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ABSTRACT

We compute the evolution of disturbances on a circularly symmetric eddy having uniform vorticity in a .
central core, in a surrounding annulus, and in the irrotational exterior water mass. This vortex is lgnown to be
(Kelvin-Helmholtz) unstable when its annular width is less than the core radius. Our calculathns for the
nonlinear regime show that amplification of azimuthal wavenumber n = 2 causes the vortex to §pht into two
dipoles, in agreement with previous numerical calculations for a smoothed version of our vorticity field. This
paper concentrates on the evolution of large-amplitude disturbances on the outer edge of a stable and robpst
eddy. We show that lateral wave breaking of vorticity isopleths causes intrusions of the (irrotatmpal) exterior
water mass into the central core of the vortex, a physical process which is relevant to lateral diffusion qnd
isopycnal mixing in baroclinic ocean eddies. Similar intrusive features occur for an n = 1 disturbance, which
also causes a “self-propagation” of the entire eddy. The large-amplitude disturbances on the eddy can be initiated
by the action of external eddies or currents. A simple model for this case exhibits filaments detraining from the

eddy, as well as intrusive features.

1. Introduction

The thin filamentary streamers extending outward
from the edge of warm core rings are familiar features
of the surface temperature, as revealed by satellite im-
ages. Additional hydrographic measurements at greater
depths (Cheney and Richardson, 1976; Lambert, 1984;
Joyce, 1984; Joyce et al.,. 1983; Schmitt et al., 1986)
suggest that such outward-going filaments, and also the
inward-coming intrusions, are important links from
the geostrophic scale to the smaller scales (fine struc-
ture) responsible for the dissipation of the salinity—
temperature variances which are continually generated
by evaporation and solar heating. This paper addresses
the mechanism of the lateral diffusion process which
starts from the geostrophic scale.

Although warm/cold core eddies originate as insta-
bilities of current systems separating different water
masses, these coherent and long-lived vortices are ro-
bust. Their outer boundary, however, is continually
deformed by the ambient motion field, and by topo-
graphic or beta effects. We suggest that these large-am-
plitude deformations produce folding or “wave break-
ing” of potential vorticity isopleths, followed by either
intrusions of the surrounding water or by “detrain-
ment” of long, thin filaments into the surrounding wa-
ter mass. Stern (1987) has shown how these features
can “pinch off” in a “1%-layer” density model of a
disturbed rectilinear current. This paper considers the
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analogous effects in a round barotropic model, and we
believe the main qualitative effect will also occur in a
baroclinic vortex. '

The model is simplified even further by assuming
that the vortex has piecewise uniform vorticity. This
leads to a reduction in the number of spatial dimen-
sions, so that the resuiting mathematical problem is
focused entirely on the evolution of the interfaces be-
tween the vorticity domains. The highly filamented
structures appearing in this calculation are easily re-
solved, reproduced, and rationalized.

The large amount of literature on this “contour dy-
namical” technique (Melander et al., 1986) has mainly
been applied to noncompact eddies, each having finite
far-field circulation (and infinite kinetic energy). The
more relevant oceanographic structure seems to be a
compact structure, such as a vortex having vanishing
far-field circulation, but the mathematical apparatus
is the same. We also mention that some of the previous
calculations compare favorably with two-dimensional
calculations of high resolution for smoothed vorticity
fields, and this observation produces confidence in the
thin filamentary vorticity structures which we shall ob-
tain for the piecewise uniform models.

