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Abstract. The aim of this paper is to give an existence and uniqueness
result of weak solution for a coupled quasilinear elliptic system describ-
ing the flow of groundwater in a coastal confined aquifer. The seawater
intrusion phenomenon is modelled using the sharp interface approach.
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81. Introduction

Coastal aquifers serve as major sources for freshwater supply in many countries
around the world, especially in arid and semi-arid zones. The fact that coastal zones
contain some of the densely populated areas in the world makes the need for freshwa-
ter even more acute. The intensive extraction of groundwater from coastal aquifers
reduces freshwater outflow to the sea and creates local water table depression, caus-
ing seawater to migrate inland and rising toward the wells. This phenomenon, called
seawater intrusion, has become one of the major constraints imposed on groundwater
utilization. As seawater intrusion progresses, existing pumping wells, especially those
close to the coast, become saline and have to be abandoned. Also the area above the
intruding seawater wedge is lost as source of natural replenishment to the aquifer. To
avert this trend, which is unsustainable in the long-term, it is necessary to use mathe-
matical models to simulate the phenomenon and to make quantitative estimations of
the effects of various management decisions should be taken to remedy the problem.

Freshwater and saltwater are miscible fluids and therefore, the zone separating
them takes the form of a transition zone caused by hydrodynamic dispersion. For
certain problems, the simulation can be simplified by assuming that each liquid is
confined to a well defined portion of the flow domain with an abrupt interface sep-
arating the two domains (cf. [2, 3]). This modelling approach, best known as sharp
interface, does not give information concerning the nature of the transition zone but
does reproduce the regional flow dynamics of the system and the response of the
interface to applied stresses [3].

In this paper, we address the seawater intrusion problem with sharp interface
approach in a confined aquifer. The model to be presented herein is formulated in
terms of a two-dimensional coupled quasilinear elliptic system. The main difficulties
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related to the analysis of this system are the coupling between system equations and
the degeneracy due to the possibility to have no saltwater or no freshwater in some
zones of the aquifer. We prove, by mean of a fixed point argument, the existence
of at least one weak solution. The necessary estimates are established using the
Stampacchia trunction technique. To prove the uniqueness of the solution, we make
use of the transposition method [1]. This method consists in studying the existence
of the solution of a dual problem, in order to prove the uniqueness of the primal one.

The outline of the paper is as follows. In section 2 the governing system as well as
it’s variational formulation is presented. In the third section we prove the existence
of at least one weak solution of the problem using the Schauder fixed point theorem.
The forth section is devoted to prove better regularity result for this solution which
enables us to obtain, using the transposition method, the uniqueness result in the last
section.

§2. Governing system

Let us consider a stationnary flow, with predominantly horizontal components, of
fresh and salt groundwater, separated by sharp interface, in a heterogeneous confined
aquifer. Substituting Darcy’s law into continuity equations of the two fluids (fresh and
salt), using the continuity of flux and the pressure through the interfacial boundary
and integrating equations over the vertical lead to the following system of coupled
differential equations [3, 2J:

' 7div(K(l‘)Bs(SC,¢f7¢S)V¢S) = Qs on Q,

where Q is an open bounded domain of R?, with piecewise smooth boundary T,
describing the projection of the porous medium on the horizontal plane; ¢ is the
freshwater head; ¢, is the saltwater head; Q¢ and @, are the freshwater and saltwater
inflow/outflow terms; K is the hydraulic conductivity, assumed the same for both
freshwater and saltwater. By(z, ¢, ¢5) and Bs(x, ¢¢, ¢s) represent the thicknesses of
freshwater zone and saltwater zone respectively and they are given by:

(2'2) Bf(x7¢fa¢s) :gt(x)_gi(¢f7¢s)a

(23) Bs(xv¢f>¢s) :Ei(d)f’qss) _Eb(x)a

where &, and &; are the elevations of the lower and the upper surfaces of the aquifer,
respectively (figure 1). The interface elevation, ;, is given by the following relation:

pf
Ps—Pf
and saltwater densities.

