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ABSTRACT

Using the maximum likelihood estimation method, quasi-geostrophic wave solutions are fitted to the obser-
vations of the 1981 Ocean Acoustic Tomography Experiment. The experiment occupied a 300 km square area
centered at 26°N, 70°W over a duration of approximately 80 days. The dataset consists of acoustic travel-time
records, moored temperature records and CTD profiles. The acoustic data correspond to integral measurements
of the temperature (or sound speed) field.

The optimal fit to the data corresponds to three waves in the first baroclinic mode, evolving under the presence
of a westward mean flow with vertical shear. The mean flow is found to be weak (approximately 2 cm s™*), but
changes the wave periods significantly by producing large Doppler shifts. The waves are found to be dynamically
stable to the mean flow, have weak nonlinear interactions with each other, and do not form a resonant triad;
thus they constitute 2 fully linear solution.

Evidence for the existence of the waves is strongly supported by the high correlation (approximately 0.9)
between the data and the fit, the large amount of signal energy resolved (approximately 80%), the excellent
quality of the wave-parameter estimate (only about 10% in error), and the general agreement between the

observations and quasi-geostrophic linear dynamics.

1. Introduction

Extensive studies of mesoscale motions in the last
decade have shown that linear quasi-geostrophic dy-
namics are quite successful in the interpretation of a
number of observations in the ocean. Under some gen-
eral hypotheses pertaining to inviscid, incompressible,
large-scale, low-frequency flows, the governing poten-
tial vorticity equation is obtained, which can be solved
in terms of waves. Different wave classes are possible
according to such factors as frequency, geometry or
latitude. The various wave types are long gravity waves,
Rossby (or planetary), Kelvin, topographic Rossby,
equatorial, bottom trapped, etc. (LeBlond and Mysak,
1978; Pedlosky, 1979).

Although such waves are in theory plausible motxons,
they are difficult to observe in the ocean. This is in
part because the long wavelengths-and very low fre-
quencies require large sensor arrays over long times
and in part because if a superposition of waves is pres-
ent in a broad spectrum, it becomes harder to identify
the waves unambiguously. This latter difficulty is not
specific to quasi-geostrophic flows, but also occurs in
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other random wave fields, such as surface gravity and
internal waves, It becomes a subtle question to establish
whether a random field is best described as a super-
position of linear waves, weakly or strongly interacting
nonlinear waves, or turbulence (Holloway, 1980).

If one assumes that the observed field is due to a
superposmon of randomly phased waves, characterized
by a given spectrum, then a given wave type can be
identified by its dispersion relation and by well-defined
relationships between various components (such as
temperature and velocity). Such relations have been
called consistency relations (Muller and Siedler, 1976).
The dispersion relation is a statement relating the spa-
tial to the temporal behavior; thus the wave parameters,
such as wave frequencies and wavenumbers, can be
determined only by appropriate space~time observa-
tions.

A variety of observations of long waves has been
reported in the literature; for example, baroclinic
Rossby waves in the Pacific ocean from temperature
surveys (Bernstein and White, 1974; Emery and Ma-
gaard, 1976; and White, 1977); topographic Rossby
waves from mooring arrays (Thompson, 1971; Hogg, -
1981); various types of equatorial trapped waves from
mooring arrays (Eriksen, 1985; Weisberg et al., 1979);
and island-trapped internal Kelvin waves from moor-
ing arrays (Hogg, 1980).
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Although the existence of those waves has been con-
vincingly demonstrated, direct observation in both
space and time is much more difficult. A striking ob-
servation of a single barotropic wave was presented by
Price and Rossby (1982). The analysis was done in
terms of potential vorticity balance and the wave pa-
rameters were determined from the length and time
scales of the correlation functions. The data were ob-
tained from SOFAR floats drifting at 1300 m, a depth
close to the null of the first baroclinic mode which thus
could not be detected. The wave, found to have a
Doppler-shifted period of 48 days, was observed during
only the first 90 days of the experiment. McWilliams
and Robinson (1974) analyzed data of the Soviet Poly-
gon array in terms of a local, baroclinic, advective,
topographic model of quasi-geostrophic waves in the
presence of a mean current. Fits of one or two waves
were made, but the results were not entirely convincing
because the data used had already been strongly con-
densed by Koshlyakov and Grachev (1973). More
complete and systematic fits of MODE-0 and MODE-
1 array data were given by McWilliams and Flierl
(1976). Here, the approach was more rigorous, since a
least-squares estimate of the wave parameters was
made, based on a large dataset covering space and time.
Different combinations of baroclinic and barotropic
waves were tried in an effort to expose the minimum
of an error norm. In one case (MODE-0) two barotropic
waves were found, and in the other (MODE-1) they
found two barotropic and two baroclinic waves. How-
ever, the wave parameters they estimated may not be
optimal in a statistical sense, since the weighting in the
least-squares was not chosen according to the statistics
of the errors in the data. Furthermore, they did not
give any error maps on the estimated field.

An analysis similar to that of McWilliams and Flierl
(1976) is presented here. The database comes from a
combination of acoustic transmissions, CTD surveys
and temperature moorings, covering a two and a half
month period in a 300 km square at 26°N, 70°W, just
south of the MODE region. The basic dataset was made
available by the Ocean Tomography Group (1982) and
has been presented by them as well as by Cornuelle
(1983), Cornuelle et al. (1985) and Chiu (1985). In
particular, Cornuelle et al. (1985) show that a cold eddy
with temperature anomaly of —2°C was slowly moving
to the west during the experiment.

However, the 1981 tomography experiment was
mean essentially as a demonstration of a new acoustic
technique, and accordingly the analysis of Cornuelle
et al. (1985) chose purposefully to consider only the
acoustic data, discarding other information available,
such as dynamic considerations, other data, and time
continuity. In contrast, we attempt here to see if the
space-time behavior of the dataset can be interpreted
in terms of a sum of baroclinic waves.

The assumption of waves automatically incorporates
dynamical constraints on the fields and provides the
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required relationships between the various data subsets,
as is outlined in section 2. A rigorous optimal esti-
mation procedure of the wave parameters is outlined
in section 3; it is equivalent to a weighted nonlinear
least-squares procedure, leading to the minimization
of an objective function.

Particular attention is paid to the estimation of the
errors in the estimated wave parameters and on the
reconstructed fields as well as on the figures of merit
for the fits. The results of the estimation are discussed
in section 4, where it is found that the least error is
obtained by a model consisting of three baroclinic
waves and a large-scale, weak, mean current. The waves
are found to be stable and linear. Section 5 contains
the conclusions and some final remarks. In particular,
it will be seen that the wave assumption constitutes a
convenient model for the analysis of such a diverse
dataset. But a model can never be proven absolutely
right: it can only be shown to perform better than many
others, and its justification can only reside in its success
to account for the data.

The analysis presented here gives strong evidence
that baroclinic waves do exist and can be detected un-
ambiguously; acoustic means are particularly well
suited to the task because of the extensive space-time
coverage they provide.

2. Observations and models
a. The experiment

The experiment was carried out in the spring of 1981
by the Ocean Tomography Group (1982). It occupied
an area of 300 km by 300 km at 26°N, 70°W, a region
on the Hatteras abyssal plain, southwest of Bermuda,
and just south to where MODE was conducted. Figure
1 (from Cornuelle et al., 1985) shows the locations of

28°
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FIG. 1. The configuration of the 1981 Ocean Acoustic Tomography
Experiment (from Cornuelle et al., 1985). The diagram shows the
horizontal locations of the four source moorings (S1, . . ., S4), five
receiver moorings (R1, ..., R5), two environmental moorings (E1
and E2), and the bottom bathymetry.
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the moorings, the horizontal paths of acoustic trans-
mission and the bottom bathymetry. The monitored
region has a nominal depth of 5400 m and very small
depth variations.

