On the strong lacunary convergence and strong Cesáro summability of sequences of real-valued functions

A. Gökhan, M. Güngör and Y. Bulut

Abstract

In this paper we introduce the concepts of the strong lacunary convergence and strong Cesáro summabilty of sequences of real-valued functions. We also give the relations between these convergences and pointwise convergence and pointwise statistical convergence.

M.S.C. 2000: 40A05, 40C05, 46A45, 60B10, 60F05.

Key words: lacunary sequence, strong lacunary convergence, strongly Cesáro summable, pointwise statistical convergence.

1. Introduction

The notion of statistical convergence was introduced by Fast [4] and also independently by Buck [2] and Schoenberg [7] for real and complex number sequences. There is a natural relationship [3] between statistical convergence and strong Cesáro summability:

$$
\left|\sigma_{1}\right|=\left\{x=\left(x_{k}\right): \text { for some } L, \lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{k=1}^{n}\left|x_{k}-L\right|\right)=0\right\} .
$$

By a lacunary sequence we mean an increasing integer sequence $\theta=\left(k_{r}\right)$ such that $k_{0}=0$ and $h_{r}=k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. Throughout this paper the intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$, and the ratio $\frac{k_{r}}{k_{r-1}}$ will be abbreviated by q_{r}. There is a strong connection [5] between $\left|\sigma_{1}\right|$ and the sequence space N_{θ}, which is defined by

$$
N_{\theta}=\left\{x=\left(x_{k}\right): \text { for some } L, \lim _{r}\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left|x_{k}-L\right|\right)=0\right\} .
$$

Gökhan and Güngör [6] defined pointwise statistical convergence by saying that $s t-\lim f_{k}(x)=f(x)$ or $f_{k} \xrightarrow{s t .} f$ on S if and only if for every $\varepsilon>0$,

[^0]$$
\left.\left.\lim _{n \rightarrow \infty} \frac{1}{n} \right\rvert\,\left\{k \leq n:\left|f_{k}(x)-f(x)\right| \geq \varepsilon \text { for every } x \in S\right\} \right\rvert\,=0
$$

It is shown that $\lim f_{k}(x)=f(x)$ implies st $-\lim f_{k}(x)=f(x)$ on S.
In this paper we deal with sequences $\left(f_{k}\right)$ whose terms are real-valued functions having a common domain on the real line \mathbb{R}.

2. Strong Cesáro Summability and Strong Lacunary Convergence

Definition 2.1. A sequence of functions $\left(f_{k}\right)$ is said to be strongly Cesáro summable if there exists $f(x)$ such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left|f_{i}(x)-f(x)\right|=0
$$

on S. We denote this symbolically by writing $f_{k} \xrightarrow{\left|\sigma_{1}\right|} f$ or $f_{k}(x) \xrightarrow{\left|\sigma_{1}\right|} f(x)$ on S.
Theorem 2.1. If a sequence of functions $\left(f_{k}\right)$ is convergent to $f(x)$ on a set S then it is also strongly Cesáro summable to $f(x)$ on the set S.

Proof. The proof is similar to that of Theorem 8.48 of [1]. Therefore we omit it.
But the converse of this theorem is not true. For example, define $\left(f_{k}\right)$ on \mathbb{R} by

$$
f_{k}(x)=\left\{\begin{array}{rc}
x, & \text { if } k=10^{n}+i, \text { where } 0 \leq i \leq n, \quad i \text { is even, } n=1,2, \ldots \\
-x, & \text { if } k=10^{n}+i, \text { where } 0 \leq i \leq n, i \text { is odd, } n=1,2, \ldots \\
0, & \text { otherwise. }
\end{array}\right.
$$

Then $\left(f_{k}\right)$ is strongly Cesáro summable to $f(x)=0$ on \mathbb{R}. But $\lim _{k \rightarrow \infty} f_{k}(x)$ does not exist.

