geo-
strophy and (5). After some algebra, the PGWE be-
comes

oh_puih_

a f
where the “other” term has been ignored, which states
that net fluid column stretching on the beta plane is
proportional to local mass flux; the greater the upper
layer mass flux, the greater the stretching effect. The
mass flux, v,A, originating in the continuity equation,
is the nonlinear quantity responsible for the unique
character of the PGWE.

Using the Sverdrup balance v;# can be partially
evaluated and, for a given thermocline slope, is pro-
portional to # — #*/H. If h = 0 or H, the Sverdrup
constraint in the absence of wind requires that there
be no meridional upper layer mass transport. In be-
tween, for a given slope, the net upper layer mass
transport must be nonzero and maximum when A = H/
2. This operates through (12) to force different westward
propagation rates for columns of unequal height.

(12)

a. Steepening and its consequences

The method of characteristics solution can be used
to trace out the system evolution for a given initial
condition. The example shown in Fig. 3 is appropriate
to a warm blob of fluid, from which it is immediately
apparent that amplitude-dependent propagation leads
to steepening. This is evidenced by the crossing of the
characteristics in Fig. 3, at which point the solution
contains a front in the thermocline.

The conditions under which this catastrophic steep-
ening will occur can be determined by asking when
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FI1G. 3. Schematic of the characteristic solution. The rate of along-
characteristic propagation depends on 4, so arbitrary initial conditions
lead to steepening. This appears in the phase plane as the drawing
together of characteristics. The eventual intersection of two initially
separated characteristics signals a breakdown of the solution.

the zonal gradient of 4 will become large (i.e., when
h, = o). Differentiating the implicit solution in (11)

by x yields
! 2
he= [1 + % (hx— };Ih")t]hb
which may be solved for ¢ to indicate when A, becomes

infinite:
t=~f*[(Bg'(1 — 2h/H))hp].

Here, h{ denotes the first derivative of /,. To be phys-
ically acceptable, the time ¢ of shock formation must
be positive. This is guaranteed from (13) if

(1—-2h/H)hp>0 (14)

which characterizes regions in the initial condition

" where the thermocline is both getting thicker (thinner)
toward the east and is shallower (deeper) than one half
the total fluid depth. An initial condition corresponding
to a warm blob of fluid is shown in Fig. 4. The regions
where the constraints in (14) are met are indicated by
the hatching.

The reasons why these regions lead to a catastrophic
steepening of the initial condition are explained in Fig.
5. The Sverdrup constraint insures that the upper layer
flow in Fig. 5a is to the north. According to (12), the
thermocline must therefore be deepening. The absolute
change in upper layer thickness is greatest at the point
where 7 = H/2. The beta-induced tendency in the ther-
mocline is thus as indicated by the dashed line in Fig.
S5a, i.e., a considerably steepened thermocline in the
region where & < H/2. Comparable arguments apply
to Fig. 5b, except there the beta-induced tendency leads
to a steeper profile for those parts of the thermocline
deeper than H/2.

The nonlinearity responsible for this steepening ten-
dency comes from the heat equations. A similar steep-
ening tendency was noted by Anderson and Killworth

(13)
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shock
region

FIG. 4. Regions of shock formation. Shocks will form in the upper
half of the fluid if the thermocline is thickening and in the lower half
of the fluid if the thermocline is decreasing in thickness. The regions
meeting the shock formation criteria for a thick warm blob of fluid
are indicated by shading.

(1979) and Johnson and Willmott (1981). Because their
models implicitly assumed a resting deep ocean, they
discovered the steepening tendency pertaining to the
upper half of the fluid. The present model thus extends
their results. The conditions that will lead to steepening
are not very restrictive, suggesting frontogenesis by
large-scale thermal anomalies is the rule rather than
the exception and should be a general tendency in the
ocean.

z=~h{t=0")

N
z=-h(t=0")
2= H 2 —— — — —

z=0

z=-h(t=07)