where 6 =

with py and py are two positive constants representing freshwater

To resolve system (2.1)-(2.4), we consider nonhomogeneous Dirichlet boundary
conditions:

¢f=gf on I’
(25) { ¢ps=gs on T
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Figure 1: freshwater/saltwater sharp interface in confined aquifer
where gy and gy are given functions.
Hence, the variational formulation of (2.1)-(2.5) reads:
Find ¢ = (¢, ¢s) € V such that
(2.6) Jo K(@)By(x,65,6)VosVor = [oQrpr Yoy € Hy(Q)
fQ K(x)Bs(x,¢f,¢5)V¢SV<ps = fQ Qsps Vs € H&(Q)

where Vy, =V, x Vg, with V., = HJ(Q) + g. (e = f,s).

§3. Existence result

In this section we prove the existence of at least one solution of (2.6) using a fixed
point theorem. Our hypothesis are as follows:

(H1) There exists K,,, € R and Kj; € R such that

K(x) € L*(Q) and 0< K,, <K(z)< Ky ae z€.
(H2) Q= (Q,Qs) € LY, (&,&) € L=(2)* and g = (g7, 9:) € H'(Q)*.
(H3) There exists 0 > 0, R = (Ry, Rs) € R? and R’ = ( b Ry) € R? such that:

R' >R (ie. R} > Ry and R > R,),

S

(L+6)R, —6Ry) < infgss & —o,

(1 +0)Rs — 6R}) > supess &, + 0.
Q
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(H4) There exists a real r > 2 such that

co @l

<min{R, —¢¥,¢g" — R
Ko < min{ f— 95,9y s

C(T) ||QS||L4(Q)

2t < min{R, — g™, g™ — R,
(1+a)Kma_mm{ s 795 0 b

where gM and g™ are respectively the maximum and the minimal value of g, on T
(e = f,5) and C(r) = c(4)c(r)mes(Q)/2=1/72r/("=2) " with c(r) denoting the best
constant associated with the inequality:

lellzr@) < c(MIVell) Yo € Hy(Q).

Remark 3.1. Physically, we often have infess £, > supess &y, and then (infess £, —
Q Q Q
o) > p(supess & + o) for some pu > 1 and o > 0. Hence, in order to justify (H2), it
Q
suffices to set R} = Ry and Ry = pRs, with

(infess &, — o) — u(supess &y + o)
Q Q
6(p* = 1)

Ry =

and
u(infess &, — o) — (supess &y + o)
Q Q
T 0)G2—1)

R, =

The existence result is the following:

Theorem 3.1. Under assumptions (H1) — (H4), the variational problem (2.6)
has at least one solution (¢y, ¢s).

Moreover:

(3.7) 0 < Byp(x,¢p,65) < (& — & — 0),
(3.8) 0 < By(x, 05, 9s) < (& — & — 0),
(3.9) IVérllz) < Clgr, @y, 0, K, ),
(3.10) [Vésllr2) < Cgs, Qss 0, Km, Q),

where C(ge, Qe, 0, K, Q) is a constant depending only on ge, Qe, K, o, and Q (e =
fys).
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Proof. For R and R’ satisfying (H3), let us introduce the following closed of L?()? :
Brr ={¢ € L*(0)?% R < ¢(x) < R ae. z €}
By (H1) and (H3), for all ¢ = (¢, ¢s) € Brr’, we have:

(311) KmJSK(x)Bf($7¢f,¢S) SKM(gt_gb_J)a

(312) KT"LO g K($)Bs($,¢f,(b5) S KM(ft _gb _U)~
Therefore, the application T defined by:

T: BRR’ —>L2(Q)2
(b: (¢f7¢9) - qu):U: (ufaus)v

where u is a solution of the following linear problem:

Find v = (uy,us) € Vy s.t.
(3.13) Jo K(x)By (2,07, 6s)VusVor = [ Qroy Vor € Hy(9Q),
fQ K('T)Bs(xaﬂsfa(bs)vusv(ps - fQ QSSDS VQPS € H&(Q)7

is well defined. Moreover, u = T ¢ satisfy the following estimates:

(3.14) IVugllz2) < Clgs, Qf, 0, Kim, Q)

(315) Hvus||L2(Q) < C(gs;Qs;Jvaaﬂ)a

where C(ge, Qc, 0, K.n, ) is a constant depending only on ge, Q., 0, K,,, and 2 (e =
fys).