The acoustic tomographic system consisted of a
horizontal array of four sources (S1, . . . S4) and five
receivers (R1,. . . R5) moored at a nominal depth of
2000 m surrounding the region under investigation (see
Fig. 1). The average sound speed profile ¢(z) obtained
from the CTD surveys in the experiment is shown in
Fig. 2. As is typical of this part of the ocean, there is a
deep sound channel allowing several eigenrays (mul-
tipaths) between a source and receiver (Fig. 3). Using
a signal processing technique developed by Spindel
(1979), a 224 Hz carrier modulated by a repetition of
a maximal length, shift register sequence that lasted
nearly three minutes was transmitted hourly on every
third day between each of the source-receiver pairs.
Through a form of matched filtering, the multipath
travel times of acoustic pulses were estimated. The re-
lation between travel time and sound speed changes,
ot and éc, is approximately

at=f;5fds (1)
x C

where the integration is performed along the trajectory
x(s) of an eigenray, and s is the arc length along that
ray. (The accuracy of this linear, approximate relation
is discussed in appendix A.) Since a sound speed fluc-
tuation dc is directly related to a temperature fluctua-
tion 87 by

6c=(4.6—0.11T+0.00087T2sT )
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FIG. 2. The mean sound speed profile in the experimental region.
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FIG. 3. The trajectories of six of the many eigen rays,
connecting the source S4 to the receiver R3.

where T is the mean temperature, and where the units
are m s~! for sound speed and °C for temperature,
these travel times correspond to spatially averaged
measurements of the temperature perturbation field.
[Note that (2) is obtained by differentiating the empir-
ical formula of Medwin (1975) and neglecting the ef-
fects of salinity.)]

Although the transmissions were intended to last for
four months, more than half of the receivers had
stopped recording data after 80 days into the experi-
ment due to failure of the batteries. The motion of the
acoustic moorings were tracked by bottom-mounted
acoustic transponders. The tracking was needed to
prevent the misinterpretation of the large changes in
travel times due to mooring motion as changes due to
oceanic perturbation.

In addition to the nine acoustic moorings, two en-
vironmental moorings, denoted by E1 and E2 in Fig.
1, were deployed. Current meters were mounted on
the environmental moorings at two different depths
but not on the acoustic moorings. A total of 32 tem-
perature-pressure recorders and temperature sensors
were distributed on all the moorings and mounted at
different depths. Seven of them were placed in the en-
ergy-containing region of the baroclinic-mode waves,
i.e. the main thermocline zone.

During the 80 day period in which the acoustic array
was operational, two CTD surveys (in March and May)
were conducted. Each CTD survey lasted two and a
half weeks and had 65 casts distributed evenly over
most of the experimental square, though slightly denser
in the middle.

b. Data used

Because the barotropic mode produces little vertical
displacement, waves in this mode are only observable
through current measurements. The current data ob-
tained in this experiment, however, are inadequate for
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resolving the barotropic wave field because the current
meters, located at two closely spaced spots, cannot
provide sufficient spatial resolution. Our wave analysis
is thus focused on the first baroclinic mode alone, which
we have shown in a modal-decomposition analysis of
the CTD data (presented in appendix B) to account
for a major portion of the observed signal.

We take as our dataset seven moored sensor tem-
perature time series, 58 travel-time records, and two
CTD surveys. These measurements are most pertinent
to the detection of planetary waves since they probe
the energy-containing region of the waves, i.e. the main
thermocline zone. Low-pass filtering is performed on
the time records to eliminate tidal and internal-wave
signals; furthermore, only data points on every third
day in the moored temperature records and on every
ninth day in the travel-time records are retained for
the estimates. This reduction does not result in any
loss of useful information, because the time scale of
the midlatitude mesoscale motion is known to be of
the order of 100 days (Richman et al., 1977). On the
other hand, each CTD profile is compressed into a sin-
gle datum a®, where a = d; is the amplitude of the
first mode of sound speed perturbation in the jth profile
as defined in appendix B. This compression of data
corresponds to a filtering process in which the more

oscillatory but less energetic higher modes are totally .

eliminated.

The dataset used in the parameter estimates is sum-
marized in Table 1. For simplicity in the incorporation
of different data types, we have chosen the sound speed
perturbation, which is related to the temperature per-
turbation by (2), to be the unknown variable in the
estimates. The seven moored sensor records of tem-
perature, converted to sound perturbation time series
via (2), were recorded only at three mooring sites, E1,
E2 and S3, and are thus expected to contain mainly
information on the time behavior of the perturbed field.
In contrast, since the duration of each CTD survey is
relatively short (2, weeks) as compared to the wave
period (of order 100 days), they should mainly contain
spatial information. About three ray paths per source-
receiver pair (which cycle through almost the entire
depth of the main thermocline zone) were used. The
corresponding time series records of travel time there-
fore contain information on both the time and space
behavior of the perturbed field. Only the data obtained
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within the period between yeardays 61 and 139 were
used since most of the acoustic instruments had failed
after yearday 139 and the experiment started roughly
on yearday 61. Thus the dataset contains information
on the mesoscale perturbations that is densely sampled
in both time and space in the 300 km square over a
period of 80 days. We define the position 26°N, 70°W
and the Julianday 66 in a Cartesian coordinate system
as the point (150 km, 150 km, O s).

¢. Wave models

Planetary wave motion can be affected by a number
of factors, such as the presence or absence of a mean
flow, a bottom slope, wave-wave interactions, etc. De-
pending on which of those effects are important, the
corresponding perturbed field can display different
space-time characteristics. Because there generally ex-
ists some degree of uncertainty as to which of those
effects actually dominate in real situations, different
but plausible dynamical models that place emphasis
on different factors and are parameterized by different
sets of wave parameters must be fitted to the data in a
wave detection process. The actual dynamics can then
be estimated by comparing the quality of the different
model fits.

For the detection of baroclinic waves, we have es-
timated the wave and mean-flow induced sound speed
perturbation é¢™(x, t; p) of three plausible wave prop-
agation models, labeled 0, 1 and 2, using the dataset.
The three models, their associated §¢™s as functions of
position x = (x, y, z) and time ¢, where x, y and z are
respectively the east, north and vertical coordinates,
and the corresponding sets of wave parameters p are
described next.

The geostrophic dynamic pressure, that is the me-
soscale pressure deviation from the mean, can be cast
into a sum of eigen modes:

p'= Zvr,-(x, 1) f(2)

where f; satisfies the vertical structure equation, rigid-
lid boundary and orthonormal conditions [(B1)-(B3)
in appendix B]. Flierl (1978) has shown that the evo-
lution of the field is described by a set of coupled, non-
linear differential equations governing the amplitude
functions of the modes. Neglecting surface forcing and

TABLE 1. Data used. In second column, j = index for position and k = index for time. Integer in parentheses
in fifth column corresponds to the number of data in each time series.