Theorem 2.2. Let $\left(f_{k}\right)$ and $\left(g_{k}\right)$ be two sequences of functions defined on a set S. If $f_{k} \xrightarrow{\left|\sigma_{1}\right|} f$ and $g_{k} \xrightarrow{\left|\sigma_{1}\right|} g$ on S, then $\alpha f_{k}+\beta g_{k} \xrightarrow{\left|\sigma_{1}\right|} \alpha f+\beta g$ on S, where $\alpha, \beta \in \mathbb{R}$.

Proof. The proof is clear.

Theorem 2.3. (i) If a sequence $\left(f_{k}\right)$ is strongly Cesáro summable to f on S, then it is pointwise statistically convergent to f on S.
(ii) If a bounded sequence $\left(f_{k}\right)$ is pointwise statistically convergent to f on S, then it is strongly Cesáro summable to f on S.

Proof. (i) Observe that for $f_{k} \xrightarrow{\left|\sigma_{1}\right|} f$ on S and $\varepsilon>0$, we have that

$$
\sum_{k=1}^{n}\left|f_{k}(x)-f(x)\right| \geq \mid\left\{k \leq n:\left|f_{k}(x)-f(x)\right| \geq \varepsilon \text { for every } x \in S\right\} \mid \varepsilon
$$

It follows that if $\left(f_{k}\right)$ is strongly Cesáro summable to f on S, then $\left(f_{k}\right)$ is pointwise statistically convergent to f on S.
(ii) Now suppose that $\left(f_{k}\right)$ is bounded and pointwise statistically convergent to f on S and set $K_{x}=\sup _{k}\left|f_{k}(x)\right|+|f(x)|$ for every $x \in S$. Let $\varepsilon>0$ be given and select N_{ε} such that

$$
\left.\frac{1}{n} \left\lvert\,\left\{k \leq n:\left|f_{k}(x)-f(x)\right| \geq \frac{\varepsilon}{2} \text { for every } x \in S\right\}\right. \right\rvert\,<\frac{\varepsilon}{2 . K_{x}}
$$

for all $n>N_{\varepsilon}$ and set

$$
L_{n, x}=\left\{k \leq n:\left|f_{k}(x)-f(x)\right| \geq \frac{\varepsilon}{2} \text { for every } x \in S\right\}
$$

Now, for $n>N_{\varepsilon}$ we have that

$$
\begin{aligned}
\frac{1}{n} \sum_{k=1}^{n}\left|f_{k}(x)-f(x)\right| & =\frac{1}{n}\left[\sum_{k \in L_{n, x}}\left|f_{k}(x)-f(x)\right|+\sum_{\substack{k \leq \leq_{n} \\
k \notin L_{n, x}}}\left|f_{k}(x)-f(x)\right|\right] \\
& <\frac{1}{n} \frac{n \cdot \varepsilon}{2 K_{x}} K_{x}+\frac{1}{n} \frac{n \cdot \varepsilon}{2}=\varepsilon
\end{aligned}
$$

for every $x \in S$. Hence $\left(f_{k}\right)$ is strongly Cesáro summable to f on S.
Definition 2.2. For any lacunary sequence θ, a sequence of functions $\left(f_{k}\right)$ is said to strongly lacunary convergent to f on a set S if there exists $f(x)$ such that

$$
\tau_{r, x}=\frac{1}{h_{r}} \sum_{I_{r}}\left|f_{k}(x)-f(x)\right| \rightarrow 0
$$

for every $x \in S$. We denote this symbolically by writing $f_{k} \xrightarrow{N_{\theta}} f$ or $f_{k}(x) \xrightarrow{N_{\theta}} f(x)$ on S.

Theorem 2.4. Let $\left(f_{k}\right)$ and $\left(g_{k}\right)$ be two sequences of functions defined on a set S. If $f_{k} \xrightarrow{N_{\theta}} f$ on S and $g_{k} \xrightarrow{N_{\theta}} g$ on S, then $\alpha f_{k}+\beta g_{k} \xrightarrow{N_{\theta}} \alpha f+\beta g$ on S, where $\alpha, \beta \in \mathbb{R}$.