Hence, any fixed point of T' will be a solution of (2.6) satisfying (3.7)-(3.10).

In lemmas 3.2-3.3, we shall prove that the hypothesis of the well-known Schaudre
fixed point theorem [6] are fulfilled for T. O O

Lemma 3.1. [/, Lemma B.1.] Let f(t), ko <t < 00, be nonnegative and nonin-
creasing function such that

fs) <[C/(s = kIR, s>k > ko,
where C, 7, B are positive constants with § > 1. Then
flko+d) =0,
where
d7 = C|f (ko)|P~ 127/ (B=1),

Lemma 3.2. T(BRR/) C Bgrr.
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Proof. Since V, C L?(Q2)?, it suffices to show that, for any u solution of (3.13), we
have:

R<u(x) <R a.e. ¥ € Q.

For any real constant N > g?/[ we set
¢ = (uy — N)T and Q(N) = {z € Q: u> N}.

Taking ¢f = wl[)f € Hi () as test function in the first equation of (3.13) we obtain:

/ K(2)By(z, 65, 65) |V | = / QY.
Q Q

Then
2 1
oK /Q VNP de < 1@l ooy N Ly mes(UN)) E,
or
2 % 1 1
(3.16) ([19ep o) < pmectml@lsmmes(@v)?,
[¢) O'Km

where mes(Q(N)) denotes the Lebesgue measure of Q(N).
On the other hand, for any r > 2 and [ > N > g}”, we have

(= N)ymes(Q(l)) = [op(I—N)de <[5 (us —N)'dz

(3.17) v . .
Jow [03] dz < oIV a0

IN

From (3.16) and (3.17), we obtain

mes(Q(1)) < <C(4()TCI£_7Z(?_]C£\L[;(Q)) mes(Q(N))z.

Using the previous lemma, we find

(M

Q(d+ g3") =0,
where d = dl{m c(4)c(r)||Qf||L4(Q)meS(Q(g}Vf))1/2—1/T2T/(T—2).
Thus
(3.18) up(z) < g + CW
and thanks to assumption (H4), we deduce
ug(x) < R}

In order to prove the other inequality, we set uy = R} —uy and gy = R} — gy with
R > g?/[. So iy € Vg, = Hg () + gy is a solution of the following variational problem

Q Q
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Repeating the above estimates for «y and N > R;{ — g7", leads to

COQs s
ocK,, '

up(z) < RY — g7 +
Therefore, by (H4), we deduce
ur(x) > Ry ae. x €
By the same way and using the second inequality of (H4), we get
R < wug(z) < R..
Then
T(Bgrr') C Brr-

|
O

Lemma 3.3. T is continuous from Brr to L?(Q)? and T(Bgrgr,) is relatively
compact in L*(Q)2.

Proof. Let p € Brr' be fixed and (¢,,)n>0 a sequence such that ¢, — ¢ in L*(Q)?
for n — oo.

Recall that
(3.19) R< é(z) < R, R< ¢u(x) <R aexcR%
We set

The sequence (uy,)n>0 satisfies:

(3.20) { Jo K(2)By(x, 9%, 65 )VuiVe = [, Qs
fQ K(x)Bs(w,qS”,(b?)Vu?ch = fQ QSSO VSDGH&(Q)v
(3.21) IVull2@) <O, VUil <C VneN,

where C' is a positive constant not depending on n, which implies the existence of u*
such that, up to a subsequence, u™ converges to u* weakly in H'(Q)? and strongly in
L?(Q)2.