—_— — — —23"H/2

FIG. 5. Examples of steepening. Vortex tube stretching on a beta
plane depends on net meridional mass transport. If 2, > 0, as in (a),
upper layer mass transport is to the north and fluid colunmins must
stretch to conserve potential vorticity. Because maximum stretching
occurs when 4 = H/2, the tendency is for the thermocline to steepen
in the upper half of the fluid. Similar arguments apply if &, < 0, as
in (b), and lead to steepening in the lower half of the fluid.
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b. Subplanetary-scale parameterizations

As the thermocline steepens, effects in the “other”
term [cf. (7)], which are generally small, must grow to
finite amplitude and prevent the solution from becom-
ing multivalued. Similar phenomena are noted in other
prototype, nonlinear partial differential equations (e.g.,
Burgers’ equation). The proper expression of the small
scale and eddy effects is in itself an interesting problem;
one way of determining their effects would be to begin
a new scaling analysis, one which would, say, concen-
trate on the fronts. This approach is currently under
study. For the remainder of this paper, however, the
eddy effects will be expressed by including a diffusive
term, Dh,,, on the right-hand side of the PGWE, in
place of the “other” term. This is undoubtedly the sim-
plest possible parameterization of the effects of the
smaller scales, but it is not altogether unreasonable.
Diffusing heat down-gradient is equivalent to diffusing
potential vorticity down-gradient. Rhines and Holland
(1979) and Rhines and Young (1982a) argue that this
is the effect of quasi-geostrophic eddies on the large-
scale. Several general circulation models have since
been based on this parameterization (Rhines and
Young 1982b; Young and Rhines, 1982; Pedlosky and
Young, 1983; DeSzoeke, 1985; Dewar, 1986; Cessi and
Pedlosky, 1986), and eddy-resolving numerical models
have supported it (Holland and Rhines, 1980). Also,
the theory based on this parameterization is so simple
that it merits a thorough examination prior to under-
taking a more complicated analysis.

¢. Shock waves

Upon employing heat diffusion on the right-hand
side, the PGWE becomes

2

"}gz (M hhx) = Dhy,
where the value of D is unspecified, but required to be
small. Because the right-hand side of (15) is diffusive,
as opposed to dispersive, the eventual balance obtained
at the front is between steepening and dissipation (see
Fig. 6). Such structures are referred to as “shock™ waves
because, in the limit of small D, property changes across
the shocks can occur almost discontinuously.

Once formed, the shock behaves in a coherent man-
ner and moves with a speed ¢, that is calculable from
(15). The value of ¢, is found by first transforming (15)
from the (x, ?) frame, fixed in the fluid, to the frame
defined by

h.+ (15)

xX'=x—cg
t'=t

which is fixed in the shock. Equation (15) in the shock
frame is

Bg’

hy—cshy +f2

h2
( ' — hhx:) =Dhyy.  (16)
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FIG. 6. Shock wave structure. Shock waves are coherent structures
consisting of a balance between steepening and dissipation. The
changes in fluid properties, in this case in A, can occur almost dis-
continuously. A refers to the thermocline thickness west of the shock,
and A, refers to the thermocline thickness east of the shock. The
shock propagation speed, ¢;, can be computed from a knowledge of
these parameters alone.

Integrating across the shock from x’ = —eto X’ = € (see
Fig. 6), where ¢ is some location just outside the shock,
and letting ¢ become small yields a formula for the

shock speed c¢;:
3 2
o7/

The square brackets denote the jump of the bracketed
quantity across the shock:
[q] = g(e) —g(—e).
Introducing 4., for the thermocline thickness east of
the shock and 4_ for the thermocline thickness west of
the shock, (17) can be written as
hi2+hh_+h2 +h_
= ﬁ% + + h+ ) (18)
f 3H 2

Note that ¢, is independent of D.

)

d. An initial value problem

The next step is to use the partial solutions describing
steepening, shock formation and propagation to solve
an initial value problem. Consider the evolution of the
initial state shown in Fig. 7. This corresponds to a cold
plug of water sitting in an otherwise uniformly warm
layer and is meant to crudely model a newly formed
column of 18°C water. Given the state in Fig. 7, shock
formation occurs instantly at both eastern and western
edges of the column. Equation (18) demonstrates that
shocks always propagate west, so the western shock
will be named the “lead” shock, while the eastern shock
will be called the “trail” shock.

