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Abstract. We present a new diffusion reaction model for signal denois-
ing and quantization. We first discuss on classical quantization methods
and present the most popular denoising models. Then we construct our
method as a combination of quantization and denoising terms and show
its efficiency on noisy signals.
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1 Introduction

Generally, the degradation of the original signal z occurs during the acquisition process
and can be modeled by a linear tranformation and additive noise, as the following
equation

u0 = Az + η(1.1)

where A is a convolution operator and η is an additive white noise of standard devia-
tion σ that can be considered as gaussian. As known, the inverse problem of recovering
z from u0 is ill posed, since the operator A is not be invertible. In practice A is a
band limited filter while generally signal z contains jumps and then high frequencies.
Then Gibbs effect is introduced. Indeed, the fourier transform of Az can be modeled
by

Âz(ξ) = I[−ξ0,ξ0](ξ) · ẑ(ξ)

which corresponds to the cutoff frequencies satisfying |ξ| ≥ ξ0. For simplicity let us set
ξ0 = 1/2. Then, since we know that the invers Fourier transform of I[−1/2,1/2] is noth-
ing but the sinus cardinal (sinc(x) := sin(πx)/πx) function, the new reconstruction
of the signal is given by :

Az(x) = sinc(x) ∗ z(x).

Consequently, taking acount of the oscillatory behavior of the sinc function, arti-
factual ripples occur near a discontinuities since only a finite portion of the Fourier
transformation is considered.
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The presence of noise worsens the situation. Generally, noise contains mostly high
frequencies information, whereas a signal is distributed over all its frequency domain :
low frequencies correspond to its tendency and high frequencies correspond to its
discontinuities. Hence, the signal is dominant for low frequencies and its tendency
is keept by applying a simple lowpass filter, while the effect of the noise is reduced.
Indeed, a low-pass filter passes relatively low frequency components in the signal but
stops the high frequency components. Unfortunately, with a such kind of filter, the
high frequencies of the signal are also destroyed. This implies that the output signal
is smooth and discontinuities are blured.

The combination of this two degradations (the cut-off given by A and the additive
noise η) in an initial signal z makes its restauration difficult, since we must reconstruct
high frequencies destoried by the cut-off operator A and in the same time eliminate
those introduced by the noise. Taking the complexity of the problem into account, we
restrict our self in this paper on the class of piecewice constant signals. This signal
type arises in several areas and many industrial and medical applications. More
precisely, we assume that z is a piecewice constant signal taking a finite and known
values VN = {λ1, λ2, . . . , λN}. Then the problem that we modelise here is how to
quantify u0 into the values VN taking acount the degradations given by (1.1). This
is clearly a quantization and denoising problem.

Let us now discussing on quantization process.

2 Quantization process

The classical method to quantify u0 into the values VN is to consider a potential
function H(s) satisfying H(+∞) = H(−∞) = +∞ having {λi} as local minima and
to solve the minimum problem : “min W (u) =

∫
H(u)dx”, with u = u0 as initial data.

The minimum is interpreted as the steady state of the following ordinary differential
equation :

∂u

∂t
= −h(u) u(·, 0) = u0,(2.1)

where h = H ′. In the case where the values of signal z are unknown, we can fixe VN

by the classical Lloyd method [8] which consists to estimate the quadratic error of u0

with respect to VN by minimizing the energy :

E(VN ∪WN ) =
N∑

i=1

∫ βi+1

βi

(λ− λi)2df(λ),

where f(λ) = P (u0 < λ) is the probability distribution associated to the signal u0,
and WN = β0, . . . , βN+1 represents the set of separator such that βi < λi < βi+1.
Alvarez and Esclarin [1] have improved the Lloyd’s method by the introduction of
two terms in the energy E(VN ) in order to penalize quantization values for being too
close. They propose the following :

E(VN ∪WN ) =
N∑

i=1

∫ βi+1

βi

(λ− λi)2df(λ) + |βi+1 − βi|−1 + (βi + βi+1 − 2λi)2.
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The first added term means that |βi+1 − βi| must be sufficiently large and the last
term implies that βi and βi+1 are symmetrical with respect to λi. This improvement
removes some non-uniqueness problems that can appear when the Lloyd energy is
used.

3 Denoising process

Since the presence of the noise, we must include a denoising process in the diffusion
equation (2.1). The classical method is to use the isotropic diffusion

∂u

∂t
= u′′ u(·, 0) = u0,(3.1)

which is nothing but the known heat equation in one dimension. The solution of this
equation for an initial data with bounded quadratic norm, is given by u(x, t) = Gt∗u0

where Gt(x) = (1/2πt) exp(−x2/2t) is the gaussian function. This diffusion process
kind clearly contradict the requierement of the quantization effect. Indeed, in ordre
to creat discontinuities, the quantization effect introduces some high frequencies in
the signal. But the convolution of a signal with the gaussian function with variance
t, is equivalent to multiply its Fourier transform by a gaussian function with variance
1/t. Then for large t we find two opposite and contradictory requirements : to creat
and in the same time to destroy high frequencies.