Proof. The proof is easy. Therefore we omit it.

Lemma 2.1. Let $\left(f_{k}\right)$ be a sequence of functions defined on a set S.
$f_{k} \xrightarrow{\left|\sigma_{1}\right|} f$ on S implies $f_{k} \xrightarrow{N_{\theta}} f$ on S if and only if $\lim \inf _{r} q_{r}>1$.

Proof (Sufficiency). If $\lim \inf _{r} q_{r}>1$, there exists $\delta>0$ such that $1+\delta \leq q_{r}$ for all $r \geq 1$. Then if the sequence $\left(f_{k}\right)$ is strongly Cesáro summable to f on a set S, we can write

$$
\begin{aligned}
\tau_{r, x} & =\frac{1}{h_{r}} \sum_{i=1}^{k_{r}}\left|f_{i}(x)-f(x)\right|-\frac{1}{h_{r}} \sum_{i=1}^{k_{r-1}}\left|f_{i}(x)-f(x)\right| \\
& =\frac{k_{r}}{h_{r}}\left(\frac{1}{k_{r}} \sum_{i=1}^{k_{r}}\left|f_{i}(x)-f(x)\right|\right)-\frac{k_{r-1}}{h_{r}}\left(\frac{1}{k_{r-1}} \sum_{i=1}^{k_{r-1}}\left|f_{i}(x)-f(x)\right|\right)
\end{aligned}
$$

for every $x \in S$. Since $h_{r}=k_{r}-k_{r-1}$, we have

$$
\frac{k_{r}}{h_{r}} \leq \frac{1+\delta}{\delta} \text { and } \frac{k_{r-1}}{h_{r}} \leq \frac{1}{\delta}
$$

The terms $\frac{1}{k_{r}} \sum_{i=1}^{k_{r}}\left|f_{i}(x)-f(x)\right|$ and $\frac{1}{k_{r-1}} \sum_{i=1}^{k_{r-1}}\left|f_{i}(x)-f(x)\right|$ both converge to 0 on S, and it follows that $\tau_{r, x}$ converges to 0 for every $x \in \mathrm{~S}$, that is, the sequence $\left(f_{k}\right)$ is strongly lacunary convergent to f on S.
(Necessity). Assume that $f_{k} \xrightarrow{\left|\sigma_{1}\right|} f$ on S implies $f_{k} \xrightarrow{N_{\theta}} f$ on S and $\lim \inf _{r} q_{r}=1$. Since θ is lacunary, we can select a subsequence $\left(k_{r(j)}\right)$ of θ satisfying $\frac{k_{r(j)}}{k_{r(j)-1}}<1+\frac{1}{j}$ and $\frac{k_{r(j)-1}}{k_{r(j-1)}}>j$, where $r(j) \geq r(j-1)+2$.

Define $\left(f_{i}\right)$ by

$$
f_{i}(x)=\left\{\begin{array}{lc}
x, & \text { if } i \in I_{r(j)}, \\
0, & \text { for some } j=1,2, \ldots \\
\text { otherwise }
\end{array}\right.
$$

for every $x \in \mathbb{R}$. Then, for any real-valued function $f(x)$,

$$
\frac{1}{h_{r(j)}} \sum_{I_{r(j)}}\left|f_{i}(x)-f(x)\right|=|x-f(x)| \quad \text { for } j=1,2, \ldots
$$

and

$$
\frac{1}{h_{r}} \sum_{I_{r}}\left|f_{i}(x)-f(x)\right|=|f(x)| \quad \text { for } r \neq r(j)
$$

for every $x \in \mathbb{R}$. It follows that $\left(f_{i}\right)$ is not strongly lacunary convergent on \mathbb{R}. However, $\left(f_{i}\right)$ is strongly Cesáro summable, since if t is any sufficiently large integer we can find the unique j for which $k_{r(j)-1}<t \leq k_{r(j+1)-1}$ and write

$$
\frac{1}{t} \sum_{i=1}^{t}\left|f_{i}(x)\right| \leq|x| \cdot \frac{k_{r(j-1)}+h_{r(j)}}{k_{r(j)-1}} \leq\left(\frac{1}{j}+\frac{1}{j}\right)|x|=\frac{2|x|}{j}
$$