Duration
Data type Notation Quantity (Julian days) Number of data Source
Modal amplitudes & 65 66-83 65 1st CTD survey
Modal amplitudes & 65 120-137 65 2nd CTD survey
dc¢ time series och 7 61-139 7X(27) Temperature sensors
8t time series 86 58 61-133 58 X (9) Tomographic array
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bottom topographic effects, and excluding modes
higher than the first, these horizontal structure equa-
tions, which express potential vorticity conservation,
are

Lo(mo) = —Co(m) — é o, Vito) + J(m, V,2m)]

1
Ly(m) = —Cy(mo) —— {eJ(m1, Vi*m))
of

+J(my, Vitmo) + JImo, (V2 —A)mil} (3)

where :
d 3 o @

==V2+B8—+|up—+vo— V)2

Lo=5, Vi +h 5 (”"ax ”°ay) h

8, d a _a\_,
Li=5. (V= )+ ax'*'(uo 2t ay)(Vh M)

a d
+ 6(1/[1 Ex"l" Uy E;)th

‘ d d
Ci= u|—+U|'—(V},2+A,~) i=0,1
ax dy .

are linear operators, V,;? denotes the horizontal Lapla-
cian operator, J denotes the Jacobian nonlinear op-
erator, p is a constant reference density (p = 1 g ml™}),
B is the latitudinal gradient of the Coriolis parameter,
and

1 0
€= D f_ » fi(2)’dz. @)

A depth dependent mean current is represented in the
horizontal structure equations by its amplitude com-
ponents (4, Vg) in the barotropic mode and (u,, v;) in
the first baroclinic mode. For this experiment, 8 = 2.06
X 1078 km™! s7! and f= 6.38 X 1073 s~} By solving
the eigenvalue problem (B1)-(B3), we get Ay =~ 0, A,
=5.15 X 10™* km™2, and from (4), we obtain ¢ = 1.93.

If we neglect the coupling and the nonlinear terms
[rhs of (3)], the dispersion relation for the “primary”
waves is

(K*+ P+ \)o+d0)+kB=0, i=0,1 5

where
00 =—(ugk +vol), MN=~=0

for the barotropic mode (i = 0), and

do=— + __]_(i__li._
ag Uo 6k2 12 )\1 U
K+

+ l(vo+ emvl)] 6)

for the first baroclinic mode (i = 1), and where (k, /)
is the wavenumber vector, ¢ the wave frequency, and
—do the Doppler shift.
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One might expect a priori that the coupling terms
C;(r;) should be of the same order as the linear terms
L;(w;); it will be shown a posteriori in section 4 that
they are negligible. Therefore, it is justified to use the
simplified dispersion relation (5). On the other hand,
the nonlinear terms give rise to wave-wave interaction,
which can lead to the generation of “secondary” waves
(Longuet-Higgins et al., 1967). At resonance, when the
wavenumber vector and frequency of the secondary
wave also satisfies (5), its amplitude can grow (or decay)
in time. This possibility is allowed for in one of our
models. Three models are considered.

Model 0

This model consists of freely propagating first baro-
clinic-mode Rossby waves in the absence of a mean
flow. The isopycnal surfaces are displaced by the baro-
clinic waves so that the corresponding local sound
speed perturbations are given by

oc™(x, 5, p=p*) = oc™(X, £ p")
with
w .
6c”=gi(z) 2 Aicos(ki+1;— ot + ) @)

i=1

where W is the number of first baroclinic-mode waves,
and g,(z) is the corresponding vertical mode, which is
displayed in Fig. 4 together with the second and third
modes. The amplitude A4;, the wavenumber vector (k;,
1)), the frequency o; and the phase constant v; of the
ith wave are wave parameters. In this model éo = 0,

O|1||l|x||||||l|||1

. - -
N
] o /\\ /]Sf :
1 ey _
1 - oA 3
- /'. =
] | r
- '. b
e

7] | A
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FIG. 4. The first three vertical modes of sound speed perturbation.
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and ¢;, being constrained by (k;, /;) according to (§), is
not a free parameter; thus éc” is completely determined
by

pw=(Alsklsll,'yl3 " '9AW’kWlea’YW)'

Model 1

The possibility of a mean flow is now added. The
structure of the mean current is assumed to consist of
the barotropic and the first baroclinic modes only. This
assumption is probably a good one because the two
modes are known to contain the greatest fraction of
the kinetic energy in this general area (McWilliams
and Flierl, 1975, and Sanford, 1975). In this model the
isopycnal surfaces are further tilted by the baroclinic
mean current according to the thermal wind relation.
Therefore, the corresponding sound speed perturba-
tions are now given by

oc™ = dc™(x, t; ", Uo, Vo, Uy, V1) + dc(X; Uy, V1, bo)

with an additional time-independent mean variation

u y v x
¢ = ——.—+_._
o g'(z)(b° FDF D)

where F is a known constant determined by the ther-
mal-wind relation and the normalization used on the
vertical modes (F = 0.157), and b, is a constant arising
from integrating the derivative relation between the
mean flow and the stream function ¢ this constant
shifts the null of éc¢¢ to the correct position. The fre-
quency shift o in (6) now exists and is constrained by
(k, 1), (uo, vo) and (uy, v,). Thus, 6¢™ is now parame-
terized by

p= (pw, Up, Vo, Uy, Vs, bO)'

Of course, the perturbations and effects caused by the
mean flow and waves of much larger scales and lower
frequencies are locally indistinguishable. It is therefore
more accurate to refer to 6c¢ as a local mean, that is,
the sum of the perturbations induced by the mean flow
and much longer waves.

Model 2

The possibility of resonant wave-wave interaction
is now included. The modeling requires the replace-
ment of 4; by 4; + G;t in (7) where G; represents the
growth rate. In general, the growth rates are constrained
by the wavenumbers and wave amplitudes of the in-
teracting primary waves (Longuet-Higgins et al., 1967).
However, since the barotropic mode is not observable
in our dataset while resonant waves can be generated
by intermodal wave-wave interactions (Chiu, 1985),
G can only be left as a free parameter in the model.
The set of parameters are now given by

p=(pw5Gl3 . '9GW,uOsv03uI’vl9b0)-
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3. Estimator

Maximum likelihood is a widely used method for
estimation, because it is simple to apply and the esti-
mates are generally easy to compute. Also, the maxi-
mum likelihood estimate, in a sense, is robust, since
many other common estimators give the same estimate
when all the random variables under consideration are
assumed to have normal statistics (Tarantola and Val-
ette, 1982; Cornuelle, 1983; and Chiu, 1985).