Consequently, the denoising process must avoid all introduction of blur effect
or any other artifact in order to preserve the local tendancy of the initial signal by
”farizing” the creation of high freqiencies. Following this viewpoint, one of the popular
model arising in signal and image restoration has been proposed by Malik and Perona
[9], by the partial differential equation :

∂u

∂t
=

(
g(|u′|2)u′)′ u(·, 0) = u0,(3.2)

where g is a smooth non-increasing positive function with g(0) = 1 and sg(s2) → 0
at infinity. The idea of the equation (3.2) is that the restoration process obtained is
conditional : if |u′(x)| is large then g(|u′|2) ' 0 and the diffusion will be stopped and
if |u′(x)| is small then g(|u′|2) ' 1 and the diffusion will tend to smooth around x as
the isotropic heat equation. This model (3.2) has been considered as an important
improvement of the signal restoration and the edge detection theory [10].

Unfortunately, the Malik and Perona model is ill posed. Indeed, by writing the
equation in the form :

∂u

∂t
= (g(|u′|2) + 2|u′|g′(|u′|2))u′′,

we observe that the diffusion is inverted in the regions where |u′| is large and the
process can be interpreted as a backward heat equation which is known to be ill
posed. The ill posedness means that very close initial signals could produce divergent
solutions.

For all that, there are many attempts at extracting information from the Malik
and Perona equation and understanding whether (3.2) can be given a ”well-posedness”
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theory. We can refer to the papers of Kawohl and Kutev [6] and Kichenassamy [7] in
which we find the confirmation that in general case, we have non existence of a weak
solution and non uniqueness results.

An other approach is to slightly modify the equation (3.2) by putting a regularized
term in place of |u′|2 in order to have a well-posed equation. There are essentially
two propositions which we consider as a ”direct derivation” from the Malik-Perona
Model. The first one, proposed by Catté, Lions, Morel and Coll, consists in special
regularization whereby |u′|2 is replaced by |ρ∗u′|2, where ρ is a smooth kernel, yielding
the following model :

∂u

∂t
= div

(
g(|ρ ∗ u′|2)u′)′ u(·, 0) = u0.(3.3)

The well posedness of this model is proved in [5], and the choice ρ = Gσ, a Gaussian
with variance σ, is motived by the classical theory of edge detection [12]. The second
proposition is time-delay regularization, where one replaces |u′|2 by an average of its
values from 0 to t. The idea of Nitzberg and Shiota [11] is to use an exponential
kernel such that |u′|2 is replaced by :

v(x, t) = e−tv0(x) +
∫ t

0

e(s−t)|u′(x, s)|2 ds,(3.4)

where v0 is an initial data (for example v0 = |u′0|2). The avantage of this model is
that the inhibition term v acts as a memory of the denoising process and introduces
a certain stability with respect to the variation of the scale.

In [2] the author of the present paper have shown that in any dimension, this
model admits an unique classical solution (u, v) which can blow up in finite time.
With A. Chambolle [4], we also have studied the model from a numerical viewpoint.
Unfortunately this model, as the Malik-Perona equation, is enable to reduce noise
with large slop since there is no spatial smoothing.

4 A New quantization and denoising model

Our idea is to define v as a combination of the above two regularization types, (3.3)
and (3.4), by the following :

v(x, t) = e−t|ρ ∗ u′0|2(x) +
∫ t

0

e(s−t)|ρ ∗ u′(x, s)|2 ds,(4.1)

that we associate to the denoising and quantization equation :

∂u

∂t
=

(
g(v)u′

)′ − θ(t)h(u)

where the term (g(v)u′)′ is as Malik and Perona, v is given by (4.1), h is a quanti-
zation function and θ(t) is introduced to perform a balance between denoising and
quantization. The goal of the introduction of this parameter, θ(t), is to favour the de-
noising process for small scales by the inhibition of the quantization effect by choosing
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θ(t) ' 0 for small t and θ(t) ' 1 if t is large. Therefore, the proposed diffusion-reaction
process is described by the system :

∂u

∂t
=

(
g(v)u′

)′ − θ(t)h(u), u(·, 0) = u0,(4.2)

∂v

∂t
= |ρ ∗ u′|2 − v, v(·, 0) = |ρ ∗ u′0|2.(4.3)

The function g is as the Malik and Perona Model and we choose : g(s) =
(
1+s

)−1.
h is assumed to be continous and Lipschitz function satisfying h(s) = s−M if s > M
and h(s) = s − M if s < m, with m = λ1 and M = λN (see the figure). θ(t) is a
continous positif function such that 0 ≤ θ(t) ≤ 1. ρ is a positif relguar kernel, for
instance a gaussian with variance σ > 0. In the term |ρ′ ∗ u|, u(·, t) is assumed be
extended linearly and continously in all R.