Moreover, by dominated convergence theorem and taking into account (H1) and
(3.19),

K(z)By(z, ¢}, 65)Vp — K(2)By(x,¢7,¢5)Ve in L*(Q)  Vp € Hy(9),

K (2)Bs(z, ¢, ¢2)Vo — K(x)By(x, 95, ¢5) Ve in L*(Q) Yo € HY ().

Passing to the limit in (3.20) and using the uniqueness of solution of (3.13) we have
u* = u and that the entire sequence converges to u. Therefore T is continuous from
Brpr' to LQ(Q)Q.

The proof of the relative compactness of the embedding of T'(Bgrg/) into L?(Q)? is
elementary. O O
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Finally Theorem 3.1 follows from the Schauder fixed point theorem [6] and Lemmas
3.2-3.3.

84. Regularity result

In order to prove the uniqueness result, we need to prove better regularity of the
solution. That is the first derivatives of ¢ = (¢, @) are in LP for a p > 2.

First, we give a preliminary result which is a consequence of theorem 4.2 page 38
of [5].

Lemma 4.4. Let A € (L*°(Q))™ such that there exists v > 0 satisfying

3 Ay(@)XiX; > A|X|P Yz eQand X €R™

i,j=1

Then there exists p = p(vy, A) > 2, with A = mawx;;|| A; || Lo (0, satisfying the following

property:
For any f € W=YP(Q) and g € WP(Q), the unique solution y of the problem

{ V-(AVy)=f €9
y € Hy(Q) +up

belongs to WP(2). Moreover we have the following estimate:

HyHleP(Q) < C(Q7 f7 YD, Aa ,y)a

with ¢(, f, yp, A, v),> 0 is a constant depending only on 2, f, yp, v and A.

Applying the above lemma to (2.6) with A = K(z)By(z,dy,¢s) (resp. A =
K(x)Bs(z,¢5,0¢s5)), v = Kmo and A = ||K(x)By(x, ¢y, ¢s)| L) (resp. A =
| K(z)Bs(x, ¢f, ds)|l 1)), leads to the following regularity result.

Proposition 4.1. Let ¢ = (¢, ds) be a solution of (2.6). There exists r > 2 such
that if

(gfags) € W17r(9)27

Vo and V¢, are in L"(2).
Moreover we have:

IVosllir@) <ep and [V < cs,

where ¢, (e = f,s) is a positive constant depending on Q., ge, K, o, and €.

§5. Uniqueness result

In this section we assume that the hypothesis (H1) — (H4) holds. We also need
the following supplementary assumptions:
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(H5)
(gfags) € WLT(Q)Qa
where r is given by proposition (4.1).
(HG)
€=07 —|—m§ — 2K pe(r*)max(cy, cs) > 0,

: 1 1 1
where T*>OW1th ;_‘_7‘7*_5

Now let ¢ = (¢, ¢5) and b= (i)f, qZ;é) two solutions of (2.6).
Lemma 5.5. The following adjoint system:

Find u = (uf7us) € HE()? s.t.
Jo 552 Bf(x 5, 0s)VurVos + [o K(2)VérVuys vy

(5.22) - fQ 2)VsVusvp = [o(df — ¢f)”fa Vg € Hp(Q)

O Ifj_‘% <(x, qﬁf (b YWus Vg +fQ )V Vug vg

— Jo K(x)VosVugvs = [(¢s (bs vs, Yvs € H(Q)

admits one solution.