The equations governing shock propagation are the
shock maintenance conditions:

xs = cs(h+ s h—)
Xs(he, ho)=x(hy)
Xs(hse, h)=x(h)

(19)
(20)
1)
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FIG. 7. Thermocline initial condition. The evolution of the above
structure on a beta plane is computed using the planetary geostrophic
wave equation augmented with weak diffusion. This initial condition
was chosen as a crude model of a newly formed plug of 18°C water.
Shock waves form from both edges of the initial condition. The west-
ern shock is called the “lead” shock and the eastern shock is called
the “trail” shock.

where x; denotes shock location, x(#) denotes the lo-
cation of fluid with thickness 4, and the overdot denotes
a time derivative. Equations (19)-(21) state that the
shock propagates according to (18), and that it is both
overrunning the structure ahead of it and being overrun
by the structure behind it. First, for the lead shock, a
little thought will convince the reader that 42— must be
H. This is assured because c(H) = 0 [cf. (9)], so any
nontrivial thermocline structure east of a point where
h = H must overrun that point. Solving (19) and (21)
simultaneously then yields

h+ = H/4.
Thus,
Lo 3gH
g 16%°

The parts of the western edge of the initial condition
where 4 < H/4 move more slowly than the shock; their
evolution can be computed by a characteristic solution
that is modified to allow for the discontinuity in the
initial thermocline structure. The solution for 4 < H/
4 proceeds by defining a similarity variable:

E=x/t

and arguing that the characteristics depend only £
(Whitham, 1974):

h= ho(§). (22)
Equation (7) can be converted to
’ ’ h 2t
[hi,][x+%hot—-'3f—‘g§- %] =0 (23)

from which the structure function for # < H/4 can be
obtained:

- (24)

2 1/2
H H(l+4f x) .

=22\ em e
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The other solution of the quadratic equation in (23)
has been discarded so that (24) applies to the upper
half of the fluid column. The similarity characteristics
defined by (24) take the form of an expansion fan (see
Fig. 13) and can be used to plot the thermocline struc-
ture for 4 < H/4 for any given time ¢.

A similar analysis applies to the trail edge of the
initial condition, with the results that

h-=0
h,=3H/4
= —-3B8g’'H
T16f2
An expansion fan defined by
x\ 1 1 4f? x\72
-l = ._H + — —_
h"(z) 2772 Bg'H z)
applies where 3H/4 < h < H. The trail shock structure
is simply inverted from that of the lead shock. Both
shocks propagate westward at the same rate.

The structure of this part of the solution is shown
in Fig. 8, from which it is clear that the solution can
hold only up to the time:

t = 16x° f 2

'" 3g'HB "
After this, the trail shock will overtake the remnants
of the lead initial condition, and a different solution

must apply. This first part of the solution, which applies
until time #,, is referred to as double shock propagation.

1+

e. Shock overrun

After ¢, the trail shock meets the remnants of the
initial western column edge, and the system moves into
a new phase of the solution, which is called the shock

T T z=0
LN / I I
| --—— I
! e |
- s
., !
Cst | 3HAa I
77 »z2=-H
X="Xo x=0

Cs =-3/168Ry’

FIG. 8. Thermocline structure during double shock propagation.
The lead and trail shocks propagate westward at the same speed, and
both are 3H/4 thick. The remainder of the solution consists of two
expansion fans, emanating from the locations of the initial column
condition edges.
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overrun phase. The shock overrun solution consists of
two relatively uninteresting parts and a third, more
tantalizing part. First, the lead shock, unaware of any
new events, continues westward as computed in the
double shock propagation solution. Second, the char-
acteristic solutions apply to the regions away from the
shocks. Third, however, is the trail shock region, where
qualitatively new phenomena appear.