In section 2 we start with the problem of the stability
of a piecewise uniform vorticity eddy (Flierl, 1985). This
problem is the “round” version of the elementary Kel-
vin-Helmholtz problem, and from the calculation
outlined in section 2 it is found that the compact vortex
is stable if the ratio of the radii of the outer and inner
interfaces is @ > 2. For a slightly smaller ratio, only
azimuthal wavenumber 7 = 2 amplifies with time. The
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normal mode for » = 1 has an interesting degeneracy
(with frequencies: o2 = 0), the resolution of which (sec-
tion 2) shows that an initial n = 1 disturbance results
in the self-propagation of the entire vortex with con-
stant speed and direction. Next we turn to the nonlinear
phase of an unstable vortex. For the case of smooth
vorticity field, Gent and McWilliams (1986) have
shown the splitting into two dipole eddies, which then
propagate away from each other. (Ikeda, 1981, obtained
a similar effect for a baroclinic vortex which was baro-
tropically stable.) The effect is reproduced (section 3)
in the piecewise uniform vorticity model, and we also
show that dipolar splitting occurs no matter how small:
2—-a>0.

Our main interest, however, is the linearly stable
eddy (a > 2) subjected to large-amplitude initial de-
formations at its outer boundary. In this case the finite
miminum width of the annular region can decrease to
zero as time increases. This effect causes a thin filament
of the exterior (irrotational) water mass to spiral in-
wards towards the radius of maximum azimuthal ve-
locity. (If the uniform density field in our model was
composed of compensating temperature and salinity
fields, then we would see lateral intrusions of these
fields.)

The question then arises as to the mechanism by
which the large-amplitude initial perturbations are
generated. In section 5 we put a single fixed point vortex
at varying distances outside a circularly symmetric
eddy, and then compute the evolution of the distur-
bances forced on the outer boundary. The numerical
solutions of the contour dynamical equations reveal
detraining filaments as well as ingoing intrusions.

2. Analytical considerations

a. Small perturbation theory

Consider the undisturbed eddy whose azimuthal ve-
locity is

r, O0<sr<li
—r/(@®—1)+a?*/r(a*-1),
0, r>a.

wr) =

Isr<a (1)

The maximum (nondimensional) velocity is unity,
the radius of the inner core is unity, and the vorticity
of the latter is +2. In the annulus the value of # de-
creases to zero at the outer interface, and the vorticity
of the annulus is

=-—2/(az- 1). (1a)

Figure 1 depicts the two interfaces for a particular initial
state in which the centers of the two circles are displaced
" from each other by an amount A.

Since the vorticity is piecewise uniform, the conser-
vation law will be satisfied if the perturbation is piece-
wise irrotational. Let us begin by making a normal
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FG. 1. An example of a piecewise uniform vorticity eddy, in which
the center of the outer circle (r = a) is displaced from the center of
the inner one (marked X) by an amount A, If A < 1, the entire vortex
propagates upwards with speed U, and the diagram shows the relative
motion in a polar coordinate system fixed to the center of the outer
circle.

mode ansatz, so that the streamfunction is assumed to
be given by the real part of

J/( r) e inf+at

where n is the wavenumber, ¢ is the frequency, and
V¥ is the eigenfunction of the mode. But let us bear in
mind that normal modes are not necessarily complete
and are not necessarily capable of describing the evo-
lution of a/l initial perturbations.

The solution of Laplace s equation shows that  is
a linear combination of r*” in each of the three pieces
of the eddy. The combination must be regular at r = (0,
o), and the pieces must be connected across r = (1,
a) so that ¥(7) and the azimuthal pressure gradient (or
the perturbation in azimuthal acceleration) are contin-
uous. It can be shown that the latter requirement at
the inner interface implies

(1- o) 27

(1b)

where the prime denotes a derivative with respect to
r, and a similar connection condition for the stream-
function at r = a can be obtained. One then substitutes
the piecewise irrotational ¢ into these, thereby obtain-
ing the dispersion equation

n+ az(a‘z”— D(@:-17"!
a’—1

n*a®+o(n—n?+ =0. (2
The two o-roots are real forall nifa > 2, andata = 2
the n = 2 mode is on the verge of amplification. The
real part of its frequency is ¢ = Y%, and the radial dis-
placements of the perturbed interfaces are equal and
opposite.
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A normal mode with » = 1 does not change the
shape of the circular interfaces to first order in ampli-
tude, but only displaces their centers. Note that if n
= 1in Eq. (2), then ¢2 = 0. One of these two degenerate
eigenvalues corresponds to a trivial disturbance, in
which each of the two circular interfaces is displaced
by the same amount from the origin of a fixed coor-
dinate system. Of course nothing will happen (¢ = 0)
in this case, but if the displacements differ by A (Fig.
1), then the n = 1 initial perturbation is obviously non-
trivial and nonstationary. The paradox (¢ = 0) is due
to the incompleteness of the normal modes.