Proof. (5.22) can be rewritten in the following form:

Find uweV
st.  a(u,v) = L(v) Yv eV,

where v = (vf,vs), u = (uf,ug),

= a5

Q 1+6

and

L(v) = /Q(¢f — op)vs + /Q(¢s — bs)vs

‘We have

la(u,v)| < Epr||& — & — ol Lo o) Vsl 2ol Vorl 2o

+EKum Vol L@ IVurll Lz llvsll e o)
+E Vsl Ll Vusl L2 lvr | (o)
+KM||V¢fHLT ) lIVugllzz)llvsll e @)

+Hu|g, — U||Loo(Q)||Vus||L2(Q)
+KM||V¢S HLZ(Q) [[vs | LT*(Q)-

Hence, using Sobolev injections, we find:

la(u,v)| < C||Vullr2Q)2 | VUl L2 (0)25

CC (bf ¢S)VUfVUf+fQ qufVUf vy
§2 qusVus Uf — fQ V(bfvu]v Vs
(z, ¢, 0s)Vus Vo, +fﬂ )V s Vs vg

Vs L2(a)

171
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where C is a constant not depending on u or v.
In the same way we have:

la(u,u)| > o B || Vug||32 0
—KnmlIVorllor@IVurl Lz llug | (o)
—Knm|IVés|orolVusl Lz llugll o @
—KulIVosllorollVugll Lz o) llusl e o)
+0’%HVUSHL2(Q) ||Vus||L2(Q)

—Kum IV sl L) Vus| 2 o [lus | e ),

then
la(u,u)| > o B ||V |32 + 015 I Vus 320
—Kpre(r”) HV(beLT(Q) Hvuf||2L2(Q)
—Kpe(r*) Vsl L)l Vusl L2 | Vurll 2 @)
—Knre(r*)||Voy| Lr(n)|\Vus||2Lz(Q)||Vuf||L2(Q)
—Kpe(r)[Vésl o) [ Vusll7zq)-
Hence

ja(u, u)] > o5 | VugllFe () + o151 Vsl 2o
—Ene(r)[Vor | nr @l VuslFz o
—2Kpre(r*)mazx([|[Vs| r s IVl r @) Vurl Lz )| Vus| L2 o)
—EKne(r*) Vsl o [ Vuslliz )

la(u,u)] > o By 5 ||vuj||L2 Q) +01+5HV“5”L2(Q
—2Knre(r)maz(|[Vés || r @), IV sl @) [Vusll72 )
—2Kpre(r*)maz([[Vosll (), Vsl @) VuslZq)-

o) > (0K — 2K ase(rymaz(|Vésll oy, V641 ))]
(HV“me(Q) + ||Vus||%2(g))-
Therefore, by Lax-Milgram theorem and taking into account (H6), the result is de-

duced. O
Od

On the other hand, for any u = (uf,us) € H(£2)?, we have:

/SZK($)Bf($7¢f>¢s)V¢fvuf:/ﬂ K(x)By(z, 65, s)VsVuy,

/ K(@)Bu(@, 67, 65) Vs Vit = / K(2)Ba(2, 07, 60V Vus,
then

Jo K(x )[Bf<z b5:0s) — By(, 5, 05)] Vs Vg
+ Jo K(2)By(z, 67, 05)V (65 — dy)Vuy = 0,
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fQ (E LE ¢f (bs) _Bs(xl(z)faés)]VQbsvus
fQ l‘ ,T (bf ¢S) <¢s - ¢5)VUS =0,

and since
By (x, 5, 6s) — By(, 65, 85) = 6(65 — b5) — (14 6)(6s — b),
By(, 6y, 65) = Bo(, 07, 05) = (1 +06)(ds — &) — 6(dy — by).
we obtain
Jo E52 By (2,65, 05)V (65 — 65) Vg + [ K ¢f — 67)VesVuy
+ fo Ifi?B (@7, 65) V(D5 — bs) Vus + fﬂ — 6.) VsV,

- fQ z)(or — ¢f VésVus — fQ ¢5)V¢fvuf =0.

Using v = (uy,us) solution of (3.13) as test function, leads to:

o = 052+ | 15— sl® =
a Q

Consequently, we have the following uniqueness result:

Theorem 5.2. Under the hypothesis (H1) — (H6), the variational problem (2.6)
has one and only one solution.
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