The three parameters necessary to describe the trail
shock evolution are 4., - and x;. These are governed
by

c(hy)=cs(hs, h) (25)
c(h)t+xo=c(h)t—h_jo=x(hs, h)  (26)
%= Cs(hsy ho) (27)

with the initial conditions x;, = 0, A, = 3H/4 and h_
= 0 at t = 0. Although the thermocline structure for x
< 0 is known, it is not possible to write down closed
form solutions to the system (25)-(27) if it is used.
Analytical progress is possible, however, if a linear
thermocline profile is used. This choice is reflected in
(26), where « is the slope of the thermocline for x <0
(see Fig. 9). Equations (25) and (26) are the shock
maintenance conditions, while (27) is the shock prop-
agation equation. Equation (25) can be solved for A,

to yield
3H h_
hy = (4 - 2)

"where the positive root of the quadratic has been dis-
carded to meet the initial conditions. Substituting (28)
in (27) and differentiating (26) yields an equation in

"] 29)

_fﬁzg [h_

The above equation, although nonlinear and noncon-
stant coefficient, can be solved by introducing a
“warped” time variable, w, upon which time ¢ depends:

e

(28)

dhoh], o _ggrh. s
TR E

h=ax

=H/4
h / N
UL
Cs
<——-
L
h=3H/4 ;
TrTT?
X="Xgo x=0

FIG. 9. Shock overrun initial structure. The double shock propa-
gation solution breaks down when the trail shock encounters the
remnants of the western initial condition. The evolution in this shock
overrun phase is computed using the above initial condition, in which
the reference frame has been centered on the shock and the ther-
mocline structure west of the shock is assumed to increase linearly.
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t=1t(w),

along with the condition that w = 0 when ¢ = 0.
This yields the coupled equations:

dar _|=Bg'( 2h-) 1
aw [ 12 (1 H)’ a] (30)
dh_ Bg 3h-_111____3__
E“F[T 4H 112]' (31)

Equation (31) can be solved for 4_ as a function of w.
After eliminating A_ from (30), t can be solved in terms
of w. Finally, these solutions can be joined to yield

a 8f2(1—3;’;:)_1+ 8 (1—2—”‘)—8/3 (32)

t = —— —
a 56¢' SapBg’ H

expressing ¢ as a function of 4_.

One can, in principle, invert (32) for ~_ as a function
of ¢t and then solve for A, using (28), and finally, for x;
using (26). On the other hand, the interesting features
of the solution can be obtained from an asymptotic
analysis of (32). For example, when t = 0, h_ = 0.
Thus, for small ¢, #~-/H < 1, and

3Bg'Hat
1612

or, for a short time the shock “slides” down the ther-
mocline at the initial shock speed. The other result of
interest is that as £ becomes large, 4_ tends asymptot-
ically to H/2. From (28), /4, must therefore also tend
to H/2, indicating a gradual thinning of the shock (see
Fig. 10).

The trail shock evolving in the presence of a linear
thermocline tends to dissipate itself. Of course, in the
present problem, this is not truly possible. Prior to
achieving a value of H/2, h_ will obtain a value of H/
4, and this corresponds to overrunning the lead shock.
The trail shock is thus saved from total dissipation by
an interaction with the lead shock. Note that this im-
plies that the propagation speed of the trail shock in-
creases. For example, if »_ = H/4, h, = 5H/8 and

—-15 g'H

“=6a P 2

which is greater than the lead shock propagation speed
of

h.= (33)

—3,.8H

16 f2 ’
The interaction of the trail and lead shocks marks the
end of the shock overrun solution.