As $t \rightarrow \infty$ it follows that also $j \rightarrow \infty$. Hence $f_{i} \xrightarrow{\left|\sigma_{1}\right|} 0$.
Lemma 2.2. Let $\left(f_{k}\right)$ be a sequence of functions defined on a set S. $f_{k} \xrightarrow{N_{\theta}} f$ on S implies $f_{k} \xrightarrow{\left|\sigma_{1}\right|} f$ on S if and only if $\lim \sup q_{r}<\infty$.

Proof (Sufficiency). If $\lim \sup q_{r}<\infty$ there exists $M>0$ such that $q_{r}<M$ for all $r \geq 1$. Letting $f_{k} \xrightarrow{N_{\theta}} f=0$ on S and $\varepsilon>0$ we can then find $R>0$ and $K>0$ such that $\sup _{i \geq R} \tau_{i, x}<\varepsilon$ and $\tau_{i, x}<K_{x}$ for all $i=1,2, \ldots$ and every $x \in S$. Then if t is any integer with $k_{r-1}<t \leq k_{r}$, where $r>R$, we can write

$$
\begin{aligned}
& \frac{1}{t} \sum_{i=1}^{t}\left|f_{i}(x)\right| \leq \frac{1}{k_{r-1}} \sum_{i=1}^{k_{r}}\left|f_{i}(x)\right| \\
&=\frac{1}{k_{r-1}}\left(\sum_{I_{1}}\left|f_{i}(x)\right|+\sum_{I_{2}}\left|f_{i}(x)\right|+\ldots+\sum_{I_{r}}\left|f_{i}(x)\right|\right) \\
&= \frac{k_{1}}{k_{r-1}} \tau_{1, x}+\frac{k_{2}-k_{1}}{k_{r-1}} \tau_{2, x}+\ldots+\frac{k_{R}-k_{R-1}}{k_{r-1}} \tau_{R, x} \\
&+\frac{k_{R+1}-k_{R}}{k_{r-1}} \tau_{R+1, x}+\ldots+\frac{k_{r}-k_{r-1}}{k_{r-1}} \tau_{r, x} \\
& \leq\left(\sup _{i \geq 1} \tau_{i, x}\right) \frac{k_{R}}{k_{r-1}}+\left(\sup _{i \geq R} \tau_{i, x}\right) \frac{k_{r}-k_{R}}{k_{r-1}} \\
&<K_{x} \frac{k_{R}}{k_{r-1}}+\varepsilon M
\end{aligned}
$$

for every $x \in S$. Since $k_{r-1} \rightarrow \infty$ as $t \rightarrow \infty$, it follows that $\frac{1}{t} \sum_{i=1}^{t}\left|f_{i}(x)\right| \rightarrow 0$ and, consequently, $f_{i} \xrightarrow{\left|\sigma_{1}\right|} f=0$ on S.
(Necessity). Assume that $\lim \sup q_{r}=\infty$. Since θ is lacunary, we can select a subsequence $\left(k_{r(j)}\right)$ of θ so that $q_{r(j)}{ }^{r}>j$ and then define $\left(f_{i}\right)$ by

$$
f_{i}(x)=\left\{\begin{array}{lc}
x, & \text { if } k_{r(j)-1}<i \leq 2 k_{r(j)-1}, \text { for some } j=1,2, \ldots \\
0, & \text { otherwise }
\end{array}\right.
$$