The maximum likelihood estimator can be formu-
lated as the minimization of an objective function, the
likelihood function (Bard, 1974). Grouping the 130
modal-amplitude data

(ajo;j= l’ MY 130)’

the seven observed time series of sound speed pertur-
bations

[6¢% = 8c® (¢ =3kdays);k=0, « + +,26;j=1,++,7]
J J

and the 58 observed time records of travel-time per-
turbations

[669 = 610 (1= 9k days);k =0, - - -,8;j=1,+ + +,58]

as three subsets of data (refer to Table 1 for the sources
of data and notation), and further treating the uncer-
tainty in the nominal horizontal positions, Ax, and the
unknown horizontal displacements

[6x, = 6x(t=9kdays); k=0, - - -, 8]

of the acoustic moorings as random parameters, the
objective function can be cast as a sum of five con-
straining functions of similar forms of weighted sums
of squares of residuals. Because there were nine acoustic
moorings, Ax and éx; are 18-dimensional vectors, and
we denote their jth components by Ax; and dx;, re-
spectively. The objective function can thus be expressed
as

s(pa Axa 6xOs Tty 6x8)
= 54(p) + S5c(P) + 55:(P, AX, 8Xo, * * *,0Xg)
+ Sax(AX) + 855(0X0, * * +,0xs) (8)

with
130
$a=3 2 0510~ 4" ®)F ®
j=1
1 7 26
$1e=5 2 2 Gl — dce(m)f (10)
Jj=1k=0
1 58 8
S=5 2 2 o0t — O(p, A%, x) (1)
Jj=1k=0

representing the constraints imposed by each of the
data subsets on a wave propagation model (Model 0,
1 or 2), where 4/, 6cji and part of 6t} are the signals
produced by the waves and mean flow. Note that the
other part of 8¢} is the perturbation related to the un-
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certainties in the mooring positions; the mathematical
models for all these signals and the parameterization
of the mooring position errors in the model of travel-
time signal are presented in appendix C. Furthermore,
18

1
sAx=:2-Za 22 Ax} (12)
Jj=1
1 18 8
5 E%k% a,;xjk6x,k (13)
iz

represent the constraints on the incorrect horizontal
mooring positions. We have assumed uncorrelated and
normally distributed experimental noise and mooring-
position errors with known variances; the variances
of a’, &y, 6t}’k, Ax; and 6xj; are denoted by
oy Oocyr az,jk, o4x,and o3, respectively. The assignment
of these noise variances is described below.

By analyzing numerous sound speed profiles ac-
quired by Piips (1967) between Bermuda and Eleu-
thera, Mooers (1975) found. strong evidence for the
existence of a first baroclinic semidiurnal tide with an
amplitude of 0.7 m s™! in dc at 550 m depth. Higher-
mode perturbations of approximately the same order,
as estimated from decomposing the CTD profiles, are
neglected in all three wave propagation models. These
neglected higher-mode perturbations, combined with
the internal tide, are the major contributors to model
error. Another significant contributor to error is the
random field of internal waves. While the errors in the
modal-amplitude data are most sensitive to the internal
tide and waves due to the lack of temporal filtering,
the errors in the filtered. éc time records are most sen-
sitive to higher-mode fluctuations. In addition, the éc
time records are also subject to errors caused by vertical
mooring motion. We estimate both the o, and o, to
be approximately 1 m s~1.

Considering only measurement noise, internal
waves, and tides, Cornuelle et al. (1985) have estimated
the daily mean variance of travel-time noise to be 3.6
(ms)?. Through computer simulations, we have esti-
mated the error introduced by the neglected higher-
mode perturbations and current effects, and the as-
sumption of travel-time linearity (1) in our models, to
be 5 ms (rms). Therefore, the total travel-time variance
is o3, = 3.6 + 25 (ms)*.

The tracking data provided by the acoustic bottom
transponders indicate that the horizontal mooring dis-
placements were of order 200 m rms. These tracking
records had already been applied to eliminate the signal
produced by some of the mooring motions in the travel-
time data. However, these records contain large gaps
. resulting from occasional malfunction of the instru-
- ments. Therefore, we have set Coxye = 200 m and 20 m
for the untracked and tracked displacements, respec-
tively. The 20 m standard deviation represents the
measurement error expected from the tracking system.
We have further set o,,, = 500 m for all j, which is

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 17

estimated from the differences between the observed
travel times and the raytrace travel times calculated
using the uncorrected mooring positions.

Due to the highly nonlinear nature of the objective
function (8), a stable, iterative descent method devel-
oped by Fletcher and Powell (1963) was chosen for the
optimization. An advantage of this method is that it
also computes an estimate of the matrix of second de-
rivatives (known as the Hessian H) at the minimum,
which is related to the local curvature. Bard (1974) has
shown that by approximating the posterior distribution
of the parameters with a normal distribution, the co-
variance matrix of the error e of the estimate
a=(p, Ax, éxg, . . .) of (p, A, 8xy, . . .) becomes

Ce=H" (14)

Thus, the diagonal elements in the inverse Hessian H™!
at the minimum are approximately the mean square
errors of the estimates of the parameters.

If a model is accurate and parameters are well de-
termined, the residuals will reflect the experimental
random noise and have approximately the same sta-
tistics. Therefore, the reliability of a model can be as-
sessed by analyzing the final residuals. To compare the
goodness of the different wave models, we use a simple
yet very useful measure, which is a weighted sum of
the final residuals, defined as

+

R=Z s, @) +ssc® +su@]  (15)
m-—n

where R is approximately a chi-square distributed ran-
dom variable with m degrees of freedom, r is the num-
ber of mooring-position parameters, » is the number
of wave parameters, and m is the number of data. The
factor (m + r)/(m — n) is needed to adjust the inverse
covariance matrix of noise to equal that of the final
residuals (Bard, 1974). A significance level can be se-
lected for rejecting models on the higher edge of the
distribution.

Two other measures are used here to judge the suc-
cess of a model in predicting (interpolating) the data.
They are the correlation coefficient C between observed
and predicted signal and the amount of signal energy
E (in percentage) resolved by the prediction. The larger
C and E are, the better the model fits the data. The
similarities in shape and amplitude between the ob-
served signal and the model prediction are measured
by C and E, respectively. In general, C and F are in-
dependent, but for a least-squares minimization, 100C
= E'7 for the total set of data points. However, for
individual subsets of data, C and E remain useful sep-
arate pieces of information.

4. Results and discussion

For each of the three models, one to five waves were
fitted to the data. At least four different initial guesses
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of p for a given model (Model 0, 1 or 2) and a given
number of waves (W = 1, 2, 3, 4, or 5) were used in
the optimizations to explore the least minimum (i.e.
the solution) and to investigate uniqueness. This is
needed because the objective function (8) is nonquad-
ratic and thus more than one minimum could exist in
the acceptable region in the solution space. While the
wave fits with W < 3 are unique, those with W > 3
are not. In each fit with W < 3, most of the initial
guesses converged to the same stationary point where
the least minimum occurs, and although a few initial
guesses converged to different stationary points, the
corresponding minima are considerably larger. For
each of the wave fits with W > 3, different initial guesses
resulted in different minima of approximately the same
size; hence a unique least minimum could not be iden-
tified. However, this has no effect on our investigation,
because the optimal fit corresponding to W = 3 was
unique and well-determined.

The change from uniqueness to nonuniqueness as
W increases is a demonstration of the trade-off between
resolution and stability (Backus and Gilbert, 1970). As
W increases, so do the magnitudes of the wavenumber
estimates. Thus, finer-scale structures of the pertur-
bations are intended to be resolved with a larger W,
but because of the inadequacy of the data in resolving
them, the observing system is rendered underdeter-
mined.