=

J Shock joining

In the third phase of the solution, the two shocks
join (see Fig. 11). It is clear from the asymptotic analysis
of (32) that the trail shock accelerates in its propagation
and, therefore, closes in on the lead shock. Interaction
between the two shocks will necessarily occur when /4_
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h=H/4
<S32)
-«|S '

AN ———— i

h= 3H/4 |
777

X=Xy x=0
Cs,> Cs

FiG. 10. Shock overrun solution. The trail shock decreases in
thickness as it interacts with the western initial condition remnants.
Both A, and A_ change in this process, and the trail shock picks up
speed. The lead shock continues unchanged from its previous struc-
ture. The boundaries of the initial cold anomaly are labeled —x,
and 0.

of the trail shock obtains the value H/4. According to
(28), h. then obtains the value 5H/8. In this problem,
valid in the limit of weak diffusion, the interaction of
the shocks is relatively simple. The volume of fluid
between the shocks, i.e., the fluid with thickness values
between H/4 and 5H/8, monotonically decreases to
zero, at which point the two shocks merge into one.
The propagation of the lead shock changes discontin-
uously from the value it had prior to merger to the
propagation speed of the merged shock. The merged
shock is 3H/8 thick and joined to the bottom. These
points can be demonstrated by writing the PGWE in
the frame of the lead shock prior to merger and noting
that for vanishing diffusion the lead shock propagation
rate remains constant until the trail shock contacts it.
Of course, in a fluid with finite heat diffusion, the in-
teraction of the shocks will be somewhat more com-
plicated. I am currently studying this problem numer-
ically; preliminary results show that the results listed
above are a reasonable approximation to the solution
with finite diffusion.

g. Shock aging and death

The final phase of evolution consists of shock aging
and death, with the interesting part of the solution in-
volving the propagation of the merged shock. Again
the system can be solved if the thermocline structure
is approximated by a linear function (see Fig. 12). The
constraints on the shock are

h.=H (34)

_SH _he _Bg(, _hs
T 8a  «a f? (h+ H)t (33)
Xs=c(hy, h). (36)

Equations (34) and (35) are the shock maintenance
conditions and «a is the slope of the thermocline for x
> 0. Substituting (34) into (36) eliminates /4, and x;
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FIG. 11. Shock joining. The lead shock is-eventually overrun by
the trail shock. According to the asymptotics of the solution, the
merged shock will be 3H/8 thick and will be joined to the bottom.
The eastern boundary of the initial cold anomaly is labeled x = 0.

can be eliminated by differentiating (35) with respect
to time. The final equation governing the shock is thus

f (mg'tm Be't 1)_ﬁg’(5h+ 2h,

fH 2 o) f7\6 3H 6
which can be solved in the same manner as (29). In-

troducing the warped time w, the coupled equations
become

(37

- fH (38)
dh, —Bg 4 '
et m(kg). 69

The solution to (39) yields one relation between 4. and
w:

( 141 e—ﬁg’w/(:fl))
4
+

H (+ervary

The A, can then be eliminated from (38), yielding a
relation between ¢ and w:

(40)

—afg’ —(88'W/2S )\ ,B8'W/f? ~Bg'w/(25°?)
72i=(lte Ne 7)1+ 2¢ )

_ % ef8if 2(1 + g BEI2S 2))3. 41)

R

-I/p )
“2=-h

D

FIG. 12. Shock aging and death. In this final phase of the solution,
the merged shock continues westward and experiences a slow 7'/
decay. The tendencies of the solution in this phase were computed
by assuming a linear increase in /4 eastward from the point of the
shock. The slope in 4 was taken to be . The eastern boundary of
the initial cold anomaly is labeled x = 0.
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It is not generally possible to join (40) and (41) into
one equation relating /., and ¢, but the asymptotic limits
relating ¢ and A, at small and large times can be ob-
tained.

For small ¢ it can be demonstrated that

t=—w/a,
and that
he 53 Bgat
H 8 32 f? (42)

Equation (42) arises because cold fluid columns behind
the shock are propagating initially at a rate of

o= —158g'H
64 f2
while the shock is moving at a rate of
. _98gH
64 2

The speed of the shock relative to that of the following
fluid is
. _—3pgH
32 2

So, initially, the shock appears to slide backward down
the thermocline slope and decrease in thickness.
" For large ¢, the asymptotic limit is

— ’
aﬁg t ~ leﬁg’w/fz
f? 4 ’

and therefore,

he _§(M)—I/2t—l/2
f? '

H 8
The shock, as it propagates west, decays slowly in am-
plitude and spreads the cold water over the bottom
until there is no measurable lower layer thickness. At
this point, the shock is “dead,” # = H everywhere, and
no further evolution occurs.