The A displacement in Fig. 1 can be interpreted as

a “dipole moment” of two overlapping circular do- .

mains (one with vorticity w and a larger one with vor-
ticity 2 — w), having equal and opposite integrated vor-
ticities [because of (1a)]. Since the mutual induction
of the domains will cause each one to move in the
same direction, we shall compute the evolution of this
n = 1 initial state by making the ansatz that the curves
in Fig. 1 propagate without change of shape (for A
< 1) and with speed U. In a translating coordinate
system whose center is fixed to the center of the large
circle the motion is steady, and the polar equation for
the inner circle is r = 1 — A cosé. For r > a (Fig. 1),
the total velocity is composed of the sum of U and an
n = 1 component V(r, §). The radial component of the
latter must be ¥(a, 6) = U sind = Re(—iUe™) since the
total radial velocity vanishes on r = a. Also (a, 0)
= —Re(ia " "Y(a)e®) if Re Y(r)e” denotes the stream-
function for the V component, and it then follows that
¥(a) = aU. Therefore, y(r) = a*U/r for r > a, and by
adding the r derivative of this to the projection of U
on the outer circle we obtain the tota/ azimuthal ve-
locity
u*(a, 9) = Re(—2Ue"). (2a)
Now consider a > r > 1, where the total velocity is
given by the sum of [Eq. (1)] and an #» = 1 component.
The latter is irrotational and its radial component must
vanish on r = g, so that the corresponding stream-
function is F(r/a — a/r)e” where F is a constant. Since
the basic velocity vanishes on r = g, the total azimuthal
velocity is
u*(a, 8)=FRe2a'¢",
and since there can be no discontinuity in tangential
velocity, Eq. (2a) implies
F=-al. (2b)
Finally, consider 0 < r < 1, where the total field is
again given by the sum of the basic velocity and an n
= 1 perturbation. The streamfunction for the latter,
which matches the previous one as r = 1, is Re[rF(1/
a ~ a)é®], and the corresponding radial velocity, eval-
uatedat r = 1, is

Re[—iF(1/a— a)e®] = Re[—iU(a’—1)é’]. (2¢)
_In the vicinity of the perturbed interface (r = 1 — A
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X cosf) the azimuthal velocity is #(1) = 1 to leading
order, so that the radial velocity at r = 1 must also be
given by

or
—=-R 9
%0 eiAe”,

By equating this and (2¢) we get
U=A/a*—1) 3)

as the vortex speed for a given initial A < 1. It only
remains to show that the azimuthal pressure gradient
on either side of the r =1 interface is continuous. This
can be verified a posteriori by setting ¢ = 0 in Eq. (1b),
and by substituting therein the previously obtained
streamfunctions. The left-hand side of (1b) will then
identially vanish, implying that the dynamical bound-
ary condition on the inner interface is indeed satisfied.
In addition to their intrinsic interest, these linear results
will provide useful check and reference points for the
numerical calculations in the strongly nonlinear re-
gime. '

b. Contour dynamics for large amplitudes

All the nonlinear calculations which follow are based
on the method of contour dynamics (Overman and
Zabusky, 1982). This method proceeds from the ele-
mentary fact that a “point” vortex at (¢, #) with strength
gdtdn will produce a circularly symmetric stream-
function (g/27) In[(x — £)? + (¥ — n)*]"/? at all points
(x, ¥). Therefore, if g is constant within a simply con-
nected area then the Cartesian velocity components at
any x, y are ’

0053, =L 2 | [ dedn e g+ -0y
=L QP ine— 7 + (=
u(x, y, t)——— f dtdn In(x— £+ (y—n)?