Now, we construct an iterative scheme that we considere as numerical approxima-
tion of system (4.2)-(4.3). For all fixed δ > 0, we define the sequence (uδ

n, vδ
n)n by the

following interative scheme :

(uδ
0, v

δ
0) = (u0, |ρ ∗ u′0|2),

uδ
n+1 − uδ

n

δ
=

(
g(vδ

n)(uδ
n+1)

′)′ − θ(nδ)h(uδ
n),(4.4)

vδ
n+1 − vδ

n

δ
= |ρ′ ∗ uδ

n+1|2 − vδ
n+1.(4.5)

Some propreties of the iterative scheme are given by the next proposition :

Proposition 1. Assume that 0 ≤ vδ
n ∈ L∞(0, 1) and δ sup |h′| < 1, then we have :

uδ
n+1 ∈ H1(0, 1) is given by the following minimum problem :

uδ
n+1 := Argminw∈H1(0,1)E

δ
n(w)(4.6)

where Eδ
n(w) :=

∫ 1

0

(
g(v(δ,n))|w′|2 +

1
2δ
|w − u(δ,n)|2 + θ(nδ)H(w)

)
dx.

and in addition uδ
n+1 satisfys the maximum principle given by :

min{m,min uδ
n} ≤ uδ

n+1 ≤ max{M, maxuδ
n}.(4.7)

Remark that (4.7) implies that, for all n :

min{m,min u0} ≤ uδ
n ≤ max{M, max u0}.

In [3] we can find the proof of the proposition. In the same paper we prove that the
iterative scheme converges to the continuous model.

Let us now describe how to discretize the coupled system (4.4)-(4.5). We denote
by un

i (resp. vn
i ) the approximation of u (resp. v) at point (ih) (0 ≤ i ≤ N) and time

t = n δ, where the size of the initial signal u0 is aqual to N and h = 1/N . Using the
classical finite-differences, we write the approximation of (g(v)u′)′ at point ih and at
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scale t = (n + 1) δ by 1
h2 ((g(vn

i )(un+1
i+1 − un+1

i )) − (g(vn
i−1)(u

n+1
i − un+1

i−1 ))), then the
equation (4.4) becomes:

un+1
i − un

i

δ
=

1
h2

((
g(vn

i )(un+1
i+1 − un+1

i )
)− (

g(vn
i−1)(u

n+1
i − un+1

i−1 )
))− θ(nδ)h(un

i ).

By rearranging the first term of right hand, we can write it in the form 1/h2A(vn)un+1

where the matrix A(vn) is tridiagonal and positive defined. By classical arguments
we know that [I + δh−2A(vn)] is invertible.

In figure 1, the original signal (Top-Left) is piecewise constant taking the values
λ1 = 0 and λ2 = 10. Then we construct the function h by using this values, as the
following : h(x) = x − λ1 if x ≤ λ1, α((x − λ1)(x − λ2)2 + (x − λ2)2(x − λ2)) if x ∈
[λ1, λ2] and x − λ2 if x ≥ λ2, where α > 0 is choosen such that δ sup |h′| < 1 (Here
we use δ = 0.1). In the next signal (Top-Right) we represent the result of a cutoff
frequencies such that only the frequencies satisfying |ξ| ≤ 8 are preserved. The signal
(Middle Left) represents the noise that we added to signal (Top-Right). Then we
obtain the signal (Middle Right) that we considere the initial data u0. In the signal
(down), we clearly remark that our model performs the required quantization. This
experiment have been done at scale σ = 15, which correponds to the evolution time
t = 112.5.

In figure 2 we show the evolution steps of u0 with the following models : (Top)
without denoising only with the equation (dt/dt = −h(u)), (Middle) with our model
without quantization function ie. h ≡ 0 and (Down) with our model.
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Figure 1: (Top-Left) Initial piecewice signal. (Top-Right) Cutoff frequencies at ξ ≤ 8.
(Middle-Left) noise. (Middle-Right) u0 =(Top-Right)+ noise. (Down) Signal u0

restored and quantized by our model.
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Figure 2: Evolution steps of u0. (Top) without quantization function ie. h ≡ 0.
(Middle) without denoising process (du/dt = −h(u)). (Down) with our model.
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