The phase-plane solution for this problem is plotted
in Fig. 13. The lighter lines emanating upward and
westward from the x-axis are the regular characteristics.
The two bold lines that merge to one bold line represent
the movement of the shocks. The lighter horizontal
lines, labeled ¢, and #,, delineate the four phases of the
solution. Figures 7 and 8 correspond to the solution
from time 0 to time ¢,, Figs. 9 and 10 to the time from
t) to 1, Fig. 11 to time f,, and Fig. 12 to the times
after t,.

4. Discussion

The evolution of large-scale thermal anomalies has
been computed. The equation governing their evolu-
tion (6) contains advection by the Sverdrup flow, west-
ward beta-driven propagation, vortex stretching and
buoyant forcing. A simplified version of this equation,
valid in the absence of wind forcing, was considered.
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Buoyant forcing, while not explicitly included in the
calculation, was implicit in the choice of initial con-
dition. The system is thus governed by the PGWE, a
first-order, nonlinear partial differential equation. Ini-
tial conditions evolving according to the PGWE steepen
catastrophically. Under the assumption that the effects
of the small scales can be parameterized as a heat dif-
fusion, the steepening regions form shock waves and
propagate with speeds dependent upon the shock
structure.

The physical phenomenon motivating this work is
the formation of 18°C water which, as observations
suggest, occurs in an almost burstlike fashion. The
evolution of a plug of cold water in an otherwise warm
layer was considered. This initial condition was chosen
as a crude model of newly formed 18°C water. Shocks
formed at the eastern and western edges of the column.
The subsequent evolution of the system divides neatly
into four regimes, divided in character by the propa-
gation of the shocks. In the first phase (double shock
propagation), both shocks propagate uniformly to the
west. This ends when the trail shock overtakes the
remnants of western edge of the initial condition, and
it is replaced by the shock overrun phase. During this
phase, the trail shock gains speed and catches the lead
shock. The next shock joining phase describes the
merger of the two shocks into one and is followed by
a gradual shock aging and death phase.

Two interesting aspects of the shock overrun solution
are the acceleration of the trail shock and its attendant
restructuring. These can be understood by recalling that
the formula for shock propagation involves the vari-
ation in the thermocline thickness across the shock. In
some sense, the shock waves propagate at a rate that
is an average of all the propagation tendencies within
the shock. These tendencies are weakest where the
thermocline surfaces or meets the ocean bottom and
increase in magnitude to a maximum when the ther-
mocline is at a depth of half the fluid thickness. The
trail shock, prior to the overrun phase, strikes the sur-
face and is therefore slow in its propagation. As it over-
runs the western initial condition remnants, its western
edge draws downward away from the surface. The
shock, then composed of relatively faster propagation
tendencies, picks up speed. Note that in the theoretical
asymptotic limit the trail shock converges to 7, = A
= H/2 and disappears. This is because # = H/2 is a
point of maximal propagation tendency.

a. Potential vorticity

The solutions presented here conserve net heat, in
the sense that the quantity

I= hdx

is independent of time. On the other hand, individual
fluid columns conserve neither heat nor potential vor-
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~ F1G. 13. Phase plane solution. The characteristics and paths of shock propagation
in the x-¢ plane are plotted. The initigl cold column was located between the point x
= 0 and x = —Xp. The lighter lines are the regular characteristics and the darker lines
are the shock characteristics. ¢; denotes the transition from double shock propagation
to shock overrun, and ¢, the occurrence of shock joining. The shock aging and death

solution applies for times greater than #,.

ticity. The latter may be seen by rewriting (15) in terms

of g = f/h:
(

It is a simple matter to show that most of the potential
vorticity loss and heat diffusion in the fluid occurs in
the shocks. Equation (15) is, of course, an approximate
equation and describes only the large scale. Thus, the
potential vorticity lost from the large scale should ap-
pear at smaller scales and involve relative vorticity.
Shocks should therefore be sources of mesoscale vari-
ability.