-2 gﬁds InGc— 2+ (—ny?

where the line integrals are taken counterclockwise
along the curve (£, n) bounding the area in question.
The vorticity of our doubly connected domain (an ex-
ample of which is given in Fig. 1) may be considered
as the sum of the vorticities in two overlapping singly
connected domains, each having uniform g. The larger
domain has the vorticity g = w of the annulus, while
the inner domain has the vorticity ¢ = 2 — w, so that
in the overlapping area the sum equals the actual vor-
ticity (“two”) of the core. The (principle parts of the)
foregoing integrals are evaluated at each point [x = X3,
y = Ay(x, 1)] on the outer boundary, and set equal to
the correspondmg Lagrangian velocity dx,/dt, dny/dt.
The same thing is done at a point (x;, A;) on the inner
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boundary, and in this way we obtain the coupled in-
tegro—differential equations

dX2/dt _ 1 dnz - . B i
(de/d[) B 4 ¢(d£2) 11'1()(,'2 gZ) + (Xz 172)

+ 2—w (d’?l
4 dt,

(ﬁl/dt) - 2_4_TW ¢(ZZ:) In(x, — El)2 + (7\1 - 171)2

dfdt
w dn, N (X — )2
to gﬁ( d&)ln(xl £+ (R —n2)

for the evolution of the contours (A, \,).

We have solved these numerically on a personal
computer by placing N(1) Lagrangian points on the
inner boundary and N(2) points on the outer one. The
integrals are approximated by the trapezoidal rule with
an indentation at the logarithmic singularity, whose
contribution is evaluated by an analytic approximation.
A second-order Runge-Kutte scheme with a time step
= (.1 was used in all the calculations reported below.
When the Lagrangian points became too sparse (or too
dense), we went back to a slightly earlier time and edited
the output by inserting or deleting points. The calcu-
lation was then continued from this earlier time (after
checking its results with those of the prior run in the
overlapping region of time).

) In(x; — £)2 + A —my)?

3. The unstable regime and intrusions

The numerical program was also checked by running
it at the point of marginal stability (a = 2) with an
initial condition corresponding to an n = 2 normal
mode having a radial perturbation amplitude X\,
= —0.05 on the inner circle and A\; = +0.05 on the
outer circle. With M(1) = N(2) = 80 the phase speed
differed from the linear theory (¢ = %) by an amount
(1%) comparable with the truncation error in evaluating
the contour integrals. We then considered a stable value
of @ = 2.2, and applied an n = 2 initial radial distur-
bance (ReAe™) with amplitudes A\, = —\, = —0.2. The
counterclockwise rotation of the phase of the inner and
the outer boundary (Fig. 2) reveals an evolution qual-
itatively similar to linear theory. This pattern is to be
compared with the evolution (Fig. 3a, b) in the highly
unstable regime (a = 1.6) where the initial condition
consisted of an exact # = 2 normal mode with infini-
tesimal amplitudes A\; = +0.05, A, = (0.84) X (0.05)
X exp(—2.32i). Two different effects may be noted here,
the first being the expected exponential growth which
caused the minimum radius of points on the outer
boundary to decrease with time. As these points are
brought nearer to the inner boundary their azimuthal
velocity increases, causing them to overtake the slower
points on the contour at greater 7, and thereby pro-
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FIG. 2. Evolution of a finite amplitude » = 2 initial disturbance
in the stable regime a = 2.2 with A, = —\, = —0.2. The two boundaries
at t = 4 are drawn with a solid curve, and the ¢ = 7 boundaries are
drawn with a dashed curve. The tick mark on the 6 = 0 axis is at r
= 1.

