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Abstract. The present problem deals with the laminar flow of an electri-
cally conducting viscous incompressible fluid with embedded non-conducting
identical spherical particles through a long channel under influence of a
uniform magnetic field and taking the fluid and dust particles to be ini-
tially at rest. The changes in velocity profiles for fluid and dust particles
have been determined and the effect of strength of magnetic field on ve-
locity profiles at fixed time has been depicted graphically.

M.S.C. 2000: 76T10, 76T15.
Key words: Frenet frame field system, parallel plates, dusty fluid, velocity of dust
phase and fluid phase, conducting dusty fluid, magnetic field.

§1. Introduction

The influence of dust particles on viscous flows has great importance in petroleum
industry and in the purification of crude oil. Other important applications of dust
particles in boundary layer, include soil erosion by natural winds and dust entrainment
in a cloud during nuclear explosion. Also such flows have occur in a wide range of
areas of technical importance like fludization, flow in rocket tubes, combustion, paint
spraying and more recently blood flows in capillaries.

Considerable work has already been done on such models of dusty fluid flow.
P.G.Saffman [12] formulated the basic equations for the flow of dusty fluid. Regarding
the plate problems, Lokenath Debnath et al [9], Liu [8], Michael et al [10] have studied
the flow produced by the motion of an infinite plane in a steady fluid occupying the
semi-infinite space above it. Later, M.C.Baral [4] has discussed the plane parallel flow
of conducting dusty gas. To investigate the kinematical properties of fluid flows in
the field of fluid mechanics some researchers like Kanwal [7], Truesdell [13], Indrasena
[6], Purushotham et al [11], Bagewadi et al [1, 2, 3] have applied differential geometry
techniques. Further, recently the authors [2, 3] have studied two-dimensional dusty
fluid flow in Frenet frame field system. The present paper considers the flow of
a conducting viscous incompressible fluid with embedded nonconducting identical
spherical particles between two infinite parallel plates in which one plate is moving
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with the uniform speed under the influence of constant magnetic field. Initially the
fluid and dust particles are at rest. Finally the changes in the velocity profiles at of
fluid and dust particles are shown graphically.

§2. Equations of motion

The equations of motion of unsteady viscous incompressible fluid with uniform
distribution of dust particles are given by

For fluid phase

∇.−→u = 0(2.2.1)

∂−→u
∂t

+ (−→u .∇)−→u = −ρ−1∇p + υ∇2−→u +
kN

ρ
(−→v −−→u ) +

1
ρ
(−→J ×−→B )

For dust phase

∇.−→v = 0(2.2.2)

∂−→v
∂t

+ (−→v .∇)−→v =
k

m
(−→u −−→v )(2.2.3)

We have following nomenclature:
−→u −velocity of the fluid phase, −→v −velocity density of dust phase, ρ−density of

the gas, p−pressure of the fluid, N−number of density of dust particles, υ−kinematic
viscosity, k = 6πaµ−Stoke’s resistance (drag coefficient ), a−spherical radius of dust
particle, m−mass of the dust particle, µ−the co-efficient of viscosity of fluid particles,
t−time and −→J and −→B given by Maxwell’s equations and Ohm’s law, namely,

∇×−→H = 4π
−→
J , ∇×−→B = 0, ∇×−→E = 0,

−→
J = σ[−→E +−→u ×−→B ]

Here −→H−magnetic field, −→J −current density, −→B−magnetic flux, −→E -electric field.

It is assumed that the effect of induced magnetic fields produced by the motion
of the electrically conducting gas is negligible and no external electric field is applied.
With those assumptions the magnetic field −→J ×−→B of the body force in (2.2.2) reduces
simply to −σB2

0
−→u .

Let −→s ,−→n ,
−→
b be triply orthogonal unit vectors tangent, principal normal, binor-

mal respectively to the spatial curves of congruences formed by fluid phase velocity
and dusty phase velocity lines respectively, Geometrical relations are given by Frenet
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formulae [5]

i)
∂−→s
∂s

= ks
−→n ,

∂−→n
∂s

= τs
−→
b − ks

−→s ,
∂
−→
b

∂s
= −τs

−→n

ii)
∂−→n
∂n

= k′n−→s ,
∂
−→
b

∂n
= −σ′n−→s ,

∂−→s
∂n

= σ′n
−→
b − k′n−→n

(2.2.4)

iii)
∂
−→
b

∂b
= k′′b−→s ,

∂−→n
∂b

= −σ′′b−→s ,
∂−→s
∂b

= σ′′b−→n − k′′b
−→
b

iv) ∇.−→s = θns + θbs; ∇.−→n = θbn − ks; ∇.
−→
b = θnb

where ∂/∂s, ∂/∂n and ∂/∂b are the intrinsic differential operators along fluid phase
velocity (or dust phase velocity ) lines, principal normal and binormal. The functions
(ks, k

′
n, k′′b ) and (τs, σ

′
n, σ′′b ) are the curvatures and torsion of the above curves and θns

and θbs are normal deformations of these spatial curves along their principal normal
and binormal respectively.