for every $x \in \mathbb{R}$. Then

$$
\tau_{r(j), x}=\frac{k_{r(j)-1}|x|}{k_{r(j)}-k_{r(j-1)}}<\frac{|x|}{j-1}
$$

on $x \in \mathbb{R}$ and, if $r \neq r(j), \tau_{r, x}=0$ for every $x \in \mathbb{R}$. Thus $f_{i} \xrightarrow{N_{\theta}} f=0$ for every $x \in \mathbb{R}$. Observe next that any sequence which is strongly Cesáro summable consisting of only $f_{i}(x)=0$'s or $f_{i}(x)=x$'s on S has an associated strong limit $f(x)$ which is 0 or x on S. For the sequence $\left(f_{i}\right)$ above, and $i=1,2, \ldots, k_{r(j)}, x \in \mathbb{R}$,

$$
\begin{aligned}
\frac{1}{k_{r(j)}} \sum_{i}\left|f_{i}(x)-x\right| & \geq \frac{|x|}{k_{r(j)}}\left(k_{r(j)}-2 k_{r(j)-1}\right) \\
& =|x|\left(1-\frac{2 k_{r(j)-1}}{k_{r(j)}}\right)>|x|-\frac{2|x|}{j}
\end{aligned}
$$

which converges to $|x|$, and, for $i=1,2, \ldots, 2 k_{r(j)-1}$,

$$
\frac{1}{2 k_{r(j)-1}} \sum_{i}\left|f_{i}(x)\right| \geq \frac{k_{r(j)-1}|x|}{2 k_{r(j)-1}}=\frac{|x|}{2},
$$

for every $x \in \mathbb{R}$ and it follows that $\left(f_{i}\right)$ does not strongly Cesáro summable on \mathbb{R}.
Combining Lemmas 2.1 and 2.2, we have following theorem.
Theorem 2.5. Let θ be a lacunary sequence. Then $f_{i} \xrightarrow{\left|\sigma_{1}\right|} f$ and $f_{i} \xrightarrow{N_{\theta}} f$ on S if and only if

$$
1<\lim \inf _{r} q_{r} \leq \lim \sup _{r} q_{r}<\infty
$$

It is possible for a sequence of functions to have two distinct strong lacunary limits associated with it. An example can be obtained by defining $P(i)=n$, where $n!<i \leq(n+1)$!, and letting

$$
f_{i}(x)= \begin{cases}x, & \text { if } P(i) \text { is even } \\ 0, & \text { if } P(i) \text { is odd }\end{cases}
$$

for $x \in \mathbb{R}$. Then defining $\theta_{1}=((2 r)!)$ and $\theta_{2}=((2 r+1)!)$, we observe that

$$
\frac{1}{h_{r+1}} \sum_{I_{r+1}}\left|f_{i}(x)\right|=\frac{(2 r+1)!-(2 r)!}{(2(r+1))!-(2 r)!}|x| \rightarrow 0 \quad(\text { as } r \rightarrow \infty)
$$

on \mathbb{R}, from which it follows that $f_{i} \xrightarrow{N_{\theta_{1}}} f=0$ on \mathbb{R}, and also

$$
\frac{1}{h_{r}} \sum_{I_{r}}\left|f_{i}(x)-x\right|=\frac{(2 r)!-(2 r-1)!}{(2 r+1)!-(2 r-1)!}|x| \rightarrow 0 \quad(\text { as } r \rightarrow \infty)
$$

on \mathbb{R}, from which it follows that $f_{i}(x) \xrightarrow{N_{\theta_{2}}} f(x)=x$ on \mathbb{R}.
Theorem 2.6. If $f_{i} \xrightarrow{\left|\sigma_{1}\right|} f$ and $f_{i} \xrightarrow{N_{\theta}} g$ on a set S, then $f(x)=g(x)$ for every $x \in S$.