It is also apparent that shock waves can transport
heat and potential vorticity substantial distances from
the buoyant source regions (e.g., compare Figs. 7 and

41_%

X

q

12). The suggestion, therefore, is that shock waves,
should they exist in the ocean, might play a major role
in determining the large-scale distributions of heat, po-
tential vorticity and mesoscale energy. As such, they
would have an important effect on climate and possibly
be a mechanism for ventilating the thermocline.
Shock waves that arise in other fluid mechanics sit-
uations dissipate fairly rapidly, especially when com-
pared to permanent wave soliton solutions, which con-
sist of a balance between steepening and dispersive
tendencies. There are two related points to be made
here. First, a dispersivelike mechanism is available in
this problem, i.e., relative vorticity generation. It might
therefore be possible to generate permanent form so-
lutions if this mechanism is included. The intent of
this paper was to examine thermocline evolution as
governed by a simpler system, although work on in-

N < 50 (10-"%cm'sec)

mm 50 - 100

'RG. 14.A 24-year time series of potential vorticity at several depths from Panulirus. This figure appeared originally in Talley and Raymer (1982).

Lowest potential vorticity values are shaded darkest. Minimum potential vorticity values correspond to the arrival of newly formed 18°C water.
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FIG. 15. A 24-year time series of density at several depths from Panulirus. This figure appeared originally in Talley and Raymer (1982). The g,
26.5 surface is associated with 18°C water. Newly formed 18°C water, defined by minimum potential vorticity values (see Fig. 14), arrives in sharp,
L events. Several are indicated by underlining. The analysis suggests beta-driven steepening as a mechanism for maintaining these fronts.

cluding relative vorticity is currently under way.
Whereas relative vorticity generation balancing steep-
ening might occur when the front is stable, the present
work might be thought to apply to a front that is un-
stable and therefore generating deformation-scale geo-
strophic turbulence. Second, it is worth mentioning
that the double shock propagation tendency of this sys-
tem tends to make planetary shocks a long-lived phe-
nomenon. This is because the lead and trail shocks
move at the same rate, and the usual mechanism of
shock decay (i.e., faster-moving structure behind the
shock overrunning the shock) is considerably reduced
in efficiency. Planetary shocks can thus be expected to
be long-lived.

b. Data

With respect to observations, there are apparently
no data that can conclusively address the existence of
planetary shocks, not a surprising result given the ne-
cessity of locating and following the evolution of a
newly formed plug of 18°C water. There are, however,
some suggestive data. Figures 14 and 15, reproductions
of figures that originally appeared in Talley and Raymer
(1982), contain 24 years worth of density and potential
vorticity data from the Panulirus station near Bermuda.
It is commonly thought that this station is located
within the wind-driven circulation and on the edge of
the inertial recirculation. Accordingly, the data are
dominated by events which, as convincingly argued by
Talley and Raymer (1982), are of the proper phasing,
potential vorticity and density to be asociated with the
upstream formation of 18°C water. The defining char-
acteristic of newly formed 18°C water is the occurrence
of a minimum in potential vorticity with a potential

.density of o, = 26.5. What the eye picks out in Fig. 15
is the arrival of several very abrupt variations in the
depth of the o, = 26.5 surface. Minima in potential
vorticity are associated with these events, suggesting
this is a standard form for new 18°C water to obtain.
While the data are far from conclusive, it is certainly
tempting to argue that these fronts are not inconsistent
with the present model. Talley and Raymer (1982) ar-
gue that these abrupt events are dominated by their

convective origins and subsequent advection by the
large-scale. To these, I would like to add two other
effects. First, this analysis shows that an 18°C plug
should be somewhat self-propelling. Self-propagation
speeds for these plugs are O(1) cm s™!, which is com-
parable to advection by the Sverdrup transport, so both
effects should be of equal importance in the movement
of 18°C water. Second, the sharp structure of these
events in the Panulirus data might be partly due to the
tendency for finite amplitude thermal anomalies to
steepen. This mechanism could, for example, maintain
the convectively generated fronts as they move from

their generation point to Panulirus.