§3. Formulation and Solution of the Problem

The present discussion considers a viscous incompressible, dusty fluid bounded by
two infinite flat plates in which one plate is moving with the constant speed u0. Both
the fluid and the dust particle clouds are supposed to be static at the beginning. The
dust particles are assumed to be spherical in shape and uniform in size. The number
density of the particles is taken as a constant throughout the flow. It is assumed
that the dust particles are electrically nonconducting and neutral. The motion of the
dusty fluid is due to magnetic field of constant strength B0. Under these assumptions
the flow will be a parallel flow in which the streamlines are along the tangential
direction and the velocities are varies along binormal direction and with time t, since
we extended the fluid to infinity in the principal normal direction.

By virtue of system of equations (2.2.4) the intrinsic decomposition of equations
(2.2.2) and (2.2.3) give the following forms;

∂us

∂t
= ν

[
∂2us

∂b2
− Crus

]
+

kN

ρ
(vs − us)−Dus(3.3.5)

2u2
sks = ν

[
2σ′′b

∂us

∂b
− usk

2
s

]
(3.3.6)

0 = ν

[
usksτs − 2k′′b

∂us

∂b

]
(3.3.7)

∂vs

∂t
=

k

m
(us − vs)(3.3.8)

2v2
sks = 0(3.3.9)

where D = σB2
0

ρ and Cr = (σ′2b + k′2n + k′2b + σ′′2b) is called curvature number [3].
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From equation (3.3.9) we see that v2
sks = 0 which implies either vs = 0 or ks = 0.

The choice vs = 0 is impossible, since if it happens then us = 0, which shows that
the flow doesn’t exist. Hence ks = 0, it suggests that the curvature of the streamline
along tangential direction is zero. Thus no radial flow exists.

Equation (3.3.5) and (3.3.8) are to be solved subject to the initial and boundary
conditions;





Initial condition; at t = 0; us = 0, vs = 0
Boundary condition; for t > 0; us = 0, at b = 0 and

us = u0 at b = h



(3.3.10)

We define Laplace transformations of us and vs as

U =

∞∫

0

e−stusdt and V =

∞∫

0

e−stvsdt(3.3.11)

Applying the Laplace transform to equations (3.3.5), (3.3.8) and to boundary
conditions 3.3.10, then by using initial conditions one obtains

sU = ν

[
∂2U

∂b2
− CrU

]
+

L

τ
(V − U)−DU(3.3.12)

sV =
1
τ

(U − V )(3.3.13)

U = 0, at b = 0 U =
u0

s
at b = h(3.3.14)

where L = mN
ρ and τ = m

k . Equation (3.3.13) implies

V =
U

1 + sτ
(3.3.15)

Eliminating V from (3.3.12) and (3.3.15) we obtain the following equation

d2U

db2
−Q2U = 0(3.3.16)

where Q2 =
(
Cr + s

ν + D
ν + sL

ν(1+sτ)

)
.

The velocities of fluid and dust particle are obtained by solving the equation
(3.3.16) subjected to the boundary conditions (3.3.14) as follows

U =
u0

s

{
sinhQb

sinhQh

}
.

Using U in (3.3.15) we obtain V as

V =
u0

s(1 + sτ)

{
sinhQb

sinhQh

}
.
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By taking inverse Laplace transform to U and V, one can obtain

us = u0
sinhyb

sinhyh
+

2u0πν

h

∞∑
n=0

n(−1)n+1sin
(nπ

h
b
)

×
[

ex1t(1 + x1τ)2

x1 [(1 + x1τ)2 + L]
+

ex2t(1 + x2τ)2

x2 [(1 + x2τ)2 + L]

]

vs = u0
sinhyb

sinhyh
− u0e

− t
τ +

2u0πν

h

∞∑
n=0

n(−1)n+1sin
(nπ

h
b
)

×
[

ex1t(1 + x1τ)
x1 [(1 + x1τ)2 + L]

+
ex2t(1 + x2τ)

x2 [(1 + x2τ)2 + L]

]

where

x1 = − 1
2τ

(
1 + L + Dτ + νCrτ + ντ

n2π2

h2

)

+
1
2τ

√(
1 + L + Dτ + νCrτ + ντ

n2π2

h2

)2

− 4τ

(
Crν + D + ν

n2π2

h2

)

x2 = − 1
2τ

(
1 + L + Dτ + νCrτ + ντ

n2π2

h2

)

− 1
2τ

√(
1 + L + Dτ + νCrτ + ντ

n2π2

h2

)2

− 4τ

(
Crν + D + ν

n2π2

h2

)

y =
Crν + D

ν

§4. Conclusions

The velocity profiles for the fluid and dust particles are drawn in figure 1 and 2
respectively, which are parabolic. According Frenet approximation of a curve in the
osculating plane the path of the curve near origin is parabolic. Hence the results
obtained here are analogous to the above [5]. It is concluded that velocity of fluid
particles is parallel to velocity of dust particles. Also it is evident from the graphs
that, as we increase the strength of the magnetic field, it has an appreciable effect on
the velocities of fluid and dust particles. Further one can observe that if the magnetic
field is zero then results are in agreement with the plane Couette flow.
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Figure-1: Variation of fluid velocity with b

Figure-2: Variation of dust phase velocity with b
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