In order to assess and compare the different wave
fits so that the optimal model and W may be identified,
the weighted sum of the squares of final residuals R,
defined in (15), was computed for each of the wave
fits. The 0.01 significance level is at R ~ 940. In Fig.
5, we plot R versus W for each model. It is seen that
the performance of Models 1 and 2 is much better than
that of Model 0. While none of the wave fits of Model
0 pass the 0.01 significance test, the fits with W = 3, 4
and 5 of Model 1 and 2 are at and beyond the 0.01
significance level. Although Model 1 and 2 perform
equally well, the estimated growth rates of the wave
amplitudes in Model 2 do not differ significantly from
zero and, in fact, their signs are ambiguous because
their rms errors are larger than the estimated growth
rates themselves. The lack of ability to determine the
growth rates is not surprising, however, because (i) res-
onant interactions should be rare occurrences since the
forced waves can grow if and only if they satisfy the
dispersion relationship {5), and (ii) even if resonance
actually occurs, the time scale of the growth, in weak-
interaction theory, is much longer than a wave period;
hence, data measured within a wave period cannot be
adequate for observing such phenomena. The reason
for fitting Model 2 to the data is to see if there are any
surprises that are inconsistent with the theory. The data
variance resolved by Model 1 increases by 20% as W
changes from 2 to 3 and increases by as little as 5% as
W further changes from 3 to 4 or 5. Also, we must
keep in mind that W = 4 and 5 correspond to unstable
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FIG. 5. Misfits of the three wave models on the data as functions
of the number of wave(s) fitted. The measure of misfit is R, a weighted
sum of the squares of final residuals.

wave fits. Thus, an overall judgment clearly favors
Model 1 to be the optimal wave propagation model in
which a mean flow is present and W = 3 to be the
optimal number of propagating first baroclinic-mode
waves.

To make further assessments, we computed for each
wave fit the correlation coefficient C; between each
subset of data and the fit, and the amount of variance
in each data subset resolved by the fit, E;, where the
index i takes on the integer values 1, 2 and 3 to denote
the data subsets of modal amplitudes, dc time records
and 6t time records, respectively. For Model 1, that is
the optimal model, C; and E; versus W are plotted in
Figs. 6 and 7, respectively. At W= 3, i.e. the optimum,
we obtain C; of 0.8, 0.9 and 0.98 and E; of 78, 82 and
96% for i = 1, 2 and 3, respectively. Although C; and
E; are considerably larger, there is no inconsistency
because a large portion of the variance in the & time
records is resolved by the determination of the moor-
ing-position errors alone. The consistently high cor-
relations and percentage of the signal resolved are a
strong evidence of the existence of three first baroclinic-
mode planetary waves in the region during the exper-
imental period. The optimal values of the parameters
for the waves and mean flow, and their rms errors
(square roots of the diagonal elements of H™!) are shown
in Table 2; the phase and group velocities, the Doppler
shifts, and the wave periods themselves, as well as the
directions and lengths of the waves are presented. Al-
though the mean flow is very weak, it must be taken
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FI1G. 6. Correlations of the travel-time perturbation records (O),
the moored temperature-perturbation records (+) and the observed
'modal-amplitudes from CTD surveys (@) with the Model 1 fit for a
given number of wave(s).

into consideration, since it accelerates the phase prop-
agation considerably by generating Doppler effects; it
is thus vital to the success of the wave fit.

The seven time records of éc observed from the
moored temperature sensors are plotted in Fig. 8 to-
gether with the optimal fit. It is seen that the obser-
vations and the optimal interpolations compare fa-
vorably. Furthermore, some secondary perturbations
with a period of about 20 days superimposed on the
primary wave perturbations are found consistently in
all the time records. The secondary oscillations were
most profound at the mooring site E2, i.e. at (x, y) =
(150.7, 13.6) km. Because the frequency is below the
inertial frequency, this oscillation cannot be due to in-
ternal waves; we speculate that the secondary pertur-
bations were caused by the forced waves that oscillate
at frequencies equal to the sum of the frequencies of
the interacting barotropic and/or baroclinic waves. As
observed in Fig. 8, the model errors are not exactly
independent at every time point. Thus, the wave fit
probably slightly overestimates its own accuracy due
to the assumption of uncorrelated experimental noise.

To demonstrate that the observed pattern of the
fairly complicated system can indeed be reconstructed
accurately by the gradual evolution of three waves, we
show a time sequence of contour maps of the estimated
sound speed perturbation at a depth of 700 m in Fig.
9. The observed sound speed from the first and second
CTD surveys at the same depth are contoured in Fig.
10 for comparison. It is seen that the waves generated
a trough that was moving slowly to the west and then
produced a front that was advancing from the northeast
during the later period.

The covariance matrix H,™' of the wave-parameter
estimate p (i.e. the corresponding block in the inverse
Hessian matrix of the objective function evaluated at
the minimum point) gives indications of which wave
parameters, or linear combinations of wave parameters,
are well-determined, and which are poorly determined.
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A simple measure of the quality of the estimate is given
by the diagonal elements of H,”', which are the mean
square errors of the estimate; the rms errors are listed
in Table 2. Using H,™!, we can also obtain an error
g§timate of the estimated sound speed perturbation
oc = 3¢™(p) due to the error e of the estimated wave
parameters p. Through a linearization of the wave and
mean-flow induced sg\und speed perturbation &c™(p)
about p, the error of ¢ can be approximated by

~ d T
Adc ~ [— 6c"'(f))] e.
ap

It then follows that the mean square error of 8¢ can be
expressed as '

A2~_a_ mya ! —li mya
(Adc?) ~ [8p dc (p)] H, [ap dc (p)]. (16)

In Fig. 11, we show the contour plots of the rms
error [i.e., the square root of the variance (16)] of the
sound speed perturbation estimate as displayed in Fig.
9. Because the densities of the ray paths and the CTD
stations were much higher in the middle of the area,
the errors are smaller there. Furthermore, since there
was an environmental mooring E2 on the southern
boundary, the errors near this boundary are smaller
than those near the northern boundary where no en-
vironmental mooring was deployed (see Fig. 1). The
constraint imposed by the wave dynamics introduces
a high correlation between the sound speed perturba-
tions at different locations and times; thus the errors
in all the maps stay within a narrow range.

Westward phase propagation is known to be typical
of mesoscale perturbations at midlatitudes. Consis-
tently, as indicated in Table 2, the phases of the ob-
served waves were all propagating westward. The cor-
responding group-velocity vectors also have westward
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FiG. 7. Amounts of variance dccounted for in the travel-time per-
turbation records (O), moored temperature-perturbation records (+)
and the observed modal-amplitudes from CTD surveys (®) by the
Model-1 fit for a given number of wave(s).
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TABLE 2. Optimally estimated wave parameters. The numbers after the + signs are rms errors.

a. Independent wave parameters

Mean-current modal-

éc Wavenumber vector Phase amplitude vector
Wave  amplitude constant Mode Reference é¢
) A;(ms™) k; (km™) I; (km™) v, (rad.) (m) Un(ems™)  v,(cms™) bo (ms™h)
1 1.10+£0.13 —0.0118 +£0.0011 0.0203 +£0.0010 2.13+0.19 0 —-1.70£0.24 0.11+0.08
2 2.28+0.12 —0.0066 +0.0005 —0.0198 +0.0007 1.51£0.12 1 —-0.76 £0.13 0.39+0.09 —1.46x0.21
3 1.73+£0.09 —0.0119+0.0005 —0.0034 +0.0008 —0.06+0.11
b. Dependent wave parameters )
Phase velocities Group velocities
Wave Direction . Wave (cms™) (cm s7')
Wave length of phase period Doppler-shifted
0] (km) (deg) (days) period (days) Eastward Northward Eastward Northward
1 268 120 117 —-202 -5.25 3.06 —4.24 0.23
2 300 -108 344 —164 -3.19 -1.06 —4.30 1.16
3 509 —-164 121 —77 -5.04 —17.69 —4.23 0.53

directions, implying that the waves were generated
somewhere to the east of the experimental region;
therefore, the possibility that they were radiated by the
intense Gulf Stream can be ruled out. The three baro-
clinic waves do not form a resonant triad since the sum
or difference of the phases of two of the waves does
not equal the phase of the other wave. However, the
propagation of resonant baroclinic waves is still possible
because they could be generated by interacting baro-
tropic waves. The fastest oscillation that could be forced
by the observed baroclinic waves would result from the
interaction between the first and the third waves and
would have a period of (Y17 + Y121)™! = 60 days. But,
since the secondary perturbation which we have ob-
served from the moored time records of temperature
has a period of 20 days (see Fig. 8), it must be due to
the interaction of barotropic waves that have much
higher frequency cutoffs.