ducing the incipient wavesteepening effect (Stern, 1985)
at r = 7 in Fig. 3a. Shortly afterwards (at z = 8) the
radial displacement of the contour becomes a multi-
valued function of § (“‘wave breaking™). The combined
effects of “growth” and “wave breaking” explains the
later evolution (Fig. 3b) in which the negative vorticity
is stripped away from the annulus and concentrated
into two cores at the ends of the cyclonic region. The
velocities induced by the anticyclonic cores will sub-
sequently cause the cyclonic region to thin and split at
its midsection, according to the longer two-dimensional
calculations of Gent and McWilliams (1986), which
show the ultimate split into two oppositely propagating
dipoles. We mention that these calculations required
a doubly periodic array of vortices and also a small
amount of eddy viscosity, neither of which are present
in the contour dynamical calculation. Figure 4 shows
that the same evolution occurs even for a value of a
= 1.9 which is only slightly less than the critical value.
Thus all linearly unstable monopolar barotropic vor-
tices will not equilibrate until there is a drastic topo-
logical change into two oppositely propagating dipoles.
Since such drastic instabilities do not occur in most
ocean eddies (e.g., warm/cold core rings), we turn our
attention to a stable vortex (a > 2) subject to such large
peripheral disturbances as may be initiated by sur-
rounding eddies.

When the same initial disturbance [# = 2, A, = 0.2
= —\;] as used for Fig. 2 is applied to a smaller a = 2,
the behavior (Fig. 5a, b) is significantly different, insofar
as a thin intrusion of the exterior water mass comes
into close contact with the core interface (the curve of
maximum circulation). When this occurs, we shall say
that “intrusive instability” is exhibited. Although this
also occurs in Fig, 2, there is a great difference between
the two kinds of instability. The eddy in Fig. 5b is ro-
bust, ending up with nearly azimuthal velocities and
a streamfunction (not shown) having a monopolar
character.

Figure 6a, b shows what happens when the outer
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FIG. 3. Evolution of a small amplitude # = 2 normal mode (see .

text) for a highly unstable value of @ = 1.6. (a) The number of La-
grangian points on the inner boundary is N(1) = 80, and N(2) = 80
points are on the outer boundary. The time step = 0.1. The tick
mark is at r = 1. Wavebreaking on the outer boundary occurs shortly
after ¢ = 7. (b) At ¢ = 10.1, two oppositely propagating dipoles start
to form: The negative vorticity is concentrated in two cores at opposite
ends of the elongated positive vorticity region. Prior to this time the
number of Lagrangian points has been increased to N(1) = 90, N(2)
= 104.

radius is increased to ¢ = 2.3 and the initial amplitudes
of n = 2 are also increased to \, = 0.4 = —\,. The
area of the thin tip of the inner contour at = 3 became
so small at ¢ = 4.5 that “surgery” was performed by
deleting all of the points in the tip and then recon-
necting the ends of the contour. At ¢ = 7 (Fig. 6b) it
was necessary to add points in the highly strained region
of the thin intrusion, so as to maintain the spatial res-

FIG. 4. As in Fig. 2 except a = 1.9 (slightly unstable) and A, = —A,
= —0.05. Points were added at ¢ = 16 so that N(1) = 90, N(2) = 94.
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FIG. 5. As in Fig. 2 except a = 2. (a) Initially M(1) = N(2) = 80..
At ¢ = 6, wave breaking occurs on the outer boundary of the vortex.
(b) At £ = 9.7, the number of points on the outer boundary has been
increased to N(2) = 98 in order to resolve the thin intrusive filaments.

olution. In the summary of Fig. 7 the symbol “S” des-
ignates those runs in which the inner boundary remains
(well) separated from the outer one and from the ex-
terior water mass. The symbol U designates ordinary
instability if a < 2 or intrusive instability if a > 2.

4. Self-propagating vortices and their intrusions

In section 2 we found that for a small relative dis-
placement between the centers of two circular interfaces
the eddy will move without change of shape and with
speed (3). For large A = 1 (a = 2.5), Fig. 8 shows the
interfacial deformation, and the crosses in Fig. 9 show
the slightly curving path of the center of gravity of the
core.