Proof. Let $f_{i} \xrightarrow{\left|\sigma_{1}\right|} f$ and $f_{i} \xrightarrow{N_{\theta}} g$ on S and suppose that $f(x) \neq g(x)$ for some $x \in S$. We write

$$
\begin{aligned}
\sigma_{r, x}+\tau_{r, x} & =\frac{1}{h_{r}} \sum_{I_{r}}\left|f_{i}(x)-f(x)\right|+\frac{1}{h_{r}} \sum_{I_{r}}\left|f_{i}(x)-g(x)\right| \\
& \geq \frac{1}{h_{r}} \sum_{I_{r}}|f(x)-g(x)|=|f(x)-g(x)|
\end{aligned}
$$

for $x \in S$. Since $f_{i} \xrightarrow{N_{\theta}} g$ on $S, \tau_{r, x} \rightarrow 0$ for $x \in S$. Thus for sufficiently large r we must have

$$
\sigma_{r, x}>\frac{1}{2}|f(x)-g(x)|
$$

for $x \in S$. Observe that

$$
\begin{aligned}
\frac{1}{k_{r}} \sum_{i=1}^{k_{r}}\left|f_{i}(x)-f(x)\right| & \geq \frac{1}{k_{r}} \sum_{I_{r}}\left|f_{i}(x)-f(x)\right|=\frac{k_{r}-k_{r-1}}{k_{r}} \sigma_{r, x} \\
& =\left(1-\frac{1}{q_{r}}\right) \sigma_{r, x}>\frac{1}{2}\left(1-\frac{1}{q_{r}}\right)|f(x)-g(x)|
\end{aligned}
$$

for $x \in S$ and sufficiently large r. Since $f i \xrightarrow{\left|\sigma_{1}\right|} f$, the left side converges to $f(x)=0$ for $x \in S$, so we must have $q_{r} \rightarrow 1$.But this implies, by the proof of Lemma 2.2, that $f_{i} \xrightarrow{N_{\theta}} 0 \Rightarrow f_{i} \xrightarrow{\left|\sigma_{1}\right|} 0$ on S. Since $\left(f_{i}-g\right) \xrightarrow{N_{\theta}} 0$ on S, it follows that $\left(f_{i}-g\right) \xrightarrow{\left|\sigma_{1}\right|} 0$ on S and therefore $\frac{1}{t} \sum_{i=1}^{t}\left|f_{i}(x)-g(x)\right| \rightarrow 0$ for $x \in S$. Then we have

$$
\frac{1}{t} \sum_{i=1}^{t}\left|f_{i}(x)-g(x)\right|+\frac{1}{t} \sum_{i=1}^{t}\left|f_{i}(x)-f(x)\right| \geq|g(x)-f(x)|>0
$$

for $x \in S$, which yields a contradiction, since both terms on the left converge to 0 .

References

[1] Apostol, T., Mathematical Analysis, Addison-Wesley Publishing Company, Inc., London, (1974).
[2] Buck, R.C., Generalized Asymptotic Density, Amer. J. Math. 75, (1953), 335346.
[3] Connor, J., The statistical and strong p-Cesáro convergence of sequences, Analysis 8 (1988), 47-63.
[4] Fast, H., Sur la Convergence Statistque, Collog. Math. 2, (1951), 241-244.
[5] Freedman, A.R., Sember, J.J. and Raphael, M., Some Cesáro Type Summability Spaces, Proc. London Math. Soc. 37 (1978) 508-520
[6] Gökhan (Türkmenoğlu), A. and Güngör, M., On pointwise statistical convergence, Indian J. Pure appl. Math. 33(9): (2002), 1379-1384.
[7] Schoenberg, I.J., The Integrability of Certain Functions and Related Summability Methods, Amer. Mat. Monthly, 66, (1959), 361-375.

Authors' address:
A. Gökhan and M. Gügör

Department of Mathematics, Firat University, 23119, Elazig, Turkey email: agokhan1@firat.edu.tr and mgungor@firat.edu.tr

[^0]: Applied Sciences, Vol.8, 2006, pp. 70-77.
 © Balkan Society of Geometers, Geometry Balkan Press 2006.