In the absence of a mean flow, the short-period cutoff
of the first baroclinic-mode waves is approximately 160
days, and thus cannot account for the faster oscillations
of period 120 days in the data. This is well demon-
strated by the poor fits of Model 0. Although the mean
current, as estimated, is very weak (approximately 2
cm s™!), it strongly alters the space and time behavior
of the wave-induced perturbations by producing large
changes in the wave periods or frequencies (the Doppler
effects have reduced the wave periods of the three waves
by 202, 164 and 77 days, respectively). Thus, the weak
mean current has played an important role in the wave
propagation in the region.

The approximate solution for linear dispersive plan-
etary waves is obtained by neglecting the nonlinear and
linear-coupling terms in the horizontal-structure equa-
tions (3) for mesoscale motions. Let us first comment
on the linearization and then discuss the linear coupling

in the context of stability theory. Qualitatively, the lin-
earization is valid when the ratio of the particle to phase
speed of the waves is small when compared to unity.
As the ratio decreases, so do the nonlinear effects.
Therefore, by shortening the wave periods and hence
increasing the phase velocities, a westward mean cur-
rent can weaken the nonlinear interactions between
the dispersive waves, thus making the linear approxi-
mation better. The magnitudes of the phase and particle
velocities of the observed dispersive primary waves were
computed and the results are presented in Table 3.
Furthermore, the magnitudes of the phase velocities of
the waves, computed as if the mean current were ab-
sent, are also presented in the same table. It is seen
that if the weak mean current were absent, the validity
of the linearization for the wave motions would be
harder to justify. The pressure amplitudes of the sec-
ondary waves forced by the observed primary waves
and the pressure amplitudes of the primary waves
themselves are given in Table 4. The ratios of the rms
pressure amplitudes of the secondary to the primary
waves are approximately 1/4. Thus, there could be up
to a 25% error in the linear model.

Since we have observed a horizontally stratified flow
with vertical shear, we shall investigate the stability of
the flow in the presence of wave disturbances. The cor-
responding instability phenomenon is baroclinic. When
it occurs, the available potential energy of the sloping-
isopycnal mean state is converted to the potential and
kinetic energy of the perturbations. A consequence of
baroclinic instability is that the wave disturbances will
grow and the tilted mean-state isopycnal surfaces will
become more horizontal, that is, warm fluid will rise
and cold fluid will sink.

Mathematically, the linear couplings in (3) give rise
to baroclinic instability. After dropping the nonlinear
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series (+++) observed from the temperature

terms and performing a triple Fourier transformation,
(3) can be cast as an eigenvalue problem in matrix

algebra:
ay a 1T, =g I,
Q) ax m, ) . I,
with .
—Bk
a11=k—2_i—_-l—2+(u0k+vol)
—Bk
a22=m+(uok+vol)

K+ 12

+e(uk+ v,l)m

sensors moored at seven different locations.

ayp = M;k‘i‘ U;l

K+1P-\

K+P+N

where Io(k, [, o) and II,(k, /, o) are the spectra of the
modal-amplitude functions of the zero and first mode
perturbation pressures, respectively. For a given wave-
number vector (k, /), the wavefrequencies g, i.e., the
eigenvalues, are given by

a = (u,k+ ‘U;l)

ay + an+ [(ay; — an)’ + 4aza:21"?
5 .

Note that the coupﬁng is caused by the baroclinic mean
current only, and when coupling is neglected ¢_ and

ok, )=
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. 9. A time sequence of maps of sound speed perturbation (in m s™)
at a depth of 700 m of the optimally estimated wave field.

o+ are the same as the frequencies of the dispersive since ¢, and o. are complex conjugates, one of them
barotropic and baroclinic waves, respectively. It can must have a positive imaginary part that corresponds
be checked that with the values given in Table 2, to instability.

o_ = Qy,, thus justifying (5).

The shaded area on the k~/ plane displayed in Fig.

For disturbances with (k, /) satisfying 12 is the region of instability. In the figure, we also plot

2
(a1 — axn) <—4aa,,

the locations of the observed wave disturbances, which
are seen to be stable. However, we must warn that, as

the wavefrequencies are complex. Under this condition, the waves approach the western boundary, they may
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FIG. 10. Sound speed perturbations (in m s™*) at a depth of 700 m,
as observed by the two CTD surveys.

encounter changes in the direction and intensity of the
mean flow such that some or all of the three waves can
become unstable and develop into intense eddies. This
is because, as the mean current becomes stronger, the
region of instability becomes larger; also as the flow
direction changes, so does the location of the unstable
region. ‘

McWilliams and Flierl (1976) have fitted planetary
waves to the MODE-0 and MODE-1 datasets, sepa-

rately. While the former contained only current-meter -

records from seven separate moorings and mostly from
beneath the main thermocline, the latter was a much
larger and more uniform dataset, obtained from a va-
riety of instruments: current meters, moored temper-
ature sensors, CTDs and STDs, and SOFAR floats.
The best MODE-O0 fit has a high correlation of ~0.8
~ with the data and accounted for over half (=60%) of
the data energy. It consisted of a pair of barotropic
waves and no baroclinic waves, propagating in the ab-
sence of mean flow. The reason for not being able to
observe any baroclinic waves is that MODE-0 was pri-
marily an experiment in the lower layer (below the
main thermocline) where the barotropic-mode kinetic
energy dominates. Nonlinear interactions within the
MODE-0 wave fit were found to be weak: forced wave
amplitudes predicted by the weakly nonlinear theory
are about 20% of the primary wave amplitudes. On
the other hand, both barotropic and baroclinic waves
were observable by the MODE-1 array that contained
both adequate current and temperature measurements.
The best MODE-1 fit, having a correlation of ~0.7
and accounting for one-half of the data energy, has a
pair of barotropic and a pair of first-baroclinic waves,
again propagating in the absence of mean flow. How-
ever, nonlinear interactions were found to be of mar-
ginal but uncertain importance within the MODE-1
fit: forced wave amplitudes were predicted to be large
and comparable to the primary wave amplitudes, but

by searching in the data for the forced waves with the
given frequencies and wavenumbers, no significant en-
ergy has been found in them. To explain this, Mc-
Williams and Flier] suggested empirically that the non-
linear transfers of energy might have acted in such a
way as to preserve crucial features of the linear solution.
From the results of the MODE and our wave fits, we
can summarize the dynamics of the mesoscale motion
in the general area where MODE and the Ocean To-
mography Experiment were conducted as follows:

1) The motion appears to be dominantly wavelike:
planetary waves have consistently accounted for more
than one-half of the total energy observed in different
places and during different time periods.

2) The vertical structure is dominated by the baro-
tropic and first baroclinic modes, with the latter con-
taining the greatest fraction of the available potential
energy among all the vertical modes.