Calculations were also made for an initial distur-
bance with azimuthal wavenumber » = 1, in which
the interfaces are given by r = 1 and r = a + A cos#f.
For finite A the latter curve departs significantly from
a circle, and bounds an area greater than wa?. There-
fore, its far-field circulation will be anticyclonic if (A,
a, w) have the same values as used for the previous
case of the circular interfaces. A comparison between
the two cases is furnished by the two triangular points
in Fig. 9, which indicate that the n = 1 mode has a
slightly smaller path curvature than the corresponding
case for displaced circles. But for A = 0.4 the elliptical
distortion of the outer boundary is so small that the
path (Fig. 9) from ¢ = 0 to ¢ = 32 is nearly along the
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FiG. 6. Asin Fig. 4 except a = 2.3, A, = 0.4 = —\,. The tick mark
on the # = 0 axis is a unit distance from the origin. (a) Notice the
thin tip which forms on the inner boundary. N(1) = N(2) = 80. (b)
“Surgery” at t = 4.5 has removed the tip, and at ¢ = 4.6 (dashed
curves), we see a filament of irrotational fluid at the inner core
boundary M2) = 98.

straight line predicted by the linear theory for displaced
circles. Figure 9 also shows the increased curvature of
the path which results when the anticyclonic vorticity
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FIG. 7. Regime diagram. S indicates initial states for which the
minimum width of the anticyclonic annulus does not decrease to
zero. The linearly unstable regime a < 2 evolves into two dipoles.
For the other U states the minimum width of the annulus decreases
to zero, and a thin filament of irrotational fluid makes close contact
with the core. The numbers in parenthesis are for identification of
the run. For all runs, except run 2 (mentioned previously), the am-
plitude ratio was A\y/\; = —1 and n = 2.
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t=10.6

8-0

F1G. 8. The initial condition consists of two circular boundaries
displaced horizontally by A = 1, and with vanishing integrated vor-
ticity. M(1) = 80, N(2) = 100. Note the entrainment of irrotational
fluid into the central region of the eddy as it moves upward. The tick
mark on the stationary § = 0 axis is at unit distance from the origin.

in the annulus is reduced relative to the constant value
used in all the previous calculations. The normalized
displacements of the eddy perpendicular to the initial

9 t=32

X
o X
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FIG. 9. The path of the center of gravity of the inner core for a
= 2.5. The annular vorticity is the same (w = —2/5.25) for all points
except the dotted ones ending at ¢ = 16.5 (for which w = —0.25).
The run with the crosses (ending at ¢ = 10.6) is for an initial condition
consisting of two circles displaced by A = 1 (Fig. 8). The two triangular
points are for an n = 1 initial perturbation of the outer interface with
the same A, a, w, and these give a small excess anticyclonic vorticity
to the entire annulus (see text). The straight vertical line ending at ¢
= 32 indicates the path for the same g, w values but with A = 0.4.



1694

o1 S A
o] 4 8 12 16 20 24 28 32 36

FiG. 10. Normalized plot of the displacement L, of the center of
gravity of the core when an # = 1 modal disturbance of amplitude
A is applied initially at the outer boundary of an undisturbed eddy
with R, equal to a = 2.5, and with annular vorticity = —2/5.25. The
(45°) straight line corresponds to linear theory [Eq. (3)]. The triangles
are for A = 0.4, the crosses are for A = 0.75, and the dots are for A
=1

dipole moment in Fig. 10 are all for the same values
ofn=1,a=25,w= —2/5.25. This figure shows that
the departure from (3) increases with time and with A.

Figure 8 also shows the same kind of intrusive fila-
ment as obtained previously (for #n = 2). A similar in-
trusion (not shown) was found for an » = | disturbance
with A = 0.75. For A = 0.4, wave breaking at the outer
boundary occurred at ¢t = 18, and the subsequent in-
trusive filament had a noticeably smaller area. At ¢
= 30 another wave started to break at a position 90°
clockwise from the first one, and a second small intru-
sion started to form.