Acknowledgments. It is a pleasure to recognize the
interest and input of Drs. John M. Bane and Peter B.
Rhines 1o this work. An anonymous reviewer is also
thanked for a careful reading of this paper and for many
constructive criticisms. Figures 14 and 15 appeared
originally in a paper by Talley and Raymer (1982) and
appear here by their kind permission. My research is
sponsored by NSF Grant OCE 8415475 to the Uni-
versity of North Carolina. Pat Klein, who typed the
manuscript, is thanked for her good humor and pa-
tience. '

REFERENCES

Anderson, D., and A. Gill, 1975: Spin-up of a stratified ocean with
applications to upwelling. Deep-Sea Res., 22, 583-596.

——, and P. Killworth, 1977 Spin-up of a stratified ocean, with
topography. Deep-Sea Res., 24, 709-732.

——,and——, 1979: Non-linear propagation of long Rossby waves.
Deep-Sea Res., 26, 1033-1050.

Cessi, P., and J. Pedlosky, 1986: On the role of topography in the
ocean circulation. J. Mar. Res., 44, 445-471.

Cushman-Roisin, B., 1987: On the role of heat flux in the Gulf Stream,
Sargusso Sea, subtropical gyre system. J. Phys. Oceanogr. (in
press)

deSzoeke, R., 1985: Wind-driven mid-ocean baroclinic gyres over
topography: A circulation equation extending the Sverdrup re-
lation. J. Mar. Res., 43, 793-824.

Dewar, W., 1986: On the potential vorticity structure of weakly ven-
tilated isopycnals: A theory of subtropical mode water mainte-
nance. J. Phys. Oceanogr., 16, 1204-1216.

~——, P. Rhines and W. Young, 1984: The nonlinear spin-up of a
stratified ocean. Geophys. Astrophys. Fluid Dyn., 30, 169-197.



482

Holland, W., and P. Rhines, 1980: An example of eddy-induced
- ocean circulation. J. Phys. Oceanogr., 10, 1010-1031.

Johnson, J., and A. Willmott, 1981: An unsteady wind-driven ocean
circulation model. Dyn. Atmos. Ocean, 6, 1-27.

Keffer, T., 1985: The ventilation of the world’s oceans: Maps of the
potential vorticity field. J. Phys. Oceanogr., 15, 509-523.
Luyten, J., J. Pedlosky and H. Stommel, 1983: The ventilated ther-

mocline. J. Phys. Oceanogr., 13, 292-309.

McDowell, S., P. Rhines and T. Keffer, 1982: North Atlantic potential
vorticity and its relation to the general circulation. J. Phys
Oceanogr 12, 1417-1436.

Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer-Verlag,
624 pp.

———, and W. Young, 1983: Ventilation, potential-vorticity homog-
enization and the structure of the ocean circulation. J. Phys.
Oceanogr., 13, 2020-2037.

Rhines, P., 1977: The dynamics of unsteady currents. The Sea, Vol.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 17

6, E. D. Goldberg, I. N. McCabe, J. J. O’Brien and J. H. Steele,
Eds., Wiley, 189-318.

——, and W. Holland, 1979: A theoretical discussion of eddy-driven
mean flows. Dyn. Atmos. Oceans, 3, 289-325.

——, and W. Young, 1982a: Homogenization of potential vorticity
in planetary gyres. J. Fluid Mech., 122, 347-367.

——, and ——, 1982b: A theory of the wind-driven circulation, 1.
Mid-ocean gyres. J. Mar. Res., 40(Suppl), 559-596.

Talley, L., and M. Raymer, 1982: Eighteen degree water variability.
J. Mar. Res., 40(Suppl.), 757-775.

Whitman, G., 1974: Linear and Nonlinear Waves. Wiley-Interscience,
636 pp.

Willmott, A., 1985: A note on the steepening of long Rossby waves.
Deep-Sea Res., 32, 613-617. -

Young, W., and P. Rhines, 1982: A theory of the wind-driven cir-
culation, II. Gyres with western boundary layers. J. Mar. Res.,
40, 849-872.