3) The space-time behavior of the motion is well
predicted by the dispersion relation, i.e. linear dy-
namics.

4) Most of the waves observed by the three fits have
westward group velocities, suggesting that waves orig-
inate in the east.

5) The phase propagation is generally westward, and
the wavelengths of the propagating baroclinic waves
are typically a magnitude of a few hundreds of kilo-
meters.

6) Subinertial oscillations with frequencies higher
than the cutoff frequency of dispersive planetary waves
have been observed, particularly in the moored tem- -
perature records of the Ocean Tomography Experiment
(see Fig. 8), indicative of the existence of forced plan-
etary waves.

7) Locally, the presence of a westward mean flow
can reduce the interactions of the dispersive planetary
waves by increasing the phase velocities.
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TaBLE 3. Magnitudes of the phase and particle velocities of the 4. Conclusions
primary dispersive waves, The quantity in parentheses is the phase
speed associated with the same wave in the absence of mean current.
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We have clearly identified in the data the presence
of three first baroclinic-mode planetary waves super-

W(?)V ¢ Przzﬁ ?—’ne)ed Wave'l?gﬁc:g)cmem imposed on a large-scale (i.e. horizontally uniform),
vertically sheared current. The waves are found to be

1 6.1(2.2) 2.2 linear (i.e. slightly interacting and stable); they account

§ lg"‘; gbzé ) ‘1"2 for 78% of the data variance and are highly correlated

with the data (correlation of 0.88). The model provides
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TABLE 4. Pressure amplitudes of the primary and secondary waves.
Wave amplitudes
Interacting (10° kg km™* 5?) Ratio of rms
primary waves ] forced to primary
i-j . Primary waves Forced waves wave amplitudes
1-2 0.598 1.236 0.035 0.014 0.02
1-3 0.598 0.935 0.023 0.330 0.30
2-3 1.236 0.935 0.044 0.155 0.10

a unifying picture and dynamical interpretation of the
evolution of the temperature (or sound speed) field over
the two and a half month duration of the experiment.

Of course, one can never prove a model to be ab-
solutely correct; it can only be shown to perform better
(or worse) than others. Although other models have
been tried, including nonadvective propagation, reso-
nant interaction and different numbers of waves, the
results presented here constitute our best fit. It has all
the desirable features: it is plausible, dynamically con-
sistent, the estimates are well determined, etc.

Even if a model explains the data well, other pro-
cesses may take place which are not seen by the ob-
serving system. This is the case here, in particular with
respect to weak or short baroclinic waves, which could
have existed in addition to those identified but could
not be detected due to insufficient resolution. This is
also the case with respect to shallow fluctuations and
barotropic motions. The acoustic array, with one-way
transmissions, can only detect baroclinic motions, and
likewise for the moored temperature sensors and CTD
surveys. Only the current meters could provide infor-
mation on the barotropic component; but being rather
sparse and closely spaced, they could not possibly be
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FiG. 12. The stability of the estimated mean flow. The observed
wave disturbances (+) are outside the region of instability (shaded
area) in the wavenumber domain.

used as a wave detector. In a similar way, the MODE- -
0 fit of McWilliams and Flierl (1976) was essentially
barotropic, because the current meters used were from
below the main thermocline where the kinetic energy
in the baroclinic modes is weak. As mentioned above,
the float data analyzed by Price and Rossby (1982)
likewise contained only the barotropic component.
Future tomographic arrays using “reciprocal shooting”
will detect currents and constitute more complete sys-
tems (Worcester et al., 1985).

Even though the observing system deployed during
the 1981 experiment could not measure currents di-
rectly, our wave fit reveals the existence of large-scale,
rather weak, vertically sheared horizontal currents. This
observation is made possible by the strong constraint
imposed by this current on the space-time behavior of
the evolving field, through Doppler shift of the wave-
frequency.

Since acoustic methods of monitoring mesoscale
variability are relatively new, it is perhaps useful to
compare the results given here to those obtained either
by pure acoustics or by pure “conventional” means.
A detailed discussion has been given by Chiu (1985),
which can be summarized as follows: if we redo our
wave fit using only the acoustic data, the results are
very similar to those of Fig. 9, but with an estimated
uncertainty (error variance) twice as large. Nonetheless,
these errors are half the size of those daily estimates
obtained by Cornuelle et al. (1985) for any given day.
This shows the advantage of doing, as we have here, a
“time-dependent” inversion which takes into account
the temporal continuity and the dynamics of the field.
The wave parameters obtained in a “pure acoustic”
inversion are not very stable, because of the rather large
signal produced by the untracked mooring motions
instead of by the waves, but this can be corrected in
future instrumentation. On the other hand, in this par-
ticular example, the temporally, widely spaced CTD
surveys and the spatially, sparsely spaced moored tem-
perature arrays could not resolve the waves. The to-
mographic system, however, has placed a much more
stringent space-time constraint on the solution of the
field by its observations.
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' APPENDIX A
Linearity Of Acoustic Travel Times

The time required for a pulse signal to transmit
through a ray path connecting a source to a receiver
in a perturbed and moving medium is given by

t‘+at=f [E+6c+v-d—(x+6x)]"lds (A1)
x+8x ds

where the quantity in the bracket is often referred to
as the ray speed (Ugincius, 1970). In (A1), s is the arc
length along the ray path, the nominal quantities ¢ and
x(s) are respectively the travel time and ray trajectory
in an unperturbed and motionless state (i.e. the ref-
erence state), and 6t and dx(s) are respectively their
deviations caused by the flow field v and the pertur-
bations éc in sound speed. In general, travel times are
perturbed in a very complicated manner. Both the
sound speed perturbations and currents can affect travel
times directly. They can also affect travel times indi-
rectly by changing the ray trajectories. However, Ham-
ilton et al. (1980) have shown that for any stable ray
(that is, any ray that exists in the reference state and
does not disappear or alter drastically its geometry in
the perturbed state) and for weak horizontal variations
in éc and v the contribution of §x and &z is of order
higher than that contributed explicitly by the changes
in the ray speed. Therefore, they concluded that the
perturbed travel times may be evaluated along the
nominal ray trajectories without losing much accuracy.
For most oceanic fluctuations [6c| > |v| and hence v
may also be neglected in the travel-time evaluation.
By further neglecting terms of order (8c/c)?, 8t may be
approximated by (1).

The use of the approximate relation (1) for linear
inversion was suggested by Munk and Wunsch (1979).
Cornuelle (1983) and Mercer and Booker (1983) have
considered its validity in numerical experiments; while
the former found confirming evidence for typical mid-
ocean eddies in long-range transmissions, the latter
found conflicting evidence for the case of a warm eddy
at temperature changes greater than 1°C and 1000 km
propagation range. These conflicting results only sug-
gest to us that the linear approximation (1) must be
reassessed for the case of planetary waves. In doing so,
planetary waves that produce éc of order 5 m s™! and
v of order 5 cm s™' in the upper ocean were simulated;
these values are typical of the open ocean. The results,
which confirm the validity of (1) for a transmission
range of 300 km, are summarized as follows:

CHING-SANG CHIU AND YVES DESAUBIES

1285

1) Travel-time perturbations of order 30 ms are ob-
served.