»5-0

t=32

FIG. 11. The motion induced in a compact eddy (@ = 2.5) by a
cyclonic (C = 0.5) point vortex located at § =0, r = R = 7.5 in the
fixed polar coordinate system (the tick mark on the 8 = 0 axis denotes
unit distance from the origin).
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FIG. 12. As in Fig. 11 except R and C are decreased by half. The
main effect at ¢ = 14 is the commencement of a detrainment process.

5. Generating the disturbance

It is now necessary to discuss a mechanism for gen-
erating the initial disturbance on our robust ocean
eddy, and the simplest way to begin is by placing a
fixed point vortex having circulation C at a distance R
> g from an initially circularly symmetric eddy. Then
the point vortex will distort the outer interface of the
eddy, and the evolution can be computed by a small
modification of the program used previously.

When R = 7.5, C = 0.5 (Fig. 11) the inner core is
relatively undisturbed, and its center rotates about the
fixed point at a rate expected by the R, C values. But
larger distortions appear on the outer interface and
these start to break at 1 = 20. At r = 32 a lobe of the
eddy tends to be drawn towards the fixed point vortex
and the filamentary intrusion winds into the center of
the eddy. We also see another wave starting to break
on the opposite side. When both R and C are decreased
by half (Fig. 12), the velocity induced at the eddy center
is unaltered, but the shear across the eddy is increased.
This causes a more prominent lobe which seems to be
on the verge of detrainment.

Reversing the sign of C (Fig. 13) changes the side of
the eddy on which the lobe appears, and reduces the
tendency for it to be drawn towards the fixed point.
The predominant effect here appears to be engulfment
or entrainment of the irrotational water mass.

t=10
FIG. 13. As in Fig. 12 except that the sign of C is reversed.
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1=19
HG. 14. As in Fig. 12 except that C = 1.5.

The value of R in Fig. 14 is the same as in Fig. 12,
but the value of C has been tripled. The main effect
on the eddy of the increased shear at ¢ = 10 is the
induction of an n = 2 mode. Two lobes develop after
wave breaking [at £ = 16 (not shown)), and at ¢ = 19
we see two irrotational intrusions which almost pinch
off two anticyclonic lobes. This calculation suggests
how entrainment and detrainment can combine to lead
to a more rapid isopycnal mixing of an eddy as its
outer portion is replaced by the exterior water mass
(Stern, 1987).

6. Conclusion

Shear instability in a compact barotropic eddy occurs
when the annular width of the outer part (anticyclonic
vorticity) becomes sufficiently small compared to the
radius of the inner part (cyclonic vorticity). The non-
linear evolution causes the eddy to split into dipoles
no matter how small the supercriticality of the basic
state.

This paper mainly directs attention to the linearly
stable eddy subjected to large displacements of the vor-
ticity isopleths at its outer boundary. In this case the
evolution of an n = 2 disturbance can cause a thin
filament of the exterior water mass to penetrate into
the eddy up to the radius of maximum azimuthal ve-
locity, while maintaining the monopolar character of
the streamfunction.
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An azimuthal perturbation of wavenumber n = 1
causes a self-propagation of the entire eddy, also ac-
companied by wave breaking and filamentary intru-
sions at its outer boundary.

When a compact circularly symmetric eddy is per-
turbed by an exterior velocity field, breaking waves de-
velop on the outer interface, and these lead to detrain-
ing filaments (Fig. 14) as-well as intrusive ones.

This paper and its companion (Stern, 1987) suggest
that similar effects should occur in isopycnal layers of
a baroclinic eddy surrounded by a different water mass.
In that case, the deformations of potential vorticity
isopleths will produce isopycnal fluxes of the temper-
ature/salinity anomalies. The straining of these struc-
tures produces strong vertical gradients of temperature
and salinity on the fine- and microscales and these are
associated with the final (thermodynamic) mixing of
the temperature/salinity variances.
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