2) Ray paths are practically unperturbed. The ver-
tical and horizontal changes of their geometries are of
order 50 m and ', km, respectively. These changes are
small compared to the scales of the wave perturbations.
Furthermore, negligible errors of one to three millisec-
onds are introduced in 6t when the nominal ray paths
are used for the calculation. '

3) Current effects are negligible. Travel-time per-
turbations created by the flow field are one to two mil-
liseconds.

4) Although the combined error created by the as-
sumption of stationary ray paths and the neglect of
current effects can be up to 15% of the signal, the es-
timate of a few wave parameters is not affected when
a large number of travel-time data are available.

APPENDIX B
Vertical Structure

Strong evidence exists in previous observations that
the vertical structure of the oceanic fluctuations in the
MODE area is predominantly composed of only a few
of the lower vertical modes. McWilliams and Flierl
(1975) have shown that over 90% of the kinetic energy
in MODE was contained in two empirical orthogonal
vertical modes that closely resemble the barotropic and
the first baroclinic modes of Rossby waves, while Rich-
man et al. (1977) find that 90% of the potential energy,
again in MODE, was contained in the first three baro-
clinic modes, with 65% of the energy being contained
in the first mode alone. Therefore, we shall use the
dynamical modes for our wave models, which are so-
lution of the eigenvalue problem (LeBlond and Mysak,
1978; Pedlosky, 1979):

d{f*d
dz( N?2dz”"

with boundary conditions

)+AI is i=051,23.'. (Bl)

d d
0= fi(=D)=0 (B2)
and satisfy the orthonormal condition
1 (° 1, i=j
FI ST CVE NS

In (B1)—(B3), N(2), f, D, f:(z) and A, are the buoyancy
frequency, the Coriolis parameter, the ocean depth,
the ith eigenfunction (vertical mode) for pressure (or
geostrophic velocity), and the corresponding eigen-
value, respectively.

Assuming that the sound speed fluctuations are cre-
ated by the vertical displacement of the surfaces of
constant sound speed, the sound speed perturbation
modes are given by
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where
hi=Df2N‘2—‘£f,~ i=1,2, ¢+
dz

are the vertical displacement modes, and dc(z)/dz is
the adiabatic sound speed gradient. The first three
sound speed perturbation modes, normalized to have
maxima of unity, are displayed in Fig. 4. The barotropic
mode [i.e. fi(z)] produces negligible displacement and
sound speed perturbations.

The surveyed sound speed perturbation profiles (the
observed deviations from ¢) can be decomposed as

5QCTD(Z)? zdijgi(z) J=12,.>

where d;; represents the weight of g; in the jth observed
profile 6¢;°™ and can be easily computed using the
fact that the cN~!'g, (or Nh;) functions are orthogonal
to each other.

To investigate the modal content of the field, we
have made the following calculations for each of the
CTD casts:

M
f |6¢;°™° — 3 dygilPdz
1 — i=1
i flachTDlZdZ
M=1,2,3

where P, is the percentage of the energy in 4¢;°'
contained in the first M baroclinic modes alone. We
found P, to be 50% to 90% in all the casts, in agreement
with Richman et al. (1977). We also found that the
contributions of the second and third modes are insig-
nificant in this region, there being less than a 5% in-
crease in the P,; and P;; from P,;, showing the domi-
nance of the lowest baroclinic mode.

P/uj= X 100‘70,

APPENDIX C
Measurement Models and Mooring Motion

For the gth modal-amplitude datum a,’ observed at
(x, y, ©) = (x,, Vg» 1) and the kth datum dcf = oc” (¢
= 1) in the /th ¢ time series (converted from the tem-
perature record) observed at (x, y, z, ) = (X1, Y1, Z1, t)s
the corresponding measurement processes can be ex-
pressed simply as

a;’=a/"(p)+ v,

8c° =68cR(p)+ v
where

0
a" = f_ Déc’”(xq, Va» Z, tg) » &1(2)dz

5Cm = 6Cm(x1> Yis 2y tk)
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" are the signals, and v,* and v¥% are the experimental

noise in a,° and dc., respectively. In general, the ex-
perimental noise that accounts for all the noise in the
observing system is the sum of model and measurement
errors. While the former error represents that part of
the signal due to processes not accounted for in our
model (for instance higher modes, tides, internal waves,
etc.), the latter is purely of instrumental origin.

In addition to the baroclinic waves, mean current,
background oceanic fluctuations, and measurement
errors, the relative motions and the uncertainty in the
nominal positions of the acoustic moorings also con-
tribute to the observed travel-time perturbations. In

"fact, the latter two contributions were dominant. If one

were to model these mooring-position related travel-
time perturbations as part of the experimental noise,
the &t time records would suffer a vanishingly small
ratio of signal to noise. In order to improve the quality
of the &t data, as suggested by Cornuelle (1983), the
mooring-position related travel-time perturbations
must also be modeled as signals, implying that the un-
certainty in the mooring positions must also be ex-
pressed as unknown parameters in the acoustic mea-
surement equations.

A set of relative mooring-displacement data was
available from the acoustic navigation systems. The
tracking data had already been applied to eliminate the
signal produced by some of the mooring motions in
the travel-time data. But since the tracking time records
contain large gaps resulting from occasional malfunc-
tion of the tracking instruments, the untracked or un-
known horizontal displacements together with the un-
certainty in the horizontal nominal positions of the
moorings must still be parameterized. The vertical
translations of the acoustic sources and receivers were
small (of order 50 m) and produced very little travel-
time perturbations (of order 1 ms); therefore, they need
not be parameterized.

Let us consider the jth ray path connecting the mth
source Sm to the nth receiver Rn. According to Cor-
nuelle (1983), the additional time required for the
acoustic wave front to travel from Sm to Rn along the
path due to a small elongation R (say of order 1 km)
of the horizontal distance separating Sm and Rn can
be expressed, to lowest order, as

Btst = rjﬁRA

where r; is the corresponding ray parameter, i.e. the
cosine of the transmission (arrival) angle divided by
the sound speed at the source (receiver); 7; is a conserved
quantity along the ray. Let the unknown horizontal-
displacement vectors at time #, and the time-indepen-
dent errors on the assumed nominal horizontal-posi-
tion vectors of Sm and Rn be [0Xs.(t), 0¥Vsm(t)] and
[6an(tk)7 5an(tk)]s and (AxSma AySm) and (Aan, Aan)a
respectively. It then follows that the corresponding
61,°R at time ¢ is given by
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5tj5R(tk) =7 cos¢mn[Aan - AxSm + 6-an(tk) - BxSm(tk)]

+ r; Sind)mn[Aan - AySm + 5an(tk) - 6ySm(tk)]

where ¢,,, is the direction of the horizontal line of
transmission from Sm to Rn, measured in degrees
(positive anticlockwise) with respect to the x-axis, i.e.
east axis.

We are now in a position to write down the acoustic
model equations. For the travel-time perturbation
8t = 8t (t = 1) observed from the jth ray path at
time #;, the corresponding equation can be cast sym-
bolically as

5tjok = atjrz [p, AxSm H A,VSm 5 Aan, Aana 6xSm(tk)’

8Ysmlti), OXRnltr), OV RAE] + V3%

where v} represents the experimental noise in t%. The
signal 6¢7; can be written as the sum of two parts such
that

ot = o5+ otk

where 838 = 6,°%(s,) and 8¢5 is the signal induced by
the waves and mean flow which, following (1), can be
expressed as

i
x;(s)

S

—6c™(X, ti; p)
&2y

with x; denoting the nominal trajectory of the jth ray.

